Confidence Interval for the Ratio of Lognormal Means When the Coefficients of Variation are Known

Sa-aat Niwitpong
King Mongkut's University of Technology North Bangkok Thailand

Abstract--This paper presents the confidence interval for the ratio of means of lognormal distribution. We derived analytic
expressions to find the coverage probability and the expected length of the proposed confidence interval.
Keywords-- Coverage probability, expected length, lognormal distribution

I. INTRODUCTION

The lognormal distribution has been widely used for a skewed data in science, biology and economics. A ratio estimator is much attention in area of bioassay and bioequivalence. Recently, many researchers have been investigated this problem. For example, Lee and Lin [3] constructed the confidence interval for the normal means by using the generalized confidence interval and the generalized p-value proposed by [6]. Later, Chen and Zhou [2] compared several methods for constructing the confidence interval for the ratio of lognormal means. They suggested a modified signed log-likelihood ratio approach which is the best among these confidence intervals. In this paper, we proposed to construct the confidence interval for the lognormal means when the coefficients of variation are known. Additionally, we derived analytic expressions to find its coverage probability and its expected length.

$$
\text { Let } X_{i}=\left(X_{1 i}, X_{2 i}, \ldots, X_{n_{i}}\right), i=1,2 \text {, , be a random variable having a lognormal }
$$ distribution, and μ_{i} and σ_{i}^{2}, respectively, are denoted by the mean and the variance of $Y_{i}=\ln \left(X_{i}\right) \sim N\left(\mu_{i}, \sigma_{i}^{2}\right)$. The probability density function of X_{i}, is

$$
f\left(x_{i}, \mu_{i}, \sigma_{i}^{2}\right)= \begin{cases}\frac{1}{x_{i} \sigma_{i} \sqrt{2 \pi}} \exp \left(-\frac{\left(\ln \left(x_{i}\right)-\mu_{i}\right)^{2}}{2 \sigma_{i}^{2}}\right) ; & \text { if } x_{i}>0 \\ 0 r & \text { otherwise. }\end{cases}
$$

In particular, the mean, variance and the coefficient of variation for lognormal distribution are given by

$$
\begin{aligned}
& E\left(X_{i}\right)=E\left(\exp \left(Y_{i}\right)\right)=\exp \left(\mu_{i}+\frac{\sigma_{i}^{2}}{2}\right), \operatorname{Var}\left(X_{i}\right)=\exp \left(2 \mu_{i}+\sigma_{i}^{2}\right)\left(\exp \left(\sigma_{i}^{2}\right)-1\right), \\
& C V_{i}=\sqrt{\exp \left(\sigma_{i}^{2}\right)-1}
\end{aligned}
$$

where $C V_{i}$ denotes the coefficient of variation of X_{i} which is computed from
$\sqrt{\operatorname{Var}\left(X_{i}\right)} / E\left(X_{i}\right)$. The parameter of interest is $\delta=\exp \left(\mu_{1}+\sigma_{1}^{2} / 2\right) / \exp \left(\mu_{2}+\sigma_{2}^{2} / 2\right)$, when coefficients of variation are known i.e., $\tau_{i}=C V_{i}=\sqrt{\exp \left(\sigma_{i}^{2}\right)-1}$ leading to $\sigma_{i}^{2}=\ln \left(\tau_{i}^{2}+1\right)$ then
$\theta_{i}=E\left(X_{i}\right)=\exp \left(\mu_{i}+\frac{\ln \left(\tau_{i}^{2}+1\right)}{2}\right)=\exp \left(\mu_{i}+c_{i}\right), \quad c_{i}=\frac{\ln \left(\tau_{i}^{2}+1\right)}{2}$. As a result, the parameter of interest is $\delta=\exp \left(\mu_{1}+c_{1}\right) / \exp \left(\mu_{2}+c_{2}\right)$. Consider $\ln (\delta)=\theta_{1}-\theta_{2}, \theta_{1}=\mu_{1}+\sigma_{1}^{2} / 2, \theta_{2}=\mu_{2}+\sigma_{2}^{2} / 2$ when coefficients of variation are known $\ln (\delta)=\left(\mu_{1}+c_{1}\right)-\left(\mu_{2}+c_{2}\right), c_{i}=\ln \left(\tau_{i}^{2}+1\right) / 2$.

We now consider to construct the confidence interval for $\ln (\delta)$ and then transform back to the confidence interval for δ by taking the exponential function to $\ln (\delta)$.
a) Case 1 , when σ_{1}^{2} and σ_{2}^{2} are known

The pivotal quantity for this case is

$$
Z=\frac{\left(\bar{Y}_{1}+c_{1}\right)-\left(\bar{Y}_{2}+c_{2}\right)-\left(\left(\mu_{1}+c_{1}\right)-\left(\mu_{2}+c_{2}\right)\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}
$$

when

$$
S_{i}^{2}=\left(n_{i}-1\right)^{-1} \sum_{i=1}^{n_{i}}\left(Y_{i}-\bar{Y}_{i}\right)^{2} \quad \text { and } \quad Z \quad \text { is } \quad \text { a } \quad \text { standard } \quad \text { normal }
$$

distribution. $C I_{1}=\left[\left(\bar{Y}_{1}+c_{1}\right)-\left(\bar{Y}_{2}+c_{2}\right)-Z_{1-\alpha / 2} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}},\left(\bar{Y}_{1}+c_{1}\right)-\left(\bar{Y}_{2}+c_{2}\right)+Z_{1-\alpha / 2} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}\right]$
b) Case 2 , when σ_{1}^{2} and σ_{2}^{2} are unknown but $\sigma_{1}^{2}=\sigma_{2}^{2}$

The pivotal quantity for this case is

$$
T_{1}=\frac{\left(\bar{Y}_{1}+c_{1}\right)-\left(\bar{Y}_{2}+c_{2}\right)-\left(\left(\mu_{1}+c_{1}\right)-\left(\mu_{2}+c_{2}\right)\right)}{S_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}
$$

when T_{1} is the t -distribution with $n_{1}+n_{2}-2$ degrees of freedom, and S_{p}^{2} is the pooled estimate of the sample variance;

$$
\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(\mathrm{n}_{2}-1\right) S_{2}^{2}}{n_{1}+n_{2}-2} .
$$

A $100(1-\alpha) \%$ confidence interval for $\ln (\delta)$ is

$$
C I_{2}=\left[\left(\bar{Y}_{1}+c_{1}\right)-\left(\bar{Y}_{2}+c_{2}\right)-t_{1-\alpha / 2, n 1+n 2-2} S_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}},\left(\bar{Y}_{1}+c_{1}\right)-\left(\bar{Y}_{2}+c_{2}\right)+t_{1-\alpha / 2, n 1+n 2-2} S_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}\right]
$$

when $t_{1-\alpha / 2}$ is a $(1-\alpha / 2) 100$ th percentile of the t-distribution with $\mathrm{n} 1+\mathrm{n} 2-2$ degrees of freedom.
c) Case 3 , when σ_{1}^{2} and σ_{2}^{2} are unknown but $\sigma_{1}^{2} \neq \sigma_{2}^{2}$

The pivotal quantity for this case is

$$
T_{2}=\frac{\left(\bar{Y}_{1}+c_{1}\right)-\left(\bar{Y}_{2}+c_{2}\right)-\left(\left(\mu_{1}+c_{1}\right)-\left(\mu_{2}+c_{2}\right)\right)}{\sqrt{\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}}}
$$

when T_{2} is an approximated t -distribution with

$$
v=\frac{(A+B)}{\frac{A^{2}}{n_{1}-1}+\frac{B^{2}}{n_{2}-1}}, A=\frac{S_{1}^{2}}{n_{1}}, B=\frac{S_{2}^{2}}{n_{2}}
$$

degrees of freedom.
A $100(1-\alpha) \%$ confidence interval for $\ln (\delta)$ is

$$
C I_{3}=\left[\left(\bar{Y}_{1}+c_{1}\right)-\left(\bar{Y}_{2}+c_{2}\right)-t_{1-\alpha / 2, v} \sqrt{\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}},\left(\bar{Y}_{1}+c_{1}\right)-\left(\bar{Y}_{2}+c_{2}\right)+t_{1-\alpha / 2, v} \sqrt{\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}}\right]
$$

A final process is to use exponential function to transform $C I_{1}, C I_{2}, C I_{3}$ back to δ, we then have $\exp \left(C I_{1}\right), \exp \left(C I_{2}\right)$ and $\exp \left(C I_{3}\right)$ respectively.

II. COVERAGE PROBABILITY AND EXPECTED LENGTH OF EACH CONFIDENCE INTERVAL

In this section, we present the coverage probability and the expected length of each interval.
Theorem 2.1 The coverage probability and the expected length of CI_{2} when the variances are equal, $\sigma_{1}^{2}=\sigma_{2}^{2}$, are respectively
$E\left[\Phi\left(W_{1}\right)-\Phi\left(-W_{1}\right)\right]$ and $2^{3 / 2} d \sigma_{1} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}} \sqrt{\frac{1}{n_{1}+n_{2}-2}} \frac{\Gamma\left(\frac{n+m-1}{2}\right)}{\Gamma\left(\frac{n+m-2}{2}\right)}$
where $\quad W_{1}=d_{1} \sigma_{1}^{-1} S_{p}, d_{1}=t_{1-\alpha / 2, n+m-2}, \Gamma[$.$] is the gamma function and \Phi[$.$] is the$ cumulative distribution function of $N(0,1)$.
Proof. Similarly to Niwitpong and Niwitpong [4], from CI_{2}, we have

$$
\begin{aligned}
1-\alpha= & P\left[\left(\bar{Y}_{1}-\bar{Y}_{2}\right)+\left(\mathrm{c}_{1}-\mathrm{c}_{2}\right)-d_{1} S_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}<\mu_{1}-\mu_{2}+\left(\mathrm{c}_{1}-\mathrm{c}_{2}\right)<\left(\bar{Y}_{1}-\bar{Y}_{2}\right)+\left(\mathrm{c}_{1}-\mathrm{c}_{2}\right)+d_{1} S_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}\right] \\
& =P\left[\frac{-d_{1} S_{p} \sqrt{\frac{1}{n}+\frac{1}{m}}}{\sigma_{1} \sqrt{n^{-1}+m^{-1}}}<\frac{\left(\mu_{1}-\mu_{2}\right)-\left(\bar{Y}_{1}-\bar{Y}_{2}\right)}{\sigma_{1} \sqrt{n^{-1}+m^{-1}}}<\frac{d_{1} S_{p} \sqrt{\frac{1}{n}+\frac{1}{m}}}{\sigma_{1} \sqrt{n^{-1}+m^{-1}}}\right] \\
& =E\left[I_{\left\{-W_{1}<Z<W_{1}\right\}}(\tau)\right], I_{\left\{-W_{1}<Z<W_{1}\right\}}(\tau)=\left\{\begin{array}{l}
1, \text { if } \tau \in\left\{-W_{1}<Z<W_{1}\right\} \\
0, \text { otherwise }
\end{array}\right. \\
& =E\left[E\left[I_{\left\{-W_{1}<Z<W_{1}\right\}}(\tau)\right]\left|S_{p}^{2}\right|\right. \\
& =E\left[\Phi\left(W_{1}\right)-\Phi\left(-W_{1}\right)\right]
\end{aligned}
$$

where $Z \sim N(0 ; 1)$.
The expected length of $C I_{2}$ is $E\left[2 d_{1} S_{p}^{2} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}\right]$,

$$
2 d_{1} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}} E\left[S_{p}\right]=2 d_{1} \sigma_{1} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}} \sqrt{\frac{1}{n_{1}+n_{2}-2}} E\left[\sqrt{\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(\mathrm{n}_{2}-1\right) S_{2}^{2}}{\sigma_{1}^{2}}}\right]
$$

$$
=2 d_{1} \sigma_{1} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}} \sqrt{\frac{1}{n_{1}+n_{2}-2}} E(\sqrt{V})
$$

$$
=2^{3 / 2} d_{1} \sigma_{1} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}} \sqrt{\frac{1}{n_{1}+n_{2}-2}} \frac{\Gamma\left(\frac{n+m-1}{2}\right)}{\Gamma\left(\frac{n+m-2}{2}\right)}
$$

where $V \square \chi_{n+m-2}^{2}$ and $\quad E(\sqrt{V})=\frac{2^{1 / 2} \Gamma\left(\frac{1}{2}+\frac{n+m-2}{2}\right)}{\Gamma\left(\frac{n+m-2}{2}\right)}$
proof.
Theorem 2.2 The coverage probability and the expected length of $C I_{3}$ are respectively

$$
E[\Phi(W)-\Phi(-W)] \text { and }\left\{\begin{array}{l}
2 d \sigma_{1} \sigma_{2}\left(n_{1} n_{2}\right)^{-1 / 2} \delta \sqrt{r_{1}} F\left[\frac{-1}{2}, \frac{n_{2}-1}{2}, \frac{n_{2}+n_{1}-2}{2}, \frac{r_{1}-r_{2}}{r_{1}}\right], \text { if } r_{2}<2 r_{1} \\
2 d \sigma_{1} \sigma_{2}\left(n_{1} n_{2}\right)^{-1 / 2} \delta \sqrt{r_{2}} F\left[\frac{-1}{2}, \frac{n_{1}-1}{2}, \frac{n_{1}+n_{2}-2}{2}, \frac{r_{2}-r_{1}}{r_{2}}\right], \text { if } 2 r_{1} \leq r_{2}
\end{array}\right.
$$

where

$$
\begin{gathered}
W_{2}=\frac{d \sqrt{\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}}}{\sqrt{\sigma_{1}^{2} n_{1}^{-1}+\sigma_{2}^{2} n_{2}^{-1}}}, d=t_{1-\alpha / 2, \mathrm{v}}, \delta=\frac{\sqrt{2} \Gamma\left(\frac{n_{1}+n_{2}-1}{2}\right)}{\Gamma\left(\frac{n_{1}+n_{2}-2}{2}\right)} \\
r_{1}=\frac{n_{2}}{\sigma_{2}^{2}\left(n_{1}-1\right)}, r_{2}=\frac{n_{1}}{\sigma_{1}^{2}\left(n_{2}-1\right)}, v=\frac{(A+B)}{\frac{A^{2}}{n_{1}-1}+\frac{B^{2}}{n_{2}-1}}, A=\frac{S_{1}^{2}}{n_{1}}, B=\frac{S_{2}^{2}}{n_{2}} \text { and }
\end{gathered}
$$

$E($.$) is an expectation operator, F(a ; b ; c ; k)$ is the hypergeometric function,
defined by $F(a ; b ; c ; k)=1+\frac{a b}{c} \frac{k}{1!}+\frac{a(a+1) b(b+1)}{c(c+1)} \frac{k^{2}}{2!}+\ldots$ where $|k|<1$, see [5], Γ [.] is the gamma function and $\Phi[$.$] is the cumulative distribution$ function of $N(0,1)$.

Proof. Since, for normal samples, $\bar{Y}_{1}, \bar{Y}_{2}, S_{1}^{2}$ and S_{2}^{2} are independent of one another. From CI_{3}, we have

$$
1-\alpha=P\left[\left(\bar{Y}_{1}-\bar{Y}_{2}\right)+\left(\mathrm{c}_{1}-\mathrm{c}_{2}\right)-d \sqrt{\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}}<\mu_{1}-\mu_{2}+\left(\mathrm{c}_{1}-\mathrm{c}_{2}\right)<\left(\bar{Y}_{1}-\bar{Y}_{2}\right)+\left(\mathrm{c}_{1}-\mathrm{c}_{2}\right)+d \sqrt{\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}}\right]
$$

$$
\begin{aligned}
& =P\left[\frac{-d \sqrt{\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}}}{\sqrt{\sigma_{1}^{2} n_{1}^{-1}+\sigma_{2}^{2} n_{2}^{-1}}}<\frac{\left(\mu_{1}-\mu_{2}\right)-\left(\bar{Y}_{1}-\bar{Y}_{2}\right)}{\sqrt{\sigma_{1}^{2} n_{1}^{-1}+\sigma_{2}^{2} n_{2}^{-1}}}<\frac{d \sqrt{\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}}}{\sqrt{\sigma_{1}^{2} n_{1}^{-1}+\sigma_{2}^{2} n_{2}^{-1}}}\right] \\
& =P\left[\frac{-d \sqrt{\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}}}{\sqrt{\sigma_{1}^{2} n_{1}^{-1}+\sigma_{2}^{2} n_{2}^{-1}}}<Z<\frac{d \sqrt{\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}}}{\sqrt{\sigma_{1}^{2} n_{1}^{-1}+\sigma_{2}^{2} n_{2}^{-1}}}\right] \\
& \quad=E\left[I_{\left\{-W_{2}<Z<W_{2}\right\}}(\xi)\right], I_{\left\{-W_{2}<Z<W_{2}\right\}}(\xi)=\left\{\begin{array}{l}
1, \text { if } \xi \in\left\{-W_{2}<Z<W_{2}\right\} \\
0, \text { otherwise }
\end{array}\right. \\
& \quad=E\left[E\left[I_{\left\{-W_{2}<Z<W_{2}\right\}}(\xi)\right] \mid S\right], S=\left(S_{1}^{2}, S_{2}^{2}\right)^{\prime} \\
& =E\left[\Phi\left(W_{2}\right)-\Phi\left(-W_{2}\right)\right]
\end{aligned}
$$

where $Z \sim N(0 ; 1)$.
The length of $C I_{2}, L_{C I_{2}}$, is $2 d \sqrt{\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}}$ and the expected length of $L_{C I_{2}}$ is

$$
\begin{aligned}
& =2 d \sigma_{1} \sigma_{2}\left(n_{1} n_{2}\right)^{-1 / 2} E\left[\sqrt{\frac{n_{2} S_{1}^{2}+n_{1} S_{2}^{2}}{\sigma_{1}^{2} \sigma_{2}^{2}}}\right] \\
2 d E\left[\sqrt{\frac{m S_{x}^{2}+n S_{y}^{2}}{n m}}\right] & =2 d \sigma_{1} \sigma_{2}\left(n_{1} n_{2}\right)^{-1 / 2} E\left[\sqrt{\frac{\left(\frac{n_{2}}{n_{1}-1}\right)}{\sigma_{2}^{2}} \frac{\left(n_{1}-1\right) S_{1}^{2}}{\sigma_{1}^{2}}+\frac{\left(\frac{n_{1}}{n_{2}-1}\right)}{\sigma_{1}^{2}} \frac{\left(n_{2}-1\right) S_{2}^{2}}{\sigma_{2}^{2}}}\right] \\
& =2 d \sigma_{1} \sigma_{2}\left(n_{1} n_{2}\right)^{-1 / 2} E\left[\sqrt{r_{1} Z_{1}+r_{2} Z_{2}}\right] \\
& =\left\{\begin{array}{l}
2 d \sigma_{1} \sigma_{2}\left(n_{1} n_{2}\right)^{-1 / 2} \delta \sqrt{r_{1}} F\left[\frac{-1}{2}, \frac{n_{2}-1}{2}, \frac{n_{2}+n_{1}-2}{2}, \frac{r_{1}-r_{2}}{r_{1}}\right], \text { if } r_{2}<2 r_{1} \\
2 d \sigma_{1} \sigma_{2}\left(n_{1} n_{2}\right)^{-1 / 2} \delta \sqrt{r_{2}} F\left[\frac{-1}{2}, \frac{n_{1}-1}{2}, \frac{n_{1}+n_{2}-2}{2}, \frac{r_{2}-r_{1}}{r_{2}}\right], \text { if } 2 r_{1} \leq r_{2}
\end{array}\right.
\end{aligned}
$$

where $Z_{1}=\frac{(n-1) S_{x}^{2}}{\sigma_{x}^{2}} \square \chi_{n-1}^{2}, \quad Z_{2}=\frac{(m-1) S_{y}^{2}}{\sigma_{y}^{2}} \square \chi_{m-1}^{2}$ and for more details of $E\left[\sqrt{r_{1} Z_{1}+r_{2} Z_{2}}\right]$ see [5, pp. 456-458]. Thus we complete the proof.

We note here that, it is easy to find the coverage probability and the expected length of the confidence interval $C I_{1}$, so we skip that section.

III. CONCLUSIONS

In this paper, we derived the coverage probability and the expected length of CI_{2} compared to $C I_{3}$. The coverage probabilities of these confidence intervals approach $1-\alpha$, when α is a level of significance and for large sample sizes. The expected lengths for each interval,
shown in Theorems 1 and 2, can be compared. So we do not need to use the simulation to show the results.

ACKNOWLEDGEMENTS

We are appreciated the funding from Faculty of Applied Sciences, King Mongkut's University of Technology North Bangkok.

REFERENCES

[1] G. Casella and R.L. Berger, Statistical Inference, California: Duxbury Press, 2002
[2] Y.H. Chen and X.H. Zhou, "Interval estimates for the ratio and difference of two lognormal means," Statistics in Medicine, vol 25, pp. 4099-4113, 2006.
[3] J.C. Lee, S.H. Lin, "Generalized confidence intervals for the ratio of means of two normal populations," Journal of Statistical Planning and Inference, vol 123, pp. 49-60, 2004.
[4] S. Niwitpong, S. Niwitpong, "Confidence interval for the difference of two normal population means with a known ratio of variances," Applied Mathematical Sciences, vol 4, pp. 347 - 359, 2010
[5] S.J. Press, "A confidence interval comparison of two test procedures for the Behrens-Fisher problems," Journal of the American Statistical Association, vol 61, pp. 454-66, 1966.
[6] K. Tsui and S. Weerahandi, "Generalized p-values in significant testing of hypotheses in the presence of nuisance parameters," The Journal of American Statistical Association," vol 84, pp. 602-607, 1989..

