Riesz Operators and their Applications in the Eigen values of Linear Operators

Dr. S.K.Singh¹, Dr. Gyan Mukherjee², Dr. Santosh Kumar³, Dr. Mahendra Kumar Roy⁴

¹Department of Mathematics, College of Commerce, Patna(Magadh University)(India) ²Department of Mathematics, S.P.S.College, Vaishali(B.R.A.B.University)(India) ³Department of Mathematics, T.N.B.College, Bhagalpur(T.M.University)(India) ⁴Department of Mathematics, Patna Womens College, Patna(Patna University)(India)

Abstract: We have introduced Riesz Operators and its various properties. We have developed Eigen value theorems for absolute operator.

Key words: Operators, Linear Operators, Riesz Operators, Absolutely r-summing Operator, Eigen Value, Riesz Decomposition, Pigeon-hole Principle.

I. INTRODUCTION

Linear Operators: Let D and G be two linear space with the same set of Scalars and let y = T(x) be an operator defined on D with range lying in G,

i.e. $T : D \rightarrow G$

The Operator T is called linear if

1. T is additive, i.e., $T(x_1 + x_2) = T(x_1) + T(x_2)$ for every $x_1, x_2 \in D$.

2. T is homogeneous, i.e. for any scalar $\lambda T(\lambda x) = \lambda T(x)$ for every $x \in D$.

The properties (1) and (2) can be put in a combined from

 $T(\lambda_1 x_1 + \lambda_2 x_2) = \lambda_1 T(x_1) + \lambda_2 T(x_2)$ for every $x_1, x_2 \in D$ and every scalars $\lambda_1 \lambda_2$.

... 1. Linear maps are also called linear transformations, linear operators on homeomorphisms.

2. The linear operations of both the linear spaces E and \overline{E} are denoted by the same symbol.

3. For linear mappings, it is customary to write the value of T at x by T x rather than T(x).

Eigen Values of a Linear Operator: Let X be a linear space over the field K and $T \in L(x)$. A scalar $\lambda \in K$ is said to be an Eigen value of T if there exist a non zero vector $x \in X$ such that

(1)

T x = λ x or (T - λ I) x = 0

Clearly, λ is Eigen value of T iff the null space of $(T-\lambda\,I)$ is non-trivial.

Let x be a linear space over the field K and $T \in L(x)$. A vector $x \in X$ is said to be an eigenvector of T if (i) $x \neq 0$ and (ii) T $x = \lambda x$, for some $\lambda \in K$.

Absolutely r-summing operators: An operator $T \in L(D,G)$ is called absolutely r-summing if there exist a constant $C \ge 0$ such that

$$\left\{\sum_{i=1}^n \left(\left\| \operatorname{Tx}_i \right\|^r \right)^r \right\} \leq C \text{ sup } \left\{\sum_{i=1}^n \left(\left\| < x_i \right\|, a > \left\|^r \right\| \right)^{1/r} : a \in U^0 \right\}$$

For every finite family of elements $x_1, \ldots, x_n \in D$.

Riesz Operators: An operator $T \in L(E)$ is said to be Riesz if every $\in > 0$ their exist an exponent n and elements u_1 ,

...., $u_k \in E$. Such that $T^n(U) \subseteq \bigcup_{h=1}^k \{u_h + \varepsilon^n \mid U\}$. An operator $T \in L(E)$ is said to be iteratively compact if for

every $\in > 0$ there exists an exponent n and element $u_1, \ldots, u_k \in E$ such that $T^n(U) \subseteq \bigcup_{h=1}^k \{u_h + \varepsilon^n \ U\}$. Where U denotes the closed unit ball of the underlying Banach space E.

Riesz Decomposition: A is an arbitrary linear map acting on a linear space E. Let $N_k(A) = \{x \in E : A^k x = 0\}$ and $M_h(A) = \{A^h x : x \in E\}$

 $Obiviously, \{0\} = N_0(A) \subseteq N_1(A) \subseteq \dots and \subseteq \dots M_1(A) \subseteq M_0(A) = E$

Therefore, $N_{\alpha}(A) = \bigcup_{k=0}^{\alpha} N_k(A)$ and $M_{\alpha}(A) = \bigcap_{h=0}^{\alpha} M_h(A)$.

Furthermore, $n(A) = dim [N_{\alpha}(A)]$ and $m(A) = codim [M_{\alpha}(A)]$.

If there exist an integer K such that, $N_k(A) = N_{k+1}(A)$, then A is said to have finite ascent. The smallest such K is denoted by $d_N(A)$. Therefore $N_k(A)$ is constant for $K \ge d_N(A)$.

Pigeonhole Principle: Pigeonhole Principle states that if n items are put into m containers, with n > m, then at least one container must contain more than one item.

The following are alternate formulations of the pigeonhole principle:

If *n* objects are distributed over *m* places, and if n > m, then some place receives at least two objects.

- 1. (equivalent formulation of 1) If n objects are distributed over n places in such a way that no place receives more than one object, then each place receives exactly one object.
- 2. If *n* objects are distributed over *m* places, and if n < m, then some place receives no object.
- 3. (equivalent formulation of 3) If n objects are distributed over n places in such a way that no place receives no object, then each place receives exactly one object.

Strong Form:

Let $q_1, q_2, ..., q_n$ be positive integers. If $q_1+q_2+...+q_n-n+1$ objects are distributed into *n* boxes, then either the first box contains at least q_1 objects, or the second box contains at least q_2 objects, ..., or the *n*th box contains at least q_n objects.

The simple form is obtained from this by taking $q_1 = q_2 = ... = q_n = 2$, which gives n + 1 objects. Taking $q_1 = q_2 = ... = q_n = r$ gives the more quantified version of the principle, namely:

Let *n* and *r* be positive integers. If n(r-1) + 1 objects are distributed into *n* boxes, then at least one of the boxes contains *r* or more of the objects.

This can also be stated as, if *k* discrete objects are to be allocated to *n* containers, then at least one container must hold at least [K/N] objects, where [x] is the ceiling function, denoting the smallest integer larger than or equal to *x*. Similarly, at least one container must hold no more than [K/N] objects, where [x] is the floor function, denoting the largest integer smaller than or equal to *x*.

II. Lemma and Preposition

Lemma1: Let $T \in L(E)$ is iteratively compact. Let (x_i) be any sequence in U. Then for every $\varepsilon > 0$ there exist an exponent n and an infinite subset 1 of N such that $\|T^n x_i - T^n x_j\| \le \varepsilon$ for all $i, j \in I$.

Proof: Let n and $u_1, \ldots, u_k \in E$ such that $T^n(U) \subseteq \bigcup_{h=1}^k \{u_h + \epsilon/2 U\}.$

Setting $I_n = \{ i \in N : T^n x_i \in u_h + \varepsilon / 2U \}$ for h = 1, ..., k, therefore, $||T^n x_i - T^n x_j|| \le \varepsilon$ for all $i, j \in I_h$. Furthermore, it

follows from $\bigcup_{h=1}^{k}$ I_h = N that at least one of the sets I₁, ..., I_k is infinite.

Preposition1: If $T \in L(E)$ is iteratively compact, then all null spaces $N_k(I - T)$ are finite dimensional.

Proof: Since the smallest k for which $N_k(I - T)$ is infinite dimensional. Therefore, from Reisz lemma with $\varepsilon = 1/3$, there exist an elements $x_i \in N_k(I - T)$ such that $\|x_i\| = 1$ and $\|x_i - x\| \ge 3/4$ for all $X \in \text{span}(x_1, \dots, x_{i-1}) + N_{k-1}(I - T)$. It follows from $x - T^n x = (I + T + \dots T^{n-1}) (I - T)x$ that $x - T^n x \in N_k(I - T)$ for all $x \in N_k(I - T)$ and $n = 1, 2, \dots$.

Hence $T^n x_i - T^n x_j \in x_i - x_j + N_{k-1} (I - T)$ which implies that $||T^n x_i - T^n x_j|| \ge \frac{3}{4}$ whenever I > j and $n = 1, 2, \dots$. Therefore I > j and $n = 1, 2, \dots$. Therefore, by the Pigeon hole principle, there exist an exponent n and different indices I and j such that $||T^n x_i - T^n x_j|| \le \frac{1}{2}$ which is a contradiction, and it is proved.

Preposition2: If $T \in L(E)$ is iteratively compact, then I – T has finite ascent.

Proof : From Reisz lemma with $\varepsilon = 1/3$, Let $x_k \in N_k(I - T)$ such that $\|x_k\| = 1$ and $\|x_k - x\| \ge 3/4$ for all $x \in N_k(I - T)$. It follows from, $x = (I + T + ... + T^{n-1})(I - T)x$ that $x_k - T^n x_k \in N_{k-1}(I - T)$ for all n = 1, 2, ... Hence,

International Journal of Mathematics Trends and Technology – Volume 18 Number 1 – Feb 2015

 $T^n x_h - T^n x_k \in x_h - x_k + N_{h-1}(I - T) + N_{k-1}(I - T)$. Which implies that, $\| T^n x_h - T^n x_k \| \ge \frac{3}{4}$ whenever h > k and n = 1, 2, ... Therefore, by the Pigeon-hole principle, there exist and exponent n and different indices and k such that $\| T^n x_h - T^n x_k \| \le \frac{1}{2}$. Which is contradiction and the preposition is proved.

Lemma2: Let $T \in L(E)$ is iteratively compact, then every bounded sequence (x_i) for which $((I - T)x_i)$ is convergent has a convergent subsequence.

Proof: Let (x_i) is contained in U. Given $\varepsilon > 0$, By the Pigeon-hole principle, there exist an exponent n and an infinite subset I such that $\|T^n x_i - T^n x_j\| \le \varepsilon$ for all i, $j \in I$, it follow from, $x = T^n x + (I + T + \dots + T^{n-1})(I - T)x$ that, $\|x_i - x_j\| \le \|T^n x_i - T^n x_j\| + \|(I + T + \dots + T^{n-1})\|$.

 $\begin{aligned} \| \underbrace{(I - T)x_i - (I - T)x_j}_{i} \| & \text{thus, since } ((I - T)x_i) \text{ is an infinite subset } I_0 \text{ of } I \text{ such that } \| x_i - x_j \| \leq 2\epsilon \text{ for all } i, j \in I_0. \text{ Let } (x_i^0) = (x_i) \text{ and } \epsilon_m : 2^{-m-1} \text{ for } m = 1, 2, \dots. \text{ Therefore a sequence } (x_i^m) \text{ each of which is a subsequence of its predecessor } (x_i^{m-1}) \text{ and such that } \| x_i^m - x_j^m \| \leq 2\epsilon_m \text{ for all } i \text{ and } j. \text{ Then the diagonal } (x_i^i) \text{ is the desired convergence subsequence, because } \| x_i^i - x_j^j \| \leq 2^{-m} \text{ whenever } i, j \geq m. \text{ Hence the lemma is proof.} \end{aligned}$

Lemma3: $N_k(A) = N_{k+1}(A)$ implies $N_{k+1}(A) = N_{k+2}(A)$.

Proof: Let $x \in N N_{k+2}$. Then, $Ax \in N_{k+1}$.

Therefore, $Ax \in N_k$. Hence, $x \in N_{k+1}$.

Lemma4: If A has finite ascent then, $M_h(A) \cap N_k(A) = \{0\}$. For $k = 0, 1, \dots$ and $h \ge d_n(A)$.

Proof:Let $y \in M_h \cap N_k$. Because $Y \in M_h$, there exists $x \in E$ with $y = A^h x$. Now, $A^{h+k}x = A^k y = 0 \implies x \in N_{h+k}$. hence, $x \in N_h$. Which implies that y = 0.

Lemma5: If a has finite ascent, then $n(A) \ge d_n(A)$.

Proof: Since, $dim(N_k / N_{k-1}) \ge 1$ for $K = 1, 2, \dots, d_n(A)$. Hence,

$$n(A) = \dim [N_{\infty}(A)] = \sum_{k=1}^{\infty} \quad \dim(N_k / N_{k-1}) \geq d_n(A).$$

Lemma6: If a has finite descent then, $M_h(A) + N_k(A) = E$ for h = 0, 1, ... and $K \ge d_m(A)$.

Proof: Let $x \in E$, Because $A^k x \in M_k = M_{h+k}$, there exists $x_0 \in E$ such that $A^k x = A^{h+k} x$. Set $x_m = A^h x_0$ and $x_n = x - A^h x_0$. The $x_m \in M_h$ and $x_n \in N_k$. Thus $x = x_m + x_n$ is a decomposition.

Lemma7: If A has finite descent then $m(A) \ge dm(A)$.

Proof: We observe that, $\dim(M_{h-1} / M_h) \ge 1$ for $h = 1, \dots, d_m(A)$. Hence, $m(A) = \operatorname{codim}[N_{\infty}(A)] = \sum_{k=1}^{\infty} \dim(N_h / M_h)$

 $N_{h-1} \ge d_m(A)$. Hence the proof.

Proposition3: If $T \in L(E)$ is iteratively compact, then all ranges $M_h(I - T)$ are closed.

Proof: Let $y = \lim_i y_i$ where (y_i) is contained in $M_h(I - T)$. Set $\rho_i = \inf \{ \|x\| : (I - T)^h x = y_i \}$, and let $x_i \in E$ such that $(I - T)^h x_i = y_i$ and $\|x_i\| \le 2 \rho_i$. Let $\rho_i \rightarrow \infty$, then $u_i = \rho_i^{-1} x_i$ and $v_i = \rho_i^{-1} y_i$, then $\|u_i\| \le 2$ and (v_i) tends to zero. A subsequence of (u_i) which converges to some $u \in E$. Therefore, $(I - T)^h u_i = v_i$ implies $(I - T)^h u = 0$. Hence $(I - T)^h (x_i - \rho_i u) = y_i$. Thus, we have

 $\| x_i - \rho_i u \| \ge \rho_i$ or $\| ui - u \| \ge 1$. Which shows that (ρ_i) has a bounded subsequence. Hence proved.

Proposition4: An operator $T \in L(E)$ is Riesz if and only if λT is iteratively compact for all $\lambda \in C$.

Proof: Let T is Riesz. Given $\lambda \in C$ and $\varepsilon > 0$, therefore $\beta = \min(\varepsilon, 1) / 1 + |\lambda|$. Then, there exist n and $u_1, \dots, u_k \in E$

such that $T^{n}(U) \subseteq \bigcup_{h=1}^{^{n}} \{u_{h} + \beta^{n}U\}$. It follows from $|\lambda| \beta \leq \mathcal{E}$. Hence, $(\lambda T)^{n}(U) \subseteq \bigcup_{h=1}^{^{k}} \{\lambda^{n} u_{h} + \mathcal{E} U\}$. It follows from $\lambda \varepsilon \geq 1$ and $\lambda \geq 1$ that $\lambda^{n} \varepsilon^{n-1} \geq 1$. Hence

 $\lambda^{n\text{-}1} \ \epsilon \ \le \ \epsilon^n \text{, which implies that } T^n(U) \sqsubseteq \bigcup_{h=1}^k \ \ \{ \ \lambda^{n\text{-}1} \ u_h + \ \mathcal{E} \ U \} \text{. Thus } T \text{ is Riesz.}$

Lemma8:Let $T \in L(E)$ is Riesz operator. If $\lambda_n(T) \neq 0$ then there exists an n-dimensional T-invariant subspace En such that the operator $T_n \in L(E_n)$ induced by T has precisely $\lambda_1(T) \dots \dots \lambda_n(T)$ as its eigen values.

Proof: Let $\{\lambda_1, \dots, \lambda_m\}$ the set of distinct complex numbers appearing in $\{\lambda_1(T), \dots, \lambda_n(T)\}$. In particular, Let $\lambda_m = \lambda_n(T)$. since $\lambda_m(I - T)$ is nilpotent on $N_{\infty}(\lambda_m(I - T))$,

 $\text{Let } K = n - \sum_{i=1}^{m-1} n(\lambda_i \ (I-T)). \text{ Then } 1 \leq K \leq n \ (\lambda_m \ (I-T)), \text{ and } E_n = \sum_{i=1}^{m-1} N_{\infty}(\lambda_i \ (I-T)) + \text{ span } (x_1, \dots x_k) \text{ is } T - \sum_{i=1}^{m-1} N_{\infty}(\lambda_i \ (I-T)) + \text{ span } (x_1, \dots x_k) \text{ is } T - \sum_{i=1}^{m-1} N_{\infty}(\lambda_i \ (I-T)) + \sum_{i=1}^{m-1} N_{\infty}(\lambda$

invariant subspace.

Proposition5: An operator $T \in L(E)$ is iteratively compact if and only if T is iteratively compact.

Proof: If T is supposed to be iteratively compact then for every $\varepsilon > 0$ there exist n and $(u_1, \ldots, u_b) \in E$ such that h

$$\begin{split} T^{n}(U) &\subseteq \bigcup_{i=1}^{n} \{u_{i} + \varepsilon U\}. \text{ Let } u_{i} = Tx_{i} \text{ with } x_{i} \in U. \text{ Since, } X \in L(l_{1}(h), E) \text{ then} \\ X &= \sum_{i=1}^{h} e_{i} \otimes x_{i}. \text{ Since, } X'(T')^{n} \text{ has finite rank, Let } a_{1}, \dots, a_{k} \in U^{0} \text{ such that,} \\ X'(T')^{n} U^{0} &\subseteq \bigcup_{i=1}^{h} \{X'(T')^{n} a_{j} + \varepsilon U_{\infty}(h)\}. \text{ Where } U^{0} \text{ and } U_{\infty}(h) \text{ is the closed unit balls of } E' \text{ and } l_{\infty}(h), \text{ respectively.} \\ \text{Since } X' a &= (\langle x_{i}, a \rangle) \text{ for all } a \in E'. \text{ Given } a \in U^{0}, \text{ there exists } a_{j} \text{ with} \\ & |\langle x_{i}, (T')^{n} a - (T')^{n} a_{j} \rangle| \leq \varepsilon \text{ for } I = 1, \dots, h. \\ \text{Next, some } x \in U \text{ such that,} \\ & \|(T')^{n} a - (T')^{n} a_{j}\| \leq 2 |\langle x_{i}, (T')^{n} a - (T')^{n} a_{j} \rangle| \\ \text{Finally, Let } x_{i} \text{ satisfies} \\ & \|T^{n} x - T^{n} x_{i}\| \leq \varepsilon. \\ \text{Combining (1) (2) and (3) then} \end{split}$$

Combining (1),(2) and (3) then,

 $\begin{array}{l} (T')^{n}a - (T')^{n}a_{j} \parallel \leq 2 \mid <\mathbf{x}_{i}, (T')^{n}a - (T')^{n}a_{j} > \mid = 2 \mid <\mathbf{T}^{n}\mathbf{x} \text{ , } a - a_{j} > \mid \\ \leq 2 \mid <\mathbf{T}^{n}\mathbf{x} \text{ , } a - a_{j} > \mid + 2 \mid <\mathbf{T}^{n}\mathbf{x} \text{ - T}^{n}\mathbf{x}_{i}, a - a_{j} > \mid \\ \leq 2 \mid <\mathbf{x}_{i}, (T')^{n}a - (T')^{n}a_{j} > \mid + 4 \parallel \mathbf{T}^{n}\mathbf{x} \text{ - T}^{n}\mathbf{x}_{i} \parallel \leq 6\epsilon. \end{array}$

This proves that

$$(T')^n U^0 \subseteq \bigcup_{j=1}^k \{(T')^n a_j + 6\varepsilon U^0\}.$$
 Thus T' is iteratively compact.

Conversely, if T' is iteratively compact, then so is T'' and it follows from $K_s T^n = (T'')^n K_E$ that T is iteratively compact.

III. Theorems

Theorem1: Decomposition Theorem- If the linear map A has finite ascent and descent, then the

linear space E is the direct sum of the A-invariant linear subsets $S_{\infty}(A)$ and $T_{\infty}(A)$, Moreover the following holds:

- 1. The restriction of A to $S_{\infty}(A)$ is invertible.
- 2. The restriction of A to $T_{\infty}(A)$ is nilpotent of order d(A)

Proof: Let d = d(A) then $S_{\infty}(A) = S_d$ and $T_{\infty}(A) = T_d$. Then E is indeed the direct sum of $S_{\infty}(A)$ and $T_{\infty}(A)$. Obviously both linear subsets are invariant under A. Since $y \in S_{\infty}(A)$, there exist $x_0 \in E$, such that $y = A^{d+1}x_0$, Hence y = Ax, where $x : A^d x_0 \in S_d$. Which proves that A maps $S_{\infty}(A)$. furthermore, $S_d \cap T_d = \{0\}$. Thus the restriction of A to $S_{\infty}(A)$ is one-to-one. Lastly, it shows that $A^{d}x = 0$ for all $x \in T_{\infty}(A)$.

Theorem2: Decomposition Theorem- If $T \in L(E)$ is iteratively compact, then Banach Space E is direct sum of the T-invariant subspaces $S_{\infty}(I-T)$ and $T_{\infty}(I-T)$, the later being finite dimensional. Moreover, the following holds:

- 1. The restriction of I T to $S_{\infty}(I T)$ is invertible.
- 2. The restriction of I T to $T_{\infty}(I T)$ is nilpotent of order d(I T).

Proof: Let $S_{\infty}(I-T)$ is continuously invertible. Since $S_{\infty}(I-T)$ is closed. Then, the normalized element $x_i \in S_{\infty}(I-T)$ T) such that $((I - T) x_i)$ tends to zero. Hence, there exists a subsequence converging to an element $x_i \in S_{\infty}(I - T)$. $\|x_i\|$ = 1.

Furthermore, $((I - T) x_i) \rightarrow 0$ yields (I - T)x = 0.

Hence, $x_i \in S_{\infty}(I - T) \cap T_{\infty}(I - T)$. Thus it shows that x = 0.

Theorem3: Let $T \in L(E)$ is Riesz operator. Then, for every $\rho > 0$, the set of all Eigen value λ with $|\lambda| \ge \rho$ is finite.

Proof: Let T possesses a sequence of distinct Eigen values $\lambda_1, \lambda_2, \dots$. Such that $|\lambda_k| \ge \rho$. Let any sequence of associated Eigen elements $u_1, u_2, \ldots \in E$. It follows that E_k : span (u_1, \ldots, u_k) is K-dimensional, $E_0 = \{0\}$. By Riesz lemma with $\varepsilon = 1/3$. Let an elements $x_k \in E_k$ such that

 $\| x_k \| = 1 \text{ and } \| x_k - x \| \ge 3/4 \text{ for all } x \in E_{k-1}. \text{ There exists co-efficient } \alpha_k \text{ for which } x_k - \alpha_k u_k \in E_{k-1}. \text{ Hence, } T^n x_k - \alpha_k \lambda_k^n u_k \in E_{k-1} \text{ and } \lambda_k^n x_k - \alpha_k \lambda_k^n u_k \in E_{k-1}.$

This implies that $T^n x_k - \lambda_k^n x_k \in E_{k-1}$ for n = 1, 2, ... consequently, $T^n x_h - T^n x_k \in \lambda_h^n x_k - \lambda_k^n x_k + E_{h-1} + E_{k-1}$ and $\| T^n x_h - T^n x_k \| \ge 3/4 \rho^n$ whenever h > k and n = 1, 2, ... On the other hand, by the Pigeon-hole principle to the operator $\rho^{-1}T$. Let an exponent n and different indices h and k such that $\| T^n x_h - T^n x_k \| \le 1/2 \rho^n$. This contradiction completes the proof.

IV. Concluding Remarks

An operator $T \in L(E)$ is said to be Riesz if every $\in > 0$ their exist an exponent n and elements $u_1, \ldots, u_k \in E$. If $T \in L(E)$ is iteratively compact, then all null spaces $N_k(I - T)$ are finite dimensional and also I - T has finite ascent and many Lemmas and Prepositions has been proved. We also developed Riesz decomposition and decomposition theorems. Also proved, Let $T \in L(E)$ is Riesz operator. Then, for every $\rho > 0$, the set of all Eigen value λ with $|\lambda| \ge \rho$ is finite. Thus we have introduced Riesz operators and its various properties in the Eigen values of linear operators.

References:

[1] Jain. P.K.Ahuja, O.P. & Ahmed Khalil: Some definition and examples of functional Analysis New Age, 24-27,57-58,90-84,266-293.

[2] Lahiri, B.K.: Some definition and examples of elements of Functional Analysis, 107-120, 176-205.

[3] Saran & Shukla: Functional Analysis, Pragati Prakashan, Meerut, 1986.

[4] K.K.Jha: Functional Analysis, Student's Friends, 1986.

[5] Acharya, K. & Sinha T. K. : On Eigen Values of Riesz Operator, Bull Pure & Applied Sciences, Vol.17(No.2)-1997,249-252.

[6] Konig, H.: Eigen value distribution of Compact Operators, Birkhauser, 1986

[7] Pietsch,A.: Eigen values of absolutely r-summing operators. Aspects of Math and its Applications, Amsterdam, 1986, 607-617.

[8] Benzinger, H.E.: Completeness of Eigen Vectors In Banach Spaces, Math. Soc. 38, 1985, 319-324.

[9] Dunford, N & Schwartz, J.T.: Linear Operators, Vol. I & II, Inter Science Publication, 1958/63.