Riesz Operators and their Applications in the Eigen values of Linear Operators

Dr. S.K.Singh ${ }^{1}$, Dr. Gyan Mukherjee ${ }^{2}$, Dr. Santosh Kumar 3, Dr. Mahendra Kumar Roy ${ }^{4}$
${ }^{1}$ Department of Mathematics, College of Commerce,Patna(Magadh University)(India)
${ }^{2}$ Department of Mathematics, S.P.S.College, Vaishali(B.R.A.B.University)(India)
${ }^{3}$ Department of Mathematics, T.N.B.College, Bhagalpur(T.M.University)(India)
${ }^{4}$ Department of Mathematics, Patna Womens College, Patna(Patna University)(India)

Abstract: We have introduced Riesz Operators and its various properties. We have developed Eigen value theorems for absolute operator.

Key words: Operators, Linear Operators, Riesz Operators, Absolutely r-summing Operator, Eigen Value, Riesz Decomposition, Pigeon-hole Principle.

I. INTRODUCTION

Linear Operators: Let D and G be two linear space with the same set of Scalars and let $y=T(x)$ be an operator defined on D with range lying in G,
i.e. $\mathrm{T}: \mathrm{D} \rightarrow \mathrm{G}$

The Operator T is called linear if

1. T is additive, i.e., $T\left(x_{1}+x_{2}\right)=T\left(x_{1}\right)+T\left(x_{2}\right)$ for every $x_{1}, x_{2} \in D$.
2. T is homogeneous, i.e. for any scalar $\lambda T(\lambda x)=\lambda T(x)$ for every $x \in D$.

The properties (1) and (2) can be put in a combined from
$\mathrm{T}\left(\lambda_{1} \mathrm{x}_{1}+\lambda_{2} \mathrm{x}_{2}\right)=\lambda_{1} \mathrm{~T}\left(\mathrm{x}_{1}\right)+\lambda_{2} \mathrm{~T}\left(\mathrm{x}_{2}\right)$ for every $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{D}$ and every scalars $\lambda_{1} \lambda_{2}$.
... 1. Linear maps are also called linear transformations, linear operators on homeomorphisms.
2.The linear operations of both the linear spaces E and \bar{E} are denoted by the same symbol.
3. For linear mappings, it is customary to write the value of T at x by $T x$ rather than $T(x)$.

Eigen Values of a Linear Operator: Let X be a linear space over the field K and $T \in L(x)$. A scalar $\lambda \in K$ is said to be an Eigen value of T if there exist a non zero vector $x \in X$ such that

$$
\begin{equation*}
T \mathrm{x}=\lambda \mathrm{x} \text { or }(\mathrm{T}-\lambda \mathrm{I}) \mathrm{x}=0 \tag{1}
\end{equation*}
$$

Clearly, λ is Eigen value of T iff the null space of $(T-\lambda I)$ is non-trivial.
Let x be a linear space over the field K and $T \in L(x)$. A vector $x \in X$ is said to be an eigenvector of T if (i) $x \neq 0$ and (ii) $T x=\lambda x$, for some $\lambda \in K$.
Absolutely r-summing operators: An operator $T \in L(D, G)$ is called absolutely r-summing if there exist a constant $\mathrm{C} \geq 0$ such that

$$
\left\{\sum_{i=1}^{n}\left(\left\|\mathrm{Tx}_{\mathrm{i}}\right\|^{\mathrm{r}} \mathrm{i}^{\mathrm{r}}\right\} \leq \mathrm{C} \sup \left\{\sum_{i=1}^{n}\left(\left|<\mathrm{x}_{\mathrm{i}}, \mathrm{a}>\right|^{\mathrm{r}}\right)^{1 / \mathrm{r}}: \mathrm{a} \in \mathrm{U}^{0}\right\}\right.
$$

For every finite family of elements $x_{1}, \ldots \ldots, x_{n} \in D$.
Riesz Operators: An operator $T \in L(E)$ is said to be Riesz if every $\in>0$ their exist an exponent n and elements u_{1}, $\ldots \ldots, u_{k} \in E$. Such that $T^{n}(U) \subseteq \bigcup_{h=1}^{k}\left\{u_{h}+\varepsilon^{n} U\right\}$. An operator $T \in L(E)$ is said to be iteratively compact if for every $\in>0$ there exists an exponent n and element $u_{1}, \ldots ., u_{k} \in E$ such that $T^{n}(U) \subseteq \bigcup_{h=1}^{k}\left\{u_{h}+\varepsilon^{n} U\right\}$. Where U denotes the closed unit ball of the underlying Banach space E.
Riesz Decomposition: A is an arbitrary linear map acting on a linear space E.
Let $N_{k}(A)=\left\{x \in E: A^{k} x=0\right\}$ and $M_{h}(A)=\left\{A^{h} x: x \in E\right\}$
Obiviously, $\{0\}=\mathrm{N}_{0}(\mathrm{~A}) \subseteq \mathrm{N}_{1}(\mathrm{~A}) \subseteq \ldots .$. and $\subseteq \ldots \ldots . \mathrm{M}_{1}(\mathrm{~A}) \subseteq \mathrm{M}_{0}(\mathrm{~A})=\mathrm{E}$

Therefore, $\mathrm{N}_{\alpha}(\mathrm{A})=\bigcup_{k=0}^{\alpha} \mathrm{N}_{\mathrm{k}}(\mathrm{A})$ and $\mathrm{M}_{\alpha}(\mathrm{A})=\bigcap_{h=0}^{\alpha} \mathrm{M}_{\mathrm{h}}(\mathrm{A})$.
Furthermore, $n(A)=\operatorname{dim}\left[N_{\alpha}(A)\right]$ and $m(A)=\operatorname{codim}\left[M_{\alpha}(A)\right]$.
If there exist an integer K such that, $N_{k}(A)=N_{k+1}(A)$, then A is said to have finite ascent. The smallest such K is denoted by $d_{N}(A)$. Therefore $N_{k}(A)$ is constant for $K \geq d_{N}(A)$.
Pigeonhole Principle: Pigeonhole Principle states that if n items are put into m containers, with $\mathrm{n}>\mathrm{m}$, then at least one container must contain more than one item.

The following are alternate formulations of the pigeonhole principle:
If n objects are distributed over m places, and if $n>m$, then some place receives at least two objects.

1. (equivalent formulation of 1) If n objects are distributed over n places in such a way that no place receives more than one object, then each place receives exactly one object.
2. If n objects are distributed over m places, and if $n<m$, then some place receives no object.
3. (equivalent formulation of 3) If n objects are distributed over n places in such a way that no place receives no object, then each place receives exactly one object.
Strong Form:
Let $q_{1}, q_{2}, \ldots, q_{n}$ be positive integers. If $\mathrm{q}_{1}+\mathrm{q}_{2}+\ldots \ldots+\mathrm{q}_{\mathrm{n}}-\mathrm{n}+1$ objects are distributed into n boxes, then either the first box contains at least q_{1} objects, or the second box contains at least q_{2} objects, ..., or the nth box contains at least q_{n} objects.

The simple form is obtained from this by taking $q_{1}=q_{2}=\ldots=q_{n}=2$, which gives $n+1$ objects. Taking $q_{1}=q_{2}=\ldots$ $=q_{n}=r$ gives the more quantified version of the principle, namely:
Let n and r be positive integers. If $n(r-1)+1$ objects are distributed into n boxes, then at least one of the boxes contains r or more of the objects.

This can also be stated as, if k discrete objects are to be allocated to n containers, then at least one container must hold at least $[\mathrm{K} / \mathrm{N}]$ objects, where $[\mathrm{x}]$ is the ceiling function, denoting the smallest integer larger than or equal to x. Similarly, at least one container must hold no more than $[\mathrm{K} / \mathrm{N}]$ objects, where $[\mathrm{x}]$ is the floor function, denoting the largest integer smaller than or equal to x.

II. Lemma and Preposition

Lemma1: Let $T \in L(E)$ is iteratively compact. Let $\left(X_{i}\right)$ be any sequence in U. Then for every $\varepsilon>0$ there exist an exponent n and an infinite subset 1 of N such that $\left\|\mathrm{T}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}-\mathrm{T}^{\mathrm{n}} \mathrm{x}_{\mathrm{j}}\right\| \leq \varepsilon$ for all $\mathrm{i}, \mathrm{j} \in \mathrm{I}$.
Proof: Let n and $\mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{k}} \in E$ such that $\mathrm{T}^{\mathrm{n}}(\mathrm{U}) \subseteq \bigcup_{h=1}^{k}\left\{\mathrm{u}_{\mathrm{h}}+\varepsilon / 2 \mathrm{U}\right\}$.
Setting $I_{n}=\left\{i \in N: T^{n} x_{i} \in u_{h}+\varepsilon / 2 U\right\}$ for $h=1, \ldots . . k$, therefore, $\left\|T^{n} x_{i}-T^{n} x_{j}\right\| \leq \varepsilon$ for all $i, j \in I_{h}$. Furthermore, it follows from $\bigcup_{h=1}^{k} I_{h}=N$ that at least one of the sets I_{1}, \ldots, I_{k} is infinite.
Preposition1: If $T \in L(E)$ is iteratively compact, then all null spaces $N_{k}(I-T)$ are finite dimensional.
Proof: Since the smallest k for which $N_{k}(I-T)$ is infinite dimensional. Therefore, from Reisz lemma with $\varepsilon=1 / 3$, there exist an elements $x_{i} \in N_{k}(I-T)$ such that $\left\|x_{i}\right\|=1$ and $\left\|x_{i}-x\right\| \geq 3 / 4$ for all $X \in \operatorname{span}\left(x_{1}, \ldots \ldots, x_{i-1}\right)+N_{k-1}(I$ $-T)$. It follows from $x-T^{n} x=\left(I+T+\ldots . T^{n-1}\right)(I-T) x$ that $x-T^{n} x \in N_{k}(I-T)$ for all $x \in N_{k}(I-T)$ and $n=$ $1,2, \ldots \ldots$.
Hence $T^{n} x_{i}-T^{n} x_{j} \in x_{i}-x_{j}+N_{k-1}(I-T)$ which implies that $\left\|T^{n} x_{i}-T^{n} x_{j}\right\| \geq 3 / 4$ whenever $I>j$ and $n=1,2, \ldots \ldots$ Therefore $\mathrm{I}>\mathrm{j}$ and $\mathrm{n}=1,2, \ldots \ldots$. Therefore, by the Pigeon hole principle, there exist an exponent n and different indices I and j such that $\left\|\mathrm{T}^{n} x_{i}-T^{n} x_{j}\right\| \leq 1 / 2$ which is a contradiction, and it is proved.
Preposition2: If $\mathrm{T} \in \mathrm{L}(\mathrm{E})$ is iteratively compact, then $\mathrm{I}-\mathrm{T}$ has finite ascent.

Proof : From Reisz lemma with $\varepsilon=1 / 3$,
Let $x_{k} \in N_{k}(I-T)$ such that $\left\|x_{k}\right\|=1$ and $\left\|x_{k}-x\right\| \geq 3 / 4$ for all $x \in N_{k}(I-T)$. It follows from, $x=\left(I+T+\ldots+T^{n-}\right.$ $\left.{ }^{1}\right)(\mathrm{I}-\mathrm{T}) \mathrm{x}$ that $\mathrm{x}_{\mathrm{k}}-\mathrm{T}^{\mathrm{n}} \mathrm{x}_{\mathrm{k}} \in \mathrm{N}_{\mathrm{k}-1}(\mathrm{I}-\mathrm{T})$ for all $\mathrm{n}=1,2, \ldots \ldots$. Hence,
$\mathrm{T}^{\mathrm{n}} \mathrm{x}_{\mathrm{h}}-\mathrm{T}^{\mathrm{n}} \mathrm{x}_{\mathrm{k}} \in \mathrm{x}_{\mathrm{h}}-\mathrm{x}_{\mathrm{k}}+\mathrm{N}_{\mathrm{h}-1}(\mathrm{I}-\mathrm{T})+\mathrm{N}_{\mathrm{k}-1}(\mathrm{I}-\mathrm{T})$. Which implies that, $\left\|\mathrm{T}^{\mathrm{n}} \mathrm{x}_{\mathrm{h}}-\mathrm{T}^{\mathrm{n}} \mathrm{x}_{\mathrm{k}}\right\| \geq 3 / 4$ whenever $\mathrm{h}>\mathrm{k}$ and $\mathrm{n}=$ $1,2, \ldots$ Therefore, by the Pigeon-hole principle, there exist and exponent n and different indices and k such that , $\|$ $\mathrm{T}^{\mathrm{n}} \mathrm{x}_{\mathrm{h}}-\mathrm{T}^{\mathrm{n}} \mathrm{x}_{\mathrm{k}} \| \leq 1 / 2$. Which is contradiction and the preposition is proved.
Lemma2: Let $T \in L(E)$ is iteratively compact, then every bounded sequence $\left(x_{i}\right)$ for which $\left((I-T) x_{i}\right)$ is convergent has a convergent subsequence.
Proof: Let (x_{i}) is contained in U. Given $\varepsilon>0$, By the Pigeon-hole principle, there exist an exponent n and an infinite subset I such that $\left\|T^{n} x_{i}-T^{n} x_{j}\right\| \leq \varepsilon$ for all $i, j \in I$, it follow from, $x=T^{n} x+\left(I+T+\ldots .+T^{n-1}\right)(I-T) x$ that, $\| x_{i}-$ $\mathrm{x}_{\mathrm{j}}\|\leq\| \mathrm{T}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}-\mathrm{T}^{\mathrm{n}} \mathrm{x}_{\mathrm{j}}\|+\|\left(\mathrm{I}+\mathrm{T}+\ldots . .+\mathrm{T}^{\mathrm{n}-1}\right) \|$.
$\left\|(I-T) x_{i}-(I-T) x_{j}\right\|$ thus, since $\left((I-T) x_{i}\right)$ is an infinite subset I_{0} of I such that $\left\|x_{i}-x_{j}\right\| \leq 2 \varepsilon$ for all $i, j \in$ I_{0}. Let $\left(\mathrm{x}_{\mathrm{i}}^{0}\right)=\left(\mathrm{x}_{\mathrm{i}}\right)$ and $\varepsilon_{\mathrm{m}}: 2^{-\mathrm{m}-1}$ for $\mathrm{m}=1,2, \ldots$. . Therefore a sequence $\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{m}}\right)$ each of which is a subsequence of its predecessor ($\mathrm{x}_{\mathrm{i}}^{\mathrm{m}-1}$) and such that $\left\|\mathrm{x}_{\mathrm{i}}^{\mathrm{m}}-\mathrm{X}_{\mathrm{j}}^{\mathrm{m}}\right\| \leq 2 \varepsilon_{\mathrm{m}}$ for all i and j . Then the diagonal ($\mathrm{X}_{\mathrm{i}}{ }^{\mathrm{i}}$) is the desired convergence subsequence, because $\left\|x_{i}{ }^{i}-x_{j}^{j}\right\| \leq 2^{-m}$ whenever $\mathrm{i}, \mathrm{j} \geq \mathrm{m}$. Hence the lemma is proof.
Lemma3: $\mathrm{N}_{\mathrm{k}}(A)=\mathrm{N}_{\mathrm{k}+1}(A)$ implies $\mathrm{N}_{\mathrm{k}+1}(A)=\mathrm{N}_{\mathrm{k}+2}(A)$.
Proof: Let $x \in N_{k+2}$. Then, $A x \in N_{k+1}$.
Therefore, $A x \in N_{k}$. Hence, $x \in N_{k+1}$.
Lemma4: If A has finite ascent then, $M_{h}(A) \cap N_{k}(A)=\{0\}$. For $k=0,1, \ldots \ldots$ and $h \geq d_{n}(A)$.
Proof:Let $y \in M_{h} \cap N_{k}$. Because $Y \in M_{h}$, there exists $x \in E$ with $y=A^{h} x$. Now, $A^{h+k} x=A^{k} y=0 \Rightarrow x \in N_{h+k}$. hence, $x \in N_{h}$. Which implies that $y=0$.
Lemma5: If a has finite ascent, then $n(A) \geq d_{n}(A)$.
Proof: Since, $\operatorname{dim}\left(\mathrm{N}_{\mathrm{k}} / \mathrm{N}_{\mathrm{k}-1}\right) \geq 1$ for $\mathrm{K}=1,2, \ldots \ldots \mathrm{~d}_{\mathrm{n}}(\mathrm{A})$. Hence,

$$
\mathrm{n}(\mathrm{~A})=\operatorname{dim}\left[\mathrm{N}_{\infty}(\mathrm{A})\right]=\sum_{k=1}^{\infty} \operatorname{dim}\left(\mathrm{N}_{\mathrm{k}} / \mathrm{N}_{\mathrm{k}-1}\right) \geq \mathrm{d}_{\mathrm{n}}(\mathrm{~A})
$$

Lemma6: If a has finite descent then, $M_{h}(A)+N_{k}(A)=E$ for $h=0,1, \ldots$ and $K \geq d_{m}(A)$.
Proof: Let $x \in E$, Because $A^{k} x \in M_{k}=M_{h+k}$, there exists $x_{0} \in E$ such that $A^{k} x=A^{h+k} x$.
Set $x_{m}=A^{h} x_{0}$ and $x_{n}=x-A^{h} x_{0}$. The $x_{m} \in M_{h}$ and $x_{n} \in N_{k}$. Thus $x=x_{m}+x_{n}$ is a decomposition.

Lemma7: If A has finite descent then $m(A) \geq d m(A)$.
Proof: We observe that, $\operatorname{dim}\left(M_{h-1} / M_{h}\right) \geq 1$ for $h=1, \ldots \ldots d_{m}(A)$. Hence, $m(A)=\operatorname{codim}\left[N_{\infty}(A)\right]=\sum_{k=1}^{\infty} \operatorname{dim}\left(N_{h} /\right.$
$\left.\mathrm{N}_{\mathrm{h}-1}\right) \geq \mathrm{d}_{\mathrm{m}}(\mathrm{A})$. Hence the proof.
Proposition3:If $T \in L(E)$ is iteratively compact, then all ranges $M_{h}(I-T)$ are closed.
Proof: Let $y=\lim _{i} y_{i}$ where $\left(y_{i}\right)$ is contained in $M_{h}(I-T)$. Set $\rho_{i}=\inf \left\{\|x\|:(I-T)^{h} x=y_{i}\right\}$, and let $x_{i} \in E$ such that $(I-T)^{h} x_{i}=y_{i}$ and $\left\|x_{i}\right\| \leq 2 \rho_{i}$. Let $\rho_{i} \rightarrow \infty$, then $u_{i}=\rho_{i}^{-1} x_{i}$ and $v_{i}=\rho_{i}^{-1} y_{i}$, then $\left\|u_{i}\right\| \leq 2$ and (v_{i}) tends to zero. A subsequence of $\left(u_{i}\right)$ which converges to some $u \in E$. Therefore, $(I-T)^{h} u_{i}=v_{i}$ implies $(I-T)^{h} u=0$. Hence $(I-T)^{h}$ $\left(x_{i}-\rho_{i} u\right)=y_{i}$. Thus, we have
$\left\|x_{i}-\rho_{i} u\right\| \geq \rho_{i}$ or $\|$ ui $-\mathrm{u} \| \geq 1$. Which shows that $\left(\rho_{i}\right)$ has a bounded subsequence. Hence proved.
Proposition4: An operator $T \in L(E)$ is Riesz if and only if λT is iteratively compact for all $\lambda \in C$.
Proof: Let T is Riesz. Given $\lambda \in \mathrm{C}$ and $\varepsilon>0$, therefore $\beta=\min (\varepsilon, 1) / 1+|\lambda|$. Then, there exist n and $\mathrm{u}_{1}, \ldots . \mathrm{u}_{\mathrm{k}} \in \mathrm{E}$ such that $\mathrm{T}^{\mathrm{n}}(\mathrm{U}) \subseteq \bigcup_{h=1}^{k}\left\{\mathrm{u}_{\mathrm{h}}+\beta^{\mathrm{n}} \mathrm{U}\right\}$. It follows from $|\lambda| \beta \leq \varepsilon$.
Hence, $(\lambda T)^{\mathrm{n}}(\mathrm{U}) \subseteq \bigcup_{h=1}^{k}\left\{\lambda^{\mathrm{n}} \mathrm{u}_{\mathrm{h}}+\varepsilon \mathrm{U}\right\}$. It follows from $\lambda \varepsilon \geq 1$ and $\lambda \geq 1$ that $\lambda^{\mathrm{n}} \varepsilon^{\mathrm{n}-1} \geq 1$. Hence $\lambda^{\mathrm{n}-1} \varepsilon \leq \varepsilon^{\mathrm{n}}$, which implies that $\mathrm{T}^{\mathrm{n}}(\mathrm{U}) \subseteq \bigcup_{h=1}^{k}\left\{\lambda^{\mathrm{n}-1} \mathrm{u}_{\mathrm{h}}+\varepsilon \mathrm{U}\right\}$. Thus T is Riesz.
Lemma8:Let $T \in L(E)$ is Riesz operator. If $\lambda_{n}(T) \neq 0$ then there exists an n-dimensional T-invariant subspace En such that the operator $T_{n} \in L\left(E_{n}\right)$ induced by T has precisely $\lambda_{1}(T) \ldots . . . \lambda_{n}(T)$ as its eigen values.
Proof: Let $\left\{\lambda_{1}, \ldots \ldots . \lambda_{m}\right\}$ the set of distinct complex numbers appearing in $\left\{\lambda_{1}(T) \ldots \lambda_{n}(T)\right\}$. In particular, Let λ_{m} $=\lambda_{n}(T)$. since $\lambda_{m}(I-T)$ is nilpotent on $N_{\infty}\left(\lambda_{m}(I-T)\right)$,

Let $\mathrm{K}=\mathrm{n}-\sum_{i=1}^{m-1} \mathrm{n}\left(\lambda_{\mathrm{i}}(\mathrm{I}-\mathrm{T})\right)$. Then $1 \leq \mathrm{K} \leq \mathrm{n}\left(\lambda_{\mathrm{m}}(\mathrm{I}-\mathrm{T})\right)$, and $\mathrm{E}_{\mathrm{n}}=\sum_{i=1}^{m-1} \mathrm{~N}_{\infty}\left(\lambda_{\mathrm{i}}(\mathrm{I}-\mathrm{T})\right)+\operatorname{span}\left(\mathrm{x}_{1}, \ldots \mathrm{x}_{\mathrm{k}}\right)$ is T invariant subspace.
Proposition5: An operator $T \in L(E)$ is iteratively compact if and only if T is iteratively compact.
Proof: If T is supposed to be iteratively compact then for every $\varepsilon>0$ there exist n and $\left(u_{1}, \ldots ., \ldots . u_{h}\right) \in E$ such that
$\mathrm{T}^{\mathrm{n}}(\mathrm{U}) \subseteq \bigcup_{i=1}^{h}\left\{\mathrm{u}_{\mathrm{i}}+\varepsilon \mathrm{U}\right\}$. Let $\mathrm{u}_{\mathrm{i}}=\mathrm{Tx}_{\mathrm{i}}$ with $\mathrm{x}_{\mathrm{i}} \in \mathrm{U}$. Since, $\mathrm{X} \in \mathrm{L}\left(\mathrm{l}_{1}(\mathrm{~h})\right.$, E) then
$X=\sum_{i=1}^{h} e_{i} \otimes x_{i}$. Since, $X^{\prime}\left(T^{\prime}\right)^{n}$ has finite rank, Let $a_{1}, \ldots, a_{k} \in U^{0}$ such that,
$\mathrm{X}^{\prime}\left(\mathrm{T}^{\prime}\right)^{\mathrm{n}} \mathrm{U}^{0} \subseteq \bigcup_{i=1}^{h}\left\{\mathrm{X}^{\prime}\left(\mathrm{T}^{\prime}\right)^{\mathrm{n}} \mathrm{a}_{\mathrm{j}}+\varepsilon \mathrm{U}_{\infty}(\mathrm{h})\right\}$. Where U^{0} and $\mathrm{U}_{\infty}(\mathrm{h})$ is the closed unit balls of E^{\prime} and $\mathrm{l}_{\infty}(\mathrm{h})$, respectively.
Since $\mathrm{X}^{\prime} \mathrm{a}=\left(\left\langle\mathrm{x}_{\mathrm{i}}, \mathrm{a}\right\rangle\right)$ for all $\mathrm{a} \in \mathrm{E}^{\prime}$. Given $\mathrm{a} \in \mathrm{U}^{0}$, there exists a_{j} with

$$
\begin{equation*}
\left|<x_{i},\left(T^{\prime}\right)^{n} a-\left(T^{\prime}\right)^{n} a_{j}>\right| \leq \varepsilon \text { for } I=1, \ldots, h \tag{1}
\end{equation*}
$$

Next, some $x \in U$ such that,

$$
\begin{equation*}
\left\|\left(\mathrm{T}^{\prime}\right)^{\mathrm{n}} \mathrm{a}-\left(\mathrm{T}^{\prime}\right)^{\mathrm{n}} \mathrm{a}_{\mathrm{j}}\right\| \leq 2\left|<\mathrm{x}_{\mathrm{i}},\left(\mathrm{~T}^{\prime}\right)^{\mathrm{n}} \mathrm{a}-\left(\mathrm{T}^{\prime}\right)^{\mathrm{n}} \mathrm{a}_{\mathrm{j}}>\right| \tag{2}
\end{equation*}
$$

Finally, Let x_{i} satisfies $\quad\left\|\mathrm{T}^{\mathrm{n}} \mathrm{x}-\mathrm{T}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}\right\| \leq \varepsilon$.
Combining (1),(2) and (3) then,
$\begin{aligned}\left(\mathrm{T}^{\prime}\right)^{\mathrm{n}} \mathrm{a}-\left(\mathrm{T}^{\prime}\right)^{\mathrm{n}} \mathrm{a}_{\mathrm{j}} \| \leq & 2\left|<\mathrm{x}_{\mathrm{i}},\left(\mathrm{T}^{\prime}\right)^{\mathrm{n}} \mathrm{a}-\left(\mathrm{T}^{\prime}\right)^{\mathrm{n}} \mathrm{a}_{\mathrm{j}}>|=2|<\mathrm{T}^{\mathrm{n}} \mathrm{x}, \mathrm{a}-\mathrm{a}_{\mathrm{j}}>\right| \\ & \leq 2\left|<\mathrm{T}^{\mathrm{n} x}, \mathrm{a}-\mathrm{a}_{\mathrm{j}}>|+2|<\mathrm{T}^{\mathrm{n} x}-\mathrm{T}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}, \mathrm{a}-\mathrm{a}_{\mathrm{j}}>\right| \\ & \leq 2\left|<\mathrm{x}_{\mathrm{i}},\left(\mathrm{T}^{\prime}\right)^{\mathrm{n}} \mathrm{a}-\left(\mathrm{T}^{\prime}\right)^{\mathrm{n}} \mathrm{a}_{\mathrm{j}}>\right|+4\left\|\mathrm{~T}^{\mathrm{n}} \mathrm{x}-\mathrm{T}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}\right\| \leq 6 \varepsilon .\end{aligned}$
This proves that
$\left(\mathrm{T}^{\prime}\right)^{\mathrm{n}} \mathrm{U}^{0} \subseteq \bigcup_{j=1}^{k}\left\{\left(\mathrm{~T}^{\prime}\right)^{\mathrm{n}} \mathrm{a}_{\mathrm{j}}+6 \varepsilon \mathrm{U}^{0}\right\}$. Thus T^{\prime} is iteratively compact.
Conversely, if T^{\prime} is iteratively compact, then so is $T^{\prime \prime}$ and it follows from $K_{S} T^{n}=\left(T^{\prime \prime}\right)^{n} K_{E}$ that T is iteratively compact.

III. Theorems

Theorem1: Decomposition Theorem- If the linear map A has finite ascent and descent, then the
linear space E is the direct sum of the A-invariant linear subsets $S_{\infty}(A)$ and $T_{\infty}(A)$, Moreover the following holds:

1. The restriction of A to $S_{\infty}(A)$ is invertible.
2. The restriction of A to $T_{\infty}(A)$ is nilpotent of order $d(A)$

Proof: Let $d=d(A)$ then $S_{\infty}(A)=S_{d}$ and $T_{\infty}(A)=T_{d}$. Then E is indeed the direct sum of $S_{\infty}(A)$ and $T_{\infty}(A)$. Obviously both linear subsets are invariant under A. Since $y \in S_{\infty}(A)$, there exist $x_{0} \in E$, such that $y=A^{d+1} x_{0}$, Hence $y=A x$, where $x: A^{d} x_{0} \in S_{d}$. Which proves that A maps $S_{\infty}(A)$. furthermore, $S_{d} \cap T_{d}=\{0\}$. Thus the restriction of A to $S_{\infty}(A)$ is one-to-one. Lastly, it shows that $A^{d} x=0$ for all $x \in T_{\infty}(A)$.

Theorem2: Decomposition Theorem- If $T \in L(E)$ is iteratively compact, then Banach Space E is direct sum of the T-invariant subspaces $\mathrm{S}_{\infty}(\mathrm{I}-\mathrm{T})$ and $\mathrm{T}_{\infty}(\mathrm{I}-\mathrm{T})$, the later being finite dimensional. Moreover, the following holds:

1. The restriction of $\mathrm{I}-\mathrm{T}$ to $\mathrm{S}_{\infty}(\mathrm{I}-\mathrm{T})$ is invertible.
2. The restriction of $\mathrm{I}-\mathrm{T}$ to $\mathrm{T}_{\infty}(\mathrm{I}-\mathrm{T})$ is nilpotent of order $\mathrm{d}(\mathrm{I}-\mathrm{T})$.

Proof: Let $S_{\infty}(I-T)$ is continuously invertible. Since $S_{\infty}(I-T)$ is closed. Then, the normalized element $x_{i} \in S_{\infty}(I-$ $T)$ such that $\left((I-T) x_{i}\right)$ tends to zero. Hence, there exists a subsequence converging to an element $x_{i} \in S_{\infty}(I-T)$. $\| x_{i}$ $\|=1$.
Furthermore, $\left((\mathrm{I}-\mathrm{T}) \mathrm{x}_{\mathrm{i}}\right) \rightarrow 0$ yields $(\mathrm{I}-\mathrm{T}) \mathrm{x}=0$.
Hence, $x_{i} \in S_{\infty}(I-T) \cap T_{\infty}(I-T)$. Thus it shows that $x=0$.
Theorem3: Let $T \in L(E)$ is Riesz operator. Then, for every $\rho>0$, the set of all Eigen value λ with $|\lambda| \geq \rho$ is finite.
Proof: Let T possesses a sequence of distinct Eigen values $\lambda_{1}, \lambda_{2}, \ldots \ldots$. Such that $\left|\lambda_{\mathrm{k}}\right| \geq \rho$. Let any sequence of associated Eigen elements $u_{1}, u_{2}, \ldots \ldots . . \in E$. It follows that $E_{k}: \operatorname{span}\left(u_{1}, \ldots, u_{k}\right)$ is K-dimensional, $\mathrm{E}_{0}=\{0)$. By Riesz lemma with $\varepsilon=1 / 3$. Let an elements $\mathrm{x}_{\mathrm{k}} \in \mathrm{E}_{\mathrm{k}}$ such that $\left\|x_{k}\right\|=1$ and $\left\|x_{k}-x\right\| \geq 3 / 4$ for all $x \in E_{k-1}$. There exists co-efficient α_{k} for which $x_{k}-\alpha_{k} u_{k} \in E_{k-1}$. Hence, $T^{n} x_{k}-\alpha_{k} \lambda_{k}{ }^{n} u_{k} \in E_{k-1}$ and $\lambda_{k}{ }^{n} x_{k}-\alpha_{k} \lambda_{k}{ }^{n} u_{k} \in E_{k-1}$.

This implies that $T^{n} x_{k}-\lambda_{k}{ }^{n} x_{k} \in E_{k-1}$ for $n=1,2, \ldots \ldots$ consequently, $T^{n} x_{h}-T^{n} x_{k} \in \lambda_{h}{ }^{n} x_{k}-\lambda_{k}{ }^{n} x_{k}+E_{h-1}+E_{k-1}$ and \| $T^{n} x_{h}-T^{n} x_{k} \| \geq 3 / 4 \rho^{n}$ whenever $h>k$ and $n=1,2, \ldots \ldots$. On the other hand, by the Pigeon-hole principle to the operator $\rho^{-1} T$. Let an exponent n and different indices h and k such that $\left\|T^{n} x_{h}-T^{n} x_{k}\right\| \leq 1 / 2 \rho^{n}$. This contradiction completes the proof.

IV. Concluding Remarks

An operator $T \in L(E)$ is said to be Riesz if every $\in>0$ their exist an exponent n and elements $u_{1}, \ldots \ldots, u_{k} \in E$. If T $\in L(E)$ is iteratively compact, then all null spaces $N_{k}(I-T)$ are finite dimensional and also $I-T$ has finite ascent and many Lemmas and Prepositions has been proved. We also developed Riesz decomposition and decomposition theorems. Also proved, Let $T \in L(E)$ is Riesz operator. Then, for every $\rho>0$, the set of all Eigen value λ with $|\lambda|$ $\geq \rho$ is finite. Thus we have introduced Riesz operators and its various properties in the Eigen values of linear operators.

References:

[1] Jain. P.K.Ahuja, O.P. \& Ahmed Khalil: Some definition and examples of functional Analysis New Age, 24-27,57-58,90-84,266-293.
[2] Lahiri,B.K.: Some definition and examples of elements of Functional Analysis,107-120,176-205.
[3] Saran \& Shukla: Functional Analysis, Pragati Prakashan, Meerut,1986.
[4] K.K.Jha: Functional Analysis, Student's Friends, 1986.
[5] Acharya, K. \& Sinha T. K. : On Eigen Values of Riesz Operator, Bull Pure \& Applied Sciences, Vol.17(No.2)-1997,249-252.
[6] Konig,H.: Eigen value distribution of Compact Operators, Birkhauser, 1986
[7] Pietsch,A.: Eigen values of absolutely r-summing operators. Aspects of Math and its Applications, Amsterdam, 1986, 607-617.
[8]Benzinger,H.E.: Completeness of Eigen Vectors In Banach Spaces, Math. Soc.38,1985, 319-324.
[9] Dunford,N \& Schwartz, J.T.: Linear Operators, Vol. I \& II, Inter Science Publication,1958/63.

