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I. INTRODUCTION 
Linear Operators: Let D and G be two linear space with the same set of Scalars and let y = T(x) be an operator 

defined on D with range lying in G, 

i.e. T : D → G 

The Operator T is called linear if 

1. T is additive, i.e., T(x1 + x2) = T(x1) + T(x2) for every x1,x2   D. 

2. T is homogeneous, i.e. for any scalar λ T(λ x) = λ T(x) for every x   D. 

The properties (1) and (2) can be put in a combined from  

 T(λ1x1 + λ2x2) = λ1 T(x1) + λ2 T(x2) for every x1,x2   D and every scalars λ1 λ2. 

  1. Linear maps are also called linear transformations, linear operators on homeomorphisms. 

    2.The linear operations of both the linear spaces E and Ē are denoted by the same symbol. 

    3. For linear mappings, it is customary to write the value of T at x by T x rather than T(x). 

Eigen Values of a Linear Operator: Let X be a linear space over the field K and T   L(x). A scalar λ   K is said to 

be an Eigen value  of T if there exist a non zero vector x   X such that  

 T x = λ x or (T – λ I) x = 0   (1) 

Clearly, λ is Eigen value of T iff the null space of (T – λ I) is non-trivial. 

Let x be a linear space over the field K and T   L(x). A vector x   X is said to be an eigenvector of T if (i) x   0 

and (ii) T x = λ x, for some λ   K. 

Absolutely r-summing operators: An operator T   L(D,G) is called absolutely r-summing if there exist a constant 

C   0 such that  

  

1

n

i

 ║Txi║
r
  

1/r  
        ≤ C sup       

1

n

i

 │<xi , a >│
r             1/r   

:  a   U
0     

  

For every finite family of elements x1, ……,xn   D.  

Riesz Operators: An operator T   L(E) is said to be Riesz if every    > 0 their exist an exponent n and elements u1, 

……, uk   E. Such that T
n
(U)   

1

k

h

{uh + ε
n 

 U}. An operator T   L(E) is said to be iteratively compact if for 

every   > 0 there exists an exponent n and element u1, ….. ,uk   E such that T
n
(U)   

1

k

h

{uh + ε
n 

 U}. Where U 

denotes the closed unit ball of the underlying Banach space E. 

Riesz Decomposition: A is an arbitrary linear map acting on a linear space E. 

Let Nk(A) = {x   E : A
k
x = 0} and Mh(A) = {A

h
x : x   E} 

Obiviously, {0} = N0(A) N1(A)   …..and   ……. M1(A)   M0(A) = E 
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Therefore, Nα (A) = 

0k





Nk(A) and Mα(A) = 

0h





Mh(A). 

Furthermore, n(A) = dim [ Nα (A)] and m(A) = codim [Mα(A)]. 

If there exist an integer K such that, Nk(A) = Nk+1(A), then A is said to have finite ascent. The smallest such K is 

denoted by dN(A). Therefore Nk(A) is constant for K   dN(A). 

Pigeonhole Principle: Pigeonhole Principle states that if n items are put into m containers, with n > m, then at least 

one container must contain more than one item. 

The following are alternate formulations of the pigeonhole principle: 

If n objects are distributed over m places, and if n > m, then some place receives at least two objects.  

1. (equivalent formulation of 1) If n objects are distributed over n places in such a way that no place receives 

more than one object, then each place receives exactly one object.  

2. If n objects are distributed over m places, and if n < m, then some place receives no object. 

3. (equivalent formulation of 3) If n objects are distributed over n places in such a way that no place receives 

no object, then each place receives exactly one object.  

Strong Form: 

Let q1, q2, ..., qn be positive integers. If q1+ q2 + ……+ qn – n + 1 objects are distributed into n boxes, then either the 

first box contains at least q1 objects, or the second box contains at least q2 objects, ..., or the nth box contains at 

least qn objects.  

The simple form is obtained from this by taking q1 = q2 = ... = qn = 2, which gives n + 1 objects. Taking q1 = q2 = ... 

= qn = r gives the more quantified version of the principle, namely: 

Let n and r be positive integers. If n(r - 1) + 1 objects are distributed into n boxes, then at least one of the boxes 

contains r or more of the objects.  

This can also be stated as, if k discrete objects are to be allocated to n containers, then at least one container must 

hold at least [K/N] objects, where [x] is the ceiling function, denoting the smallest integer larger than or equal to x. 

Similarly, at least one container must hold no more than [K/N] objects, where [x] is the floor function, denoting the 

largest integer smaller than or equal to x. 

 
II. Lemma and Preposition 

Lemma1: Let T   L(E) is iteratively compact. Let (xi) be any sequence in U. Then for every ε >  0 there exist an 

exponent n and an infinite subset 1 of N such that ║T
n
xi - T

n
xj║   ε for all i , j   I. 

Proof: Let n and u1, …,uk   E such that T
n
(U)   

1

k

h

{uh + ε /2 U}.  

Setting In = { i   N : T
n
xi   uh + ε / 2U} for h = 1,….k, therefore, ║T

n
xi - T

n
xj║   ε for all i, j   Ih. Furthermore, it 

follows from 

1

k

h

Ih = N that at least one of the sets I1, …., Ik is infinite. 

Preposition1: If T   L(E) is iteratively compact, then all null spaces Nk(I – T) are finite dimensional. 

Proof: Since the smallest k for which Nk(I – T) is infinite dimensional. Therefore, from Reisz lemma with ε = 1/3, 

there exist an elements xi   Nk(I – T) such that ║ xi ║=1 and ║ xi – x ║  ¾ for all X   span (x1, ……,xi-1) + Nk-1(I 

– T). It follows from x – T
n
x = (I + T + …. T

n-1
) (I – T)x that x - T

n
x   Nk(I – T) for all x   Nk(I – T) and n = 

1,2,…….. 

Hence T
n
xi - T

n
xj   xi  - xj + Nk-1 (I – T) which implies that║T

n
xi - T

n
xj║   ¾ whenever I > j and n = 1,2,…… 

Therefore I > j and n = 1,2,…… Therefore, by the Pigeon hole principle, there exist an exponent n and different 

indices I and j such that ║T
n
xi - T

n
xj║  ½ which is a contradiction, and it is proved. 

Preposition2: If T   L(E) is iteratively compact, then I – T has finite ascent. 

 

 

Proof : From Reisz lemma with ε = 1/3, 

Let xk   Nk(I – T) such that ║ xk ║=1 and ║ xk - x║ 3/4 for all x   Nk(I – T). It follows from, x = (I + T + …+ T
n-

1
)(I – T)x that xk - T

n
xk   Nk- 1(I – T) for all n = 1,2,……. Hence, 
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T
n
xh - T

n
xk   xh – xk + Nh-1(I – T) + Nk-1(I –T ). Which implies that,║ T

n
xh - T

n
xk ║   ¾ whenever h > k and n = 

1,2,…. Therefore, by the Pigeon-hole principle, there exist and exponent n and different indices and k such that ,║ 

T
n
xh - T

n
xk ║  1/2 . Which is contradiction and the preposition is proved. 

Lemma2: Let T   L(E) is iteratively compact, then every bounded sequence (xi) for which ((I – T)xi) is convergent 

has a convergent subsequence. 

Proof: Let (xi) is contained in U. Given ε > 0, By the Pigeon-hole principle, there exist an exponent n and an infinite 

subset I such that ║T
n
xi - T

n
xj║  ε for all i , j   I, it follow from, x = T

n
x + (I + T + …..+T

n-1
)(I – T)x that, ║xi - 

xj║║T
n
xi - T

n
xj║ + ║(I + T + …..+T

n-1
)║. 

 ║(I – T)xi – (I – T)xj║ thus, since ((I – T)xi) is an infinite subset I0 of I such that ║xi - xj║ 2ε for all i ,j   

I0 . Let (xi
0
) = (xi) and εm :2

-m-1 
for m = 1,2, …… Therefore a sequence (xi

m
) each of which is a subsequence of its 

predecessor (xi
m-1

) and such that ║xi
m
 - xj

m
║ 2 εm for all i and j. Then the diagonal (xi

i
) is the desired convergence 

subsequence, because ║xi
i
 - xj

j
║ 2

-m
 whenever i , j m. Hence the lemma is proof. 

Lemma3:Nk(A) = Nk+1(A) implies Nk+1(A) = Nk+2(A). 

Proof: Let x   N Nk+2 . Then, Ax   Nk+1. 

Therefore, Ax   Nk . Hence, x   Nk+1. 

Lemma4: If A has finite ascent then, Mh(A) Nk(A) = {0}. For k = 0,1,….. and h   dn(A). 

Proof:Let y   Mh Nk. Because Y   Mh, there exists x   E with y = A
h
x. Now, A

h+k
x = A

k
y = 0   x   Nh+k. 

hence, x   Nh. Which implies that y = 0. 

Lemma5: If a has finite ascent, then n(A)   dn(A). 

Proof: Since, dim(Nk / Nk-1)   1 for K = 1,2, ……dn(A). Hence, 

           n(A) = dim [N∞(A)] = 

1k





 dim(Nk / Nk-1)   dn(A). 

Lemma6: If a has finite descent then, Mh(A) + Nk(A) = E for h = 0,1,… and K   dm(A). 

Proof: Let x   E, Because A
k
x   Mk = Mh+k, there exists x0   E such that A

k
x = A

h+k
x.  

           Set xm = A
h
x0 and xn = x – A

h
x0. The xm   Mh and xn   Nk. Thus x = xm + xn is a   

          decomposition. 

 

Lemma7: If A has finite descent then m(A)  dm(A). 

Proof: We observe that, dim(Mh-1 / Mh)   1  for h = 1, ……. dm(A). Hence, m(A) = codim[N∞(A)] = 

1k





 dim(Nh / 

Nh-1)   dm(A). Hence the proof. 

Proposition3:If T   L(E) is iteratively compact, then all ranges Mh(I - T) are closed. 

Proof: Let y = limiyi where(yi) is contained in Mh(I - T). Set ρi = inf {║x║ : (I – T)
h
 x = yi}, and let xi   E such that 

(I – T)
h
xi = yi and ║xi║  2 ρi. Let ρi    , then ui = ρi

-1 
xi  and vi = ρi

-1 
yi , then ║ui║  2 and (vi ) tends to zero. A 

subsequence of  (ui) which converges to some u   E. Therefore, (I – T)
h
ui = vi implies (I – T)

h
u = 0. Hence (I – T)

h
 

(xi - ρiu) = yi. Thus, we have  

║ xi - ρiu║   ρi or ║ui - u║   1. Which shows that (ρi)has a bounded subsequence. Hence proved. 

Proposition4: An operator T   L(E) is Riesz if and only if λT is iteratively compact for all λ  C. 

Proof: Let T is Riesz. Given λ   C and ε > 0, therefore β = min (ε,1) / 1 + │λ│. Then, there exist n and u1,….uk   E 

such that T
n
(U) 

1

k

h

{uh + β
 n
U}. It follows from │λ│ β    . 

Hence, (λT)
n
(U) 

1

k

h

{ λ
n
 uh +  U}. It follows from λ ε   1 and  λ   1 that λ

n 
ε

n-1   1. Hence  

λ
n-1  

ε     ε
n 
, which implies that T

n
(U) 

1

k

h

{ λ
n-1  

uh +  U}. Thus T is Riesz. 

Lemma8:Let T   L(E) is Riesz operator. If λn (T)  0 then there exists an n-dimensional T-invariant subspace En 

such that the operator Tn    L(En) induced by T has precisely λ1(T) ….. ..λn (T) as its eigen values. 

Proof: Let {λ1, ……λm} the set of distinct complex numbers appearing in { λ1(T) ….. ..λn (T)}. In particular, Let λm  

= λn (T). since λm (I – T) is nilpotent on N∞( λm (I – T)), 
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Let K = n - 

1

1

m

i





 n(λi (I – T)). Then 1   K    n (λm (I – T)), and En = 

1

1

m

i





  N∞( λi (I – T)) + span (x1,…xk) is T-

invariant subspace.  

Proposition5: An operator T   L(E) is iteratively compact if and only if T is iteratively compact. 

Proof: If T is supposed to be iteratively compact then for every ε > 0 there exist n and (u1, ….., ….uh)   E such that 

T
n
(U) 

1

h

i

{ui + εU}. Let ui = Txi with xi   U. Since, X   L(l1(h), E) then 

X = 

1

h

i

 ei  xi . Since, X′(T′ )
n 
has finite rank, Let a1,….,ak   U

0 
such that, 

X′(T′ )
n
 U

0 
1

h

i

{ X′(T′ )
n 
aj + ε U∞(h)}. Where U

0 
and U∞(h) is the closed unit balls of E′ and l∞(h), respectively. 

Since X′ a = ( <xi, a>) for all a   E′. Given a   U
0
 , there exists aj with  

│<xi,(T′)
n
a – (T′)

n
aj>│  ε for I = 1,….,h.       ……….(1) 

Next, some x   U such that, 

  ║(T′)
n
a – (T′)

n
aj║   2│<xi,(T′)

n
a – (T′)

n
aj>│                                      ………….(2) 

Finally, Let xi satisfies   ║T
n
x - T

n
xi║   ε.                                  …………..(3) 

Combining (1),(2) and (3) then, 

(T′)
n
a – (T′)

n
aj║   2│<xi,(T′)

n
a – (T′)

n
aj>│ = 2 │< T

n
x , a - aj >│ 

       2 │< T
n
x , a - aj >│ + 2 │< T

n
x -T

n
xi, a - aj >│ 

       2 │<xi,(T′)
n
a – (T′)

n
aj>│ + 4 ║ T

n
x -T

n
xi║   6ε. 

This proves that  

  (T′ )
n
 U

0   
1

k

j

{(T′)
n
aj + 6ε U

0
}. Thus T′ is iteratively compact. 

Conversely, if T′ is iteratively compact, then so is T′′ and it follows from KS T
n
 = (T′′)

n
 KE that T is iteratively 

compact. 

III. Theorems 
Theorem1: Decomposition Theorem- If the linear map A has finite ascent and descent, then the  

linear space E is the direct sum of the A-invariant linear subsets S∞ (A) and T∞(A), Moreover the following holds: 

1. The restriction of A to S∞ (A) is invertible. 

2. The restriction of A to T∞(A) is nilpotent of order d(A) 

Proof: Let d = d(A) then S∞ (A) = Sd and T∞(A) =Td. Then E is indeed the direct sum of S∞ (A) and T∞(A). 

Obviously both linear subsets are invariant under A. Since y   S∞ (A), there exist x0 E, such that y = A
d+1

x0, 

Hence y = Ax, where x : A
d
x0   Sd . Which proves that A maps S∞ (A). furthermore, Sd   Td = {0}. Thus the 

restriction of A to S∞ (A) is one-to-one. Lastly, it shows that A
d
x = 0 for all x   T∞(A). 

 

Theorem2: Decomposition Theorem- If T   L(E) is iteratively compact, then Banach Space E is direct sum of the 

T-invariant subspaces S∞ (I – T)  and T∞ (I – T), the  later being finite dimensional. Moreover, the following holds: 

1. The restriction of I – T to S∞ (I – T) is invertible. 

2. The restriction of I – T to T∞ (I – T) is nilpotent of order d(I – T). 

Proof: Let S∞ (I – T) is continuously invertible. Since S∞ (I – T) is closed. Then, the normalized element xi   S∞ (I – 

T) such that ((I – T) xi) tends to zero. Hence, there exists a subsequence converging to an element xi   S∞ (I – T).║ xi 

║ = 1. 

Furthermore, ((I – T) xi) 0 yields (I – T)x = 0. 

Hence, xi   S∞ (I – T)   T∞ (I – T). Thus it shows that x = 0. 

Theorem3: Let T   L(E) is Riesz operator. Then, for every ρ > 0, the set of all Eigen value λ  with │λ│  ρ is 

finite. 

Proof: Let T possesses a sequence of distinct Eigen values λ1, λ2, …… .Such that │λk│   ρ. Let any sequence of 

associated Eigen elements u1,u2,……..   E. It follows that Ek : span(u1,….,uk) is K-dimensional, E0 = {0). By Riesz 

lemma with ε = 1/3. Let an elements xk    Ek  such that  

║ xk ║ = 1 and ║ xk - x║ 3/4 for all x   Ek-1. There exists co-efficient αk for which xk – αk uk    Ek-1. 

Hence, T
n
xk – αk λk

n 
uk   Ek-1  and λk

n 
xk  - αk λk

n 
uk   Ek-1 . 
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This implies that T
n
xk – λk

n 
xk   Ek-1  for n = 1,2,….. consequently, T

n
xh – T

n
xk   λh

n 
xk  - λk

n 
xk  + Eh-1 + Ek-1 and ║ 

T
n
xh – T

n
xk ║  3/4 ρ

n 
 whenever h > k and n = 1,2,……. On the other hand, by the Pigeon-hole principle to the 

operator ρ
-1

T. Let an exponent n and different indices h and k such that ║ T
n
xh – T

n
xk ║  1/2 ρn 

. This contradiction 

completes the proof. 

 

IV. Concluding Remarks 
An operator T   L(E) is said to be Riesz if every    > 0 their exist an exponent n and elements u1, ……, uk   E. If T 

  L(E) is iteratively compact, then all null spaces Nk(I – T) are finite dimensional and also I –T has finite ascent and 

many Lemmas and Prepositions has been proved. We also developed Riesz decomposition and decomposition 

theorems. Also proved, Let T   L(E) is Riesz operator. Then, for every ρ > 0, the set of all Eigen value λ  with │λ│ 
 ρ is finite. Thus we have introduced Riesz operators and its various properties in the Eigen values of linear 

operators. 
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