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I. INTRODUCTION
Linear Operators: Let D and G be two linear space with the same set of Scalars and let y = T(X) be an operator
defined on D with range lying in G,
ie. T:D—G
The Operator T is called linear if
1. Tisadditive, i.e., T(Xy + Xp) = T(Xy) + T(xy) for every x;,x, € D.
2. T is homogeneous, i.e. for any scalar A T(A x) = A T(x) for every x € D.
The properties (1) and (2) can be put in a combined from
T(AX1 + AoXo) = Aq T(X1) + Ay T(X,) for every X;,X, € D and every scalars A A,.
--- 1. Linear maps are also called linear transformations, linear operators on homeomorphisms.
2.The linear operations of both the linear spaces E and E are denoted by the same symbol.
3. For linear mappings, it is customary to write the value of T at x by T x rather than T(x).
Eigen Values of a Linear Operator: Let X be a linear space over the field K and T € L(x). A scalar A € K is said to
be an Eigen value of T if there exist a non zero vector x € X such that
Tx=Axor(T-AD)x=0 1)
Clearly, A is Eigen value of T iff the null space of (T — A I) is non-trivial.
Let x be a linear space over the field K and T € L(x). A vector x € X is said to be an eigenvector of T if (i) x # 0
and (ii) T x = A x, for some A € K.
Absolutely r-summing operators: An operator T € L(D,G) is called absolutely r-summing if there exist a constant

C = 0 such that

Zn‘,[”TXi"r?r <Csup {Zn:[|<xi,a>|r Jl":aeuo}

i=1 i=1

For every finite family of elements x4, ...... X, € D.
Riesz Operators: An operator T € L(E) is said to be Riesz if every € > 0 their exist an exponent n and elements uj,
k
...... , Uy € E. Such that T"(U) < U {un + €" U}. An operator T € L(E) is said to be iteratively compact if for
h=1
k
every € > 0 there exists an exponent n and element u,, ..... ,ux € E such that T"(U) < U {u, + &" U}. Where U
h=1
denotes the closed unit ball of the underlying Banach space E.
Riesz Decomposition: A is an arbitrary linear map acting on a linear space E.
Let Ni(A) = {x € E : A% = 0} and M,(A) = {A"x : x € E}

Obiviously, {0} = No(A) < Ny(A) < .....and C ....... M;(A) < My(A)=E
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a o
Therefore, N, (A) = | ] N(A) and M(8) = [] My(A).

k=0 h=0
Furthermore, n(A) = dim [ N, (A)] and m(A) = codim [M,(A)].
If there exist an integer K such that, N (A) = Ny.1(A), then A is said to have finite ascent. The smallest such K is
denoted by dy(A). Therefore N(A) is constant for K > dy(A).
Pigeonhole Principle: Pigeonhole Principle states that if n items are put into m containers, with n > m, then at least
one container must contain more than one item.

The following are alternate formulations of the pigeonhole principle:

If n objects are distributed over m places, and if n > m, then some place receives at least two objects.

1. (equivalent formulation of 1) If n objects are distributed over n places in such a way that no place receives
more than one object, then each place receives exactly one object.

2. If n objects are distributed over m places, and if n < m, then some place receives no object.

3. (equivalent formulation of 3) If n objects are distributed over n places in such a way that no place receives
no object, then each place receives exactly one object.

Strong Form:

Let gy, 92, ..., O, be positive integers. If qi+ g, + ...... + g, — N + 1 objects are distributed into n boxes, then either the
first box contains at least q; objects, or the second box contains at least g, objects, ..., or the nth box contains at
least q, objects.

The simple form is obtained from this by taking q; =g, = ... =@, = 2, which gives n + 1 objects. Taking q; =g, = ...
= q, = r gives the more quantified version of the principle, namely:

Let nand r be positive integers. 1f n(r- 1) + 1 objects are distributed into n boxes, then at least one of the boxes
contains r or more of the objects.

This can also be stated as, if k discrete objects are to be allocated to n containers, then at least one container must
hold at least [K/N] objects, where [x] is the ceiling function, denoting the smallest integer larger than or equal to x.
Similarly, at least one container must hold no more than [K/N] objects, where [x] is the floor function, denoting the
largest integer smaller than or equal to x.

I1. Lemma and Preposition
Lemmal: Let T € L(E) is iteratively compact. Let (X;) be any sequence in U. Then for every € > 0 there exist an
exponent n and an infinite subset 1 of N such that || T - T"; || < gforalli,jeEl
k

Proof: Let n and uy, ...,ux € E such that T"(U) U {u,+£/2U}.
h=1
Setting 1, = {i € N: T"; € uy + &£/ 2U} for h = 1,... k, therefore, || T"%; - T";|| < & for alli, j € Iy. Furthermore, it

k
follows from U Ih= N that at least one of the sets I, ...., I is infinite.

h=1
Prepositionl: If T € L(E) is iteratively compact, then all null spaces Ni(l — T) are finite dimensional.
Proof: Since the smallest k for which Ny(l — T) is infinite dimensional. Therefore, from Reisz lemma with € = 1/3,
there exist an elements x; € Ny(I — T) such that || x; |=1 and || x; —x || > % for all X € span (X, ......,xi1) + Nia(l
—T). It follows from x — T"x = I+ T + .... T"") (I - T)x that x - T"x € Ny(I — T) for all x € N(I — T) and n =
1,2,........
Hence T"X; - T'X; € X; - X; + Nia (I — T) which implies that|| T"x; - T";|| > % whenever | >jand n = 12,......
Therefore I >jand n=1,2,...... Therefore, by the Pigeon hole principle, there exist an exponent n and different
indices | and j such that || T"x; - T"x;|| < % which is a contradiction, and it is proved.
Preposition2: If T € L(E) is iteratively compact, then | — T has finite ascent.

Proof : From Reisz lemma with € = 1/3,
Let xx € Ni(I — T) such that " Xy ||:l and || Xy - x|| >3/4 for all x € Ni(l — T). It follows from, x =1+ T+ ...+ T"
H(1 = T)x that X, - T" € Ni. (I = T) foralln=1,2,....... Hence,
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T - T™ € X — Xk + Npa(I = T) + Nia(I =T ). Which implies that, || T, - T"x« || = % whenever h > k and n =
1,2,.... Therefore, by the Pigeon-hole principle, there exist and exponent n and different indices and k such that ||
T, - T || < 1/2 . Which is contradiction and the preposition is proved.

Lemma2: Let T € L(E) is iteratively compact, then every bounded sequence (x;) for which ((I — T)x;) is convergent
has a convergent subsequence.

Proof: Let (x;) is contained in U. Given ¢ > 0, By the Pigeon-hole principle, there exist an exponent n and an infinite
subset | such that || T"x; - T";|| < ¢ forall i, j € 1, it follow from, x = T"x + (I + T + ....+T")(I - T)x that, ||x; -
Xj || < || TnXi - Tan | + || I+T+.. ...+Tn_1) || .

(@ —T)yxi— (1 - T)x; U thus, since ((I — T)x;) is an infinite subset Iy of I such that ||x; - xj|| <2¢ foralli ,j €
lo. Let (x°) = () and €q 2™ form= 1,2, ...... Therefore a sequence (x;") each of which is a subsequence of its
predecessor (x™") and such that || x;" - x| <2 ey for all i and j. Then the diagonal (x;') is the desired convergence
subsequence, because ||x;' - x| <2™ whenever i, j >m. Hence the lemma is proof.

Lemma3:N(A) = Ni:1(A) implies Ni1(A) = Niso(A).
Proof: Let X € N Ny;2. Then, AX € Ny1.
Therefore, Ax € Ny . Hence, X € Nyuq.
Lemmad4: If A has finite ascent then, M(A) M N(A) = {0}. Fork=0,1,.....and h > d,(A).
Proof:Let y € My, M Ny. Because Y € M, there exists x € E with y = A"x. Now, A™x = Ay = 0 = x € Npue
hence, x € N,. Which implies that y = 0.
Lemmab: If a has finite ascent, then n(A) = dn(A).
Proof: Since, dim(Ny/Ny1) = 1 forK=1,2, ...... dn(A). Hence,
n(A) = dim [N,(A)] = Z dim(Ng/ Ni.p) = dq(A).
k=1
Lemma6: If a has finite descent then, My(A) + N(A) =E for h=0,1,... and K > d,(A).
Proof: Let x € E, Because Ax € My = M.y, there exists xo € E such that A*x = A™x.
Set X, = A" and X, = X — A'%,. The X € My, and X, € Ny. Thus X = Xp + X, iS @
decomposition.

Lemma7: If A has finite descent then m(A) =dm(A).

Proof: We observe that, dim(My1 /M) = 1 forh=1, ....... dm(A). Hence, m(A) = codim[N,(A)] = Z dim(Ny /
k=1

Nh.1) = dm(A). Hence the proof.

Proposition3:1f T € L(E) is iteratively compact, then all ranges My(l - T) are closed.

Proof: Let y = lim;y; where(y;) is contained in My(l - T). Set p; = inf {||x|| : (I - T)" x = y;}, and let x; € E such that

(I -T)"; = yiand ||xi|| < 2 pi. Let p; — o0, then u;= pi™*x; and v; = p;"y;, then ||u;|| < 2 and (v;) tends to zero. A

subsequence of (u;) which converges to some u € E. Therefore, (I — T)"u; = v; implies (I — T)"u = 0. Hence (I — T)"

(X - piu) = y;. Thus, we have

| xi- piu]| = pior ||ui-ul| > 1. Which shows that (p;)has a bounded subsequence. Hence proved.

Proposition4: An operator T € L(E) is Riesz if and only if AT is iteratively compact for all A€ C.

Proof: Let T is Riesz. Given A € C and € > 0, therefore B = min (g,1) / 1 + | A | . Then, there exist n and ugy,....ux € E

k
suchthat T'"(U) < | J {un+p"U}. It follows from |1 | p < &
h=1

k
Hence, (\T)"(U) < U {A"u,+ & U}. It follows fromAe > 1and A > 1thatA"e"* >1. Hence
h=1

k
A" e < ¢, which implies that T"(U) < | ] {A™* uy + & U}. Thus T is Riesz.

h=1
Lemma8:Let T € L(E) is Riesz operator. If A, (T) # 0 then there exists an n-dimensional T-invariant subspace En
such that the operator T, € L(E,) induced by T has precisely A4(T) ..... ..A, (T) as its eigen values.
Proof: Let {A4, ...... Am} the set of distinct complex numbers appearing in { A(T) ..... .A, (T)}. In particular, Let An,
= An (T). since Ay (I = T) is nilpotent on No,( Ay, (I = T)),
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m-1 m-1
LetK=n- > n((1-T).Then1< K< nQn(I-T),and E= D Nu(A (I - T)) + span (xa,...xq) is T-
i=1 i=1

invariant subspace.
Proposition5: An operator T € L(E) is iteratively compact if and only if T is iteratively compact.
Proof: If T is supposed to be iteratively compact then for every € > 0 there exist n and (uy, ....., ....uy) € E such that

h
TU) U {u; + €U}. Let u; = Tx; with x; € U. Since, X € L(I(h), E) then
i=1

h
X = Z ei ® x;. Since, X'(T" )" has finite rank, Let ay,....,a, € U’such that,
i=1

h

X(T')"U° U { X'(T")"a + & U,(h)}. Where U%and U,(h) is the closed unit balls of E’ and 1,.(h), respectively.
i=1

Since X' a = (<x;, a>) forall a € E'. Givena € U°, there exists a; with

| <xi(Tha—(T)a>| < efori=1,...h. . (1)
Next, some x € U such that,

l(™)a— (T <2|<x(Ta—(Tya>| Q)
Finally, Let x; satisfies || T"x-T™|| <e . ®3)

Combining (1),(2) and (3) then,
(T)a—(T)g]| < 2|<xi(Tha—(T)a>| =2 |<T'x,a-a,>|
<2 |<T',a-a>| +2 |<T%-T%, a-a>|
<2 | <xu(T)a— (T > | +4 || T -T"xi]| < 6e.
This proves that

k
(T)'U’ < U {(T""a;+ 6¢ U%}. Thus T is iteratively compact.
j=1
Conversely, if T’ is iteratively compact, then so is T" and it follows from Kg T" = (T")" Kg that T is iteratively
compact.
I11. Theorems
Theoreml: Decomposition Theorem- If the linear map A has finite ascent and descent, then the
linear space E is the direct sum of the A-invariant linear subsets S, (A) and T,,(A), Moreover the following holds:
1. The restriction of Ato S, (A) is invertible.
2. The restriction of A to T.(A) is nilpotent of order d(A)
Proof: Let d = d(A) then S, (A) = Sy and T,(A) =T4. Then E is indeed the direct sum of S, (A) and T, (A).
Obviously both linear subsets are invariant under A. Since y € S, (A), there exist X, € E, such that y = A%x,,
Hence y = Ax, where x : A%, € Sy. Which proves that A maps S,, (A). furthermore, S; M T4 = {0}. Thus the
restriction of A to S,, (A) is one-to-one. Lastly, it shows that A’ = 0 for all x € T,(A).

Theorem?2: Decomposition Theorem- If T € L(E) is iteratively compact, then Banach Space E is direct sum of the
T-invariant subspaces S, (I = T) and T, (I - T), the later being finite dimensional. Moreover, the following holds:

1. The restriction of | - T to S, (I - T) is invertible.

2. Therestriction of | - T to T, (I —T) is nilpotent of order d(I - T).
Proof: Let S, (I — T) is continuously invertible. Since S, (I — T) is closed. Then, the normalized element x; € S, (I —
'ﬁ) such that ((I — T) x;) tends to zero. Hence, there exists a subsequence converging to an element x; € S, (I - T). || X;

=1.

Furthermore, ((I - T) x;) —0yields (I - T)x =0.
Hence, x; € S, (1 - T) M T, (I = T). Thus it shows that x = 0.
Theorem3: Let T € L(E) is Riesz operator. Then, for every p > 0, the set of all Eigen value A with || >pis
finite.
Proof: Let T possesses a sequence of distinct Eigen values Ay, Ay, ...... .Such that | xk| 2> p. Let any sequence of
associated Eigen elements uy,U,,........ € E. It follows that E : span(uy,....,u) is K-dimensional, E, = {0). By Riesz
lemma with € = 1/3. Let an elements x, € E, such that
| x« || =1 and || xi-x]|| >3/4 for all x € Ey.,. There exists co-efficient o for which x, — o U € Ei.
Hence, T, — o A" Uk € Epr and A" X - o A" Uk € By
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This implies that T"x — A" X € Exq for n = 1,2,..... consequently, T"X, — T"X € A" X - A Xk + Epg + Exg and ||
T, — ' || >3/4 p" whenever h >k andn=1,2,....... On the other hand, by the Pigeon-hole principle to the
operator p™T. Let an exponent n and different indices h and k such that || T"x, — T"x || < 1/2 p". This contradiction
completes the proof.

IV. Concluding Remarks
An operator T € L(E) is said to be Riesz if every € > 0 their exist an exponent n and elements uy, ...... ,uc € ELIFT
€ L(E) is iteratively compact, then all null spaces N (I — T) are finite dimensional and also | —T has finite ascent and
many Lemmas and Prepositions has been proved. We also developed Riesz decomposition and decomposition
theorems. Also proved, Let T € L(E) is Riesz operator. Then, for every p > 0, the set of all Eigen value A with | A |
2 p is finite. Thus we have introduced Riesz operators and its various properties in the Eigen values of linear
operators.
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