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Abstract 

In this paper, we established some weak and strong convergence 

theorems for common fixed points of three nonself asymptotically 

Banach spaces. Our results extended and improve the result 

announ- ed by Wang[6] [Strong and weak convergence theorems 

for common fixed points of nonself asymptotically nonexpansive 

mappings, J. Math. Anal. Appl., 323(2006)550-557.] and Wei-

QiDeng, Lin Wang and Yi-Juan Chen[13] [Strong and Weak 

Convergence Theorems for common fixed points of two 

asymptotically nonexpansive mappings in Banach spaces, 

International Mathematical Forum, Vol. 7, 2012, no. 9, 407 – 417.] 

  For a smooth banach space E, let us assume that K is a nonempty 

closed convex subset of  with P as a sunny nonexpansive retraction. 

Let,𝑻𝟏, 𝑻𝟐, 𝑻𝟑 : K → E be three weakly inward nonself 

asymptotically nonexpansive mappings with respect to P with three 

sequences 

 𝒌𝒏
 𝒊    ∁  [1,∞) satisfying  (𝒌𝒏

 𝒊 ∞
𝒏=𝟏  −𝟏) < ∞ ,(i=1,2,3) and  

F(𝑻𝟏)∩ F(𝑻𝟐)∩ 𝑭 𝑻𝟑  = 𝒙𝝐𝒌, 𝑻𝟏𝒙 = 𝑻𝟐𝒙 = 𝑻𝟑𝒙 = 𝒙   𝒓𝐞𝐬𝐩𝐞𝐜𝐭𝐢𝐯𝐞𝐥𝐲 

. 

For any given 𝒙𝟏 ∈ 𝒌,suppose that  𝒙𝒏  is sequence generated 

iteratively by 

𝒙𝒏+𝟏=𝒂𝒏𝟏𝒙𝒏+𝒃𝒏𝟏 𝑷𝑻𝟏 
𝒏𝒚𝒏+𝒄𝒏𝟏 𝑷𝑻𝟐 

𝒏𝒚𝒏 +𝒅𝒏𝟏  𝑷𝑻𝟑 
𝒏𝒚𝒏 

𝒚𝒏=𝒂𝒏𝟐𝒙𝒏+𝒃𝒏𝟐 𝑷𝑻𝟏 
𝒏𝒚𝒏+𝒄𝒏𝟐 𝑷𝑻𝟐 

𝒏𝒚𝒏 +𝒅𝒏𝟐  𝑷𝑻𝟑 
𝒏𝒚𝒏 

𝒛𝒏=𝒂𝒏𝟑𝒙𝒏+𝒃𝒏𝟑 𝑷𝑻𝟏 
𝒏𝒚𝒏+𝒄𝒏𝟑 𝑷𝑻𝟐 

𝒏𝒚𝒏 +𝒅𝒏𝟑  𝑷𝑻𝟑 
𝒏𝒚𝒏 

where, 𝒂𝒏𝒊 ,  𝒃𝒏𝒊 ,  𝒄𝒏𝒊 ,  𝒅𝒏𝒊  for i= 𝟏, 𝟐, 𝟑  are sequences in 

 𝒂, 𝟏 − 𝒂  for some a∈  𝟎, 𝟏  

 satisfying 𝒂𝒏𝒊 + 𝒃𝒏𝒊 + 𝒄𝒏𝒊 + 𝒅𝒏𝒊 = 𝟏  (i=1,2,3). some a ∈ (0,1),  

Under some suitable conditions, the strong and weak convergence 

theorems of {𝒙𝒏} to a common fixed point of 𝑻𝟏, 𝑻𝟐𝐚𝐧𝐝 𝑻𝟑 are 

obtained. 
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1 INTRODUCTION 

For a self-mapping T : K → K,  nonexpansive  mapping is 

defined as || T x  – Ty || ≤ || x – y|| for all x, y ∈ K and 

asymptotically nonexpansive if there exists a sequence {𝒌𝒏 }⊂ 

[1, ∞) with  𝒌𝒏 → 1 as  n → ∞ such that for all n ∈N ,where  N 

stands for set of natural number, 
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 ||𝑻𝒏𝒙  – 𝑻𝒏𝒚 ||   ≤  𝒌𝒏 || x – y ||                                     (1.1)      

for all  x, y ∈ K.           T is called uniformly L-Lipschitzian            

if there exists  a real number L>0suchthat                                                                                 

||𝑻𝒏𝒙  – 𝑻𝒏𝒚||≤    L|| x – y ||     for all  x, y ∈ K. and integers    

n≥ 1.                                                                                    (1.2) 

 

As a generalization of the class of nonexpansive maps, the class 

of asymptotically nonexpansive mappings was introduced by 

Goebel and Kirk [5] in 1972, who proved that if K is a 

nonempty bounded closed convex subset of a real uniformly 

convex Banach space and T is an asymptotically nonexpansive 

self-mapping of K, then T has a fixed point. Recently, Chidume 

et al.[1] further generalized the class of asymptotically 

nonexpansive mappings introduced by Goebel and Kirk [4], and 

proposed the concept of nonself asymptotically nonexpansive 

mapping defined as follows: 

Definition1.1.[2] Let K be a nonempty subset of real normed 

linear space E. Let P : E → K be the nonexpansive retraction of 

E onto K.    (1) A nonself mapping T : K → E is called 

asymptotically nonexpansive if there exist sequences {𝑘𝑛  

}∈[1,∞) with 𝑘𝑛→ 1 as n →∞such that 

||𝑇 𝑃𝑇 𝑛−1𝑥 − 𝑇 𝑃𝑇 𝑛−1𝑦||  ≤ 𝒌𝒏 || x – y ||    for all  x, y ∈ K.         (1.3) 

(2)A nonself mapping T : K → E is said to be uniformly L-

Lipschitzian if there exists a constant     L ≥ 0 such that 

||𝑇 𝑃𝑇 𝑛−1𝑥 − 𝑇 𝑃𝑇 𝑛−1𝑦||   ≤   L || x – y ||       for all  x, y ∈ 

K.                                                                                  (1.4) 

By using the following iterative algorithm: 

𝑥1 ∈  𝑘, 𝑥𝑛+1=P   1-αn 𝑥n+αnT PT n-1𝑥n ,  

 ∀ n≥1                                                                            (1.5) 

Some authors [2,6 ,7 ,11] have studied the strong and weak 

convergence theorem for such mappings. 

As a matter of fact, if T is a self-mapping, then P is a identity 

mapping. Thus (1.3) and (1.4) reduce to (1.1) and (1.2) as T is a 

self-mapping, respectively. In addition, if T : K → E is 

asymptotically nonexpansive in light of (1.3) and P : E → K is a 

nonexpansive retraction, then PT : K → K is asymptotically 

nonexpansive in light of (1.1). Indeed, for all x,y ∈ K and n ≥ 1, 

by (1.3), it follows that 

|| 𝑃𝑇 𝑛𝑥 −  𝑃𝑇 𝑛𝑦||=||𝑃𝑇 𝑃𝑇 𝑛−1𝑥𝑃𝑇 𝑃𝑇 𝑛−1𝑦||                   

 ≤  || 𝑃𝑇 𝑃𝑇 𝑛−1𝑥 − 𝑃𝑇 𝑃𝑇 𝑛−1𝑦||                                                                                                                                                                         

  ≤   𝑘𝑛  || x – y ||                                   (1.6) 

Conversely, it may not be true. Therefore, Zhou et al.[13] 

introduced the following generalized definition recently. 

Definition 1.2.[9] Let K be a nonempty subset of real normed 

linear space E. Let P : E → K be a nonexpansive retraction of E 

onto K. 

(1) A nonself mapping T : K → E is called asymptotically 

nonexpansive with respect to P if there exist sequences{ 

𝑘𝑛  }∈[1,∞) with 𝑘𝑛→1 asn →∞ such that ,||  𝑃𝑇 𝑛𝑥 −

 𝑃𝑇 𝑛𝑦|| ≤   𝑘𝑛  || x – y ||  ∀𝑥, y ∈ K , n≥1(1.7)         

 

(2) A nonself mapping T : K → E is said to be uniformly L-

Lipschitzian with respect to P if there exists a constant L 

≥ 0 such that 

 

||  𝑃𝑇 𝑛𝑥 −  𝑃𝑇 𝑛𝑦|| ≤   L || x – y ||   

 ∀  x, y ∈ K   , n≥1                                                       (1.8) 

Furthermore, by studying the following iterative process: 

 𝑥𝑛+1 = 𝛼𝑛𝛽𝑛 + 𝛽𝑛 𝑃𝑇1 
𝑛𝑥𝑛 + 𝛾𝑛 𝑃𝑇2 

𝑛𝑥𝑛    ∀𝑥1 ∈ 𝑘,         

n≥1                                                                                  (1.9)   

where {𝛼𝑛  },{𝛽𝑛  },and {𝛾𝑛  } are three sequences in [a,1 − a] for 

some a ∈ (0,1), satisfying 𝛼𝑛+𝛽𝑛  +𝛾𝑛  = 1, Zhou et al.[3] 

obtained some strong and weak convergence theorems for 

common fixed points of nonself asymptotically nonexpansive 

mappings with respect to P in uniformly convex Banach spaces. 

As a consequence, the main results of Chidume et al. [1] are 

deduced. 

Inspired and motivated by those work mentioned above and 

three step iteration method proposed by Noor[8], in this paper, 

we construct a three step iteration scheme for approximating 

common fixed points of three nonself asymptotically 

nonexpansive mappings with respect to P and to prove some 

strong and weak convergence theorems for such mappings in 

uniformly convex Banach spaces. 
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2. PRELIMINARIES 

Let K be a nonempty closed convex subset of a real uniformly 

convex Banach space E with retraction P. Let 𝑇1 , 𝑇2,𝑇3: K → E 

be three nonself asymptotically nonexpansive mappings with 

respect to P. For approximating common fixed points of such 

mappings, we further generalize the iteration scheme(1.9) as 

follows: 

𝑥1 ∈ 𝑘 

𝑥𝑛+1=𝑎𝑛1𝑥𝑛+𝑏𝑛1 𝑃𝑇1 
𝑛  𝑦𝑛+𝑐𝑛1 𝑃𝑇2 

𝑛  𝑦𝑛+𝑑𝑛1 𝑃𝑇3 
𝑛  𝑦𝑛  

  𝑦𝑛=𝑎𝑛2𝑥𝑛+𝑏𝑛2 𝑃𝑇1 
𝑛  𝑦𝑛+𝑐𝑛2 𝑃𝑇2 

𝑛  𝑦𝑛+𝑑𝑛2 𝑃𝑇3 
𝑛  𝑦𝑛                                             

(2.1)          

𝑧𝑛=𝑎𝑛3𝑥𝑛+𝑏𝑛3 𝑃𝑇1 
𝑛  𝑦𝑛+𝑐𝑛3 𝑃𝑇2 

𝑛  𝑦𝑛+𝑑𝑛3 𝑃𝑇3 
𝑛  𝑦𝑛  

Where, 𝑎𝑛𝑖  ,  𝑏𝑛𝑖  ,  𝑐𝑛𝑖  ,  𝑑𝑛𝑖  ,i= 1,2,3 are sequences in [0,1] 

satisfying 

𝑎𝑛𝑖 + 𝑏𝑛𝑖 + 𝑐𝑛𝑖 + 𝑑𝑛𝑖    for  1,2,3  

Let E be a Banach space with dimension E ≥ 2. The modulus of 

E is the function 𝛿𝐸 휀 : (0 ,2] → [0,1] defined by 

𝛿𝐸 휀 =inf   1 − ||
1

2
 x + y ||; ||x||1, ||y|| = 1, ε = ||x − y||    

A Banach space E is uniformly convex if and only if 𝛿𝐸 휀   > 0 

for all 휀 ∈ (0,2]. Let E be a Banach space and S(E)={x ∈ E : x 

=1 }. The space E is said to be smooth if  

lim
𝑡→0

||x + ty|| − ||x||

𝑡
 

exists for all x, y ∈ S(E). 

A subset K of E is said to be retract if there exists continuous 

mapping P : E → K such that Px = x for all x ∈ K. A mapping P 

: E → E is said to be a retraction if 𝑃2= P. Let C and K be 

subsets of a Banach space E. A mapping P from C into K is 

called sunny if P(P𝑥+ t(𝑥−P𝑥)) = P𝑥 for x ∈ C with P𝑥+ 

t(𝑥−P𝑥) ∈ C and t ≥ 0. Note that, if mapping P is a retraction, 

then Pz= z for every z ∈ R(P) ( the range of P). It is well-known 

that every closed convex subset of a uniformly convex Banach 

space is a retract. For any x ∈ K, the inward set 𝐼𝑘 𝑥  is defined 

as follows: 𝐼𝑘 𝑥  ={y ∈ E : y = 𝑥 + λ(z − 𝑥),z∈ K,λ≥ 0}. A 

mapping T : K → E is said to satisfy the inward condition if 

𝑇𝑥∈𝐼𝑘 𝑥   for all 𝑥 ∈ K. T is said to satisfy the weakly inward 

condition if, for each 𝑥 ∈ K, 𝑇𝑥  ∈ cl 𝐼𝑘 𝑥 ((cl 𝐼𝑘 𝑥   is the 

closure of : 𝐼𝑘 𝑥 ). 

A Banach space E is said to satisfy Opial’s condition if, for any 

sequence {𝑥𝑛} in E,  𝑥𝑛  →x implies that 

lim
𝑛→∞

𝑠𝑢𝑝||𝑥𝑛 − 𝑥|| < lim𝑠𝑢𝑝
𝑛→∞

||𝑥 − 𝑦|| 

for all 𝑦 ∈ E with 𝑦 ≠ 𝑥, where , 𝑥𝑛  → x  denotes that {𝑥𝑛  } 

converges weakly to 𝑥 . 

Let K be a nonempty closed subset of a real Banach space E. T : 

K → E is said to be demicompact if, for any sequence  

{𝑥𝑛 } ⊂ 𝑘 with  ||𝑥𝑛 − T𝑥𝑛 || →0  𝑛 → ∞  their exists 

subsequence {𝑥𝑛𝑗 } of {𝑥𝑛 } such that {𝑥𝑛 } converges strongly to 

𝑥∗ ∈ 𝑘 

A mapping T with domain D(T) and range R(T) inE is said to be 

demi- closed at p if whenever  {𝑥𝑛  } is a sequence in D(T) such 

that {𝑥𝑛  }  converges weakly to 𝑥∗ ∈ D(T) and {T𝑥𝑛} converges 

strongly to p, then T𝑥∗= p 

Lemma 2.1. [12] Let {𝑎𝑛},{δ𝑛},and{𝑏𝑛}be sequences of 

nonnegative real numbers satisfying 

𝑎𝑛 + 1 ≤  1 + δ𝑛 𝑎𝑛 + 𝑏𝑛 , ∀n ≥ 1, if 

 δ𝑛 < ∞∞
𝑛=1 𝑎𝑛𝑑  𝑏𝑛

∞
𝑛=1 < ∞ then lim𝑎𝑛

𝑛→∞

 exists. 

Lemma 2.2. [6] Let E be a real uniformly convex Banach space 

and let 𝐵𝑟  (0) be the closed ball of E with center at the origin 

and radius r ≥ 0. Then, there exists a continuous strictly 

increasing convex function g : [0 ,∞) → [0,∞) with  g(0) = 0 

such that 

  𝜆𝑥 + 𝜇𝑦 + 𝛾𝑧  
2
≤ 𝜆  𝑥  

2
+𝜇||𝑦||2+𝛾||𝑧||2-𝜆𝜇g ||𝑥 − 𝑦||  

For all x,y,z𝜖𝐵𝑟  (0) and 𝜆, 𝜇, 𝛾𝜖[0,1] with 𝜆 +  𝜇 + 𝛾=1 

Lemma 2.3. [7] Let E be a real smooth Banach space, let K be a 

nonempty closed convex subset of E with P as a sunny 

nonexpansive retraction, and let T : K → E be a mapping 

satisfying weakly inward condition. Then F(PT)= F(T). 

Lemma 2.4. [3] Let E be a uniformly convex Banach space and K 

a nonempty closed convex subset of E. Let T : K → K be an 

asymptotically nonexpansive mapping with a sequence {𝑘𝑛  } 
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⊂*1,∞) such that,𝑘𝑛 -→1 as n →∞. Then I−T is demiclosed at 

zero, that is, for each sequence {𝑥𝑛  }  }in K, if the sequence {𝑥𝑛  }   

converges weakly to q ∈ K and ,(I−T) 𝑥𝑛   converges strongly to 

0, then (I −T)q =0. 

3 MAIN RESULTS 

Lemma 3.1. Let K be a nonempty closed convex subset of a real 

uniformly convex Banach space E. Let, 𝑇1,𝑇2,,𝑇3,, : K → E be three 

nonself asymptotically non expansive mappings with respect to 

P with three sequences{𝑘𝑛
(1)},{𝑘𝑛

(2) }, {𝑘𝑛
 3 

},⊂*1,∞)satisfying  

  kn
 i -1 <∞  ∞

n=1     (i=1,2, 3), respectively. Suppose that {𝑥𝑛  }   

is defined by (2.1), where ,𝑎𝑛𝑖  }  ,{ 𝑏𝑛𝑖  } { 𝑐𝑛𝑖  }  and{ 𝑑𝑛𝑖  } , (i =1 

,2,3) are sequences in *m,1−m+ for some m∈ (0,1). If F = 

F(𝑇1)∩F(𝑇2) )∩F(𝑇3)  = ∅, then  

(1)  lim
𝑛→∞

||𝑥𝑛 − 𝑞|| exists, ∀q∈F; 

(2) lim
𝑛→∞

d(𝑥𝑛 ,F) exists ,where d(𝑥𝑛 ,F)= 𝑖𝑛𝑓𝑞∈𝐹||𝑥𝑛 − 𝑞||; 

(3) lim
𝑛→∞

||𝑥𝑛 − (𝑃𝑇𝑖 ,)𝑥𝑛 ||=0            (i=1,2,3)   

Proof: Setting  𝑘𝑛 = max{𝑘𝑛
 1 

, 𝑘𝑛
 2 

, 𝑘𝑛
 3 

} since, 

  𝑘𝑛
 𝑖 − 1 < ∞    𝑖 = 1,2,3        ∞

𝑛=1  

So,   𝑘𝑛 − 1 < ∞   .      ∞
𝑛=1  

For any  q∈F, by (2.1) we have  

||𝑧𝑛 − 𝑞||=||an3 𝑥𝑛 − 𝑞 + bn3  PT1
n 𝑥𝑛 − 𝑞 +

 cn3  PT2
n 𝑥𝑛 − 𝑞 + dn3( PT3

n 𝑥𝑛 − 𝑞)||            

≤ an3||𝑥𝑛 − 𝑞||+bn3kn||𝑥𝑛𝑞||+cn3kn||𝑥𝑛 − 𝑞||+dn3kn ||𝑥𝑛 −

𝑞|| 

   ≤ kn ||𝑥𝑛 − 𝑞||.                                                (3.1)                                                                                                                                                     

By (2.1) and (3.1) we have 

||𝑦𝑛 − 𝑞||=||an2 𝑥𝑛 − 𝑞 + bn2  PT1
n 𝑧𝑛 − 𝑞 +

 cn2  PT2
n 𝑧𝑛 − 𝑞 + dn2( PT3

n 𝑧𝑛 − 𝑞)|| 

≤ kn
2||𝑥𝑛 − 𝑞||.                                                (3.2)   

And hence, it follows from (2.1) and (3.2)   

  𝑥𝑛+1 − 𝑞  = ||an1 𝑥𝑛 − 𝑞 + bn1  PT1
n 𝑦𝑛 − 𝑞 +

 cn1  PT2
n 𝑦𝑛 − 𝑞 +dn1( PT3

n yn-q)|| 

≤

an1||𝑥𝑛 − 𝑞||+bn1kn
3||𝑥𝑛𝑞||+cn1kn

3||𝑥𝑛 − 𝑞||+dn1kn
3||𝑥𝑛 −

𝑞|| 

              ≤ kn
3||𝑥𝑛 − 𝑞||                                              (3.3)                                                                                                                         

Where,  δ𝑛 = kn
3 − 1  satisfying   δ𝑛 < ∞∞

𝑛=1   , since 

 (kn − 1) < ∞∞
𝑛=1   is equivalent to  

                       (kn
3 − 1) < ∞∞

𝑛=1  .Thus by (3.3) and lemma (2.1)  

, we obtain that 

                      lim
𝑛→∞

||𝑥𝑛 − 𝑞|| exists, ∀q∈F 

(2)This conclusion can be easily shown by taking infimum in 

(3.3) for all q∈F. 

(3) Assume, by conclusion of (1), lim
𝑛→∞

||𝑥𝑛 − 𝑞||=d and from 

lemma (2.2) ,we have, 

||𝑥𝑛 − 𝑞||2= 

||an1 𝑥𝑛 -q +bn1  PT1
n yn-q + cn1  PT2

n yn-q 

+ dn1( PT3
n yn-q||

2

 

≤ an1||𝑥𝑛 − 𝑞||2 + bn1||  PT1
n 𝑦𝑛 − 𝑞 ||2 + cn1|| PT2

n 𝑦𝑛 −

𝑞||2+dn1|| PT3
n 𝑦𝑛 − q||2 − an1bn1cn1𝑔1||𝑥𝑛 −  PT1

n 𝑦𝑛 ||                                    

≤ an1||𝑥𝑛 − 𝑞||2+(bn1 + cn1 +

 dn1) kn
2||yn-q||2-m3g1||xn- PT1

n yn|| 

≤ (an1+(bn1 + cn1 + dn1) 𝑘𝑛
4) ||𝑥𝑛 − 𝑞||2 − 𝑚3𝑔1||𝑥𝑛 −

  PT1
n 𝑦𝑛 || 

    ≤ 𝑘𝑛
4||𝑥𝑛 − 𝑞||2  − 𝑚3𝑔1||𝑥𝑛 −  PT1

n 𝑦𝑛 ||       

which implies that  𝑔1||𝑥𝑛 −  PT1
n 𝑦𝑛 ||→0 asn →∞. Since𝑔1 : 

*0 ,∞) →*0 ,∞) with 𝑔1 (0)=0 is a continuous strictly increasing 

convex function, it follows that 

   lim
𝑛→∞

||𝑥𝑛 −  PT1
n 𝑦𝑛 ||=0                                                    (3.4) 

Similarly we have , 

  lim
𝑛→∞

||𝑥𝑛 −  PT2
n 𝑦𝑛 ||=                                                         (3.5)                         

And 
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lim
𝑛→∞

||𝑥𝑛 −  PT3
n 𝑦𝑛 ||=0                                                   (3.6) 

Noting that, 

                              ||𝑥𝑛 − 𝑞||=||𝑥𝑛 −  PT1
n 𝑦𝑛 ||+|| PT1

n 𝑦𝑛 − q|| 

                                                 ≤ ||𝑥𝑛 −  PT1
n 𝑦𝑛 ||+𝑘𝑛 ||𝑦𝑛 − 𝑞|| 

we obtain from (3.4) that, by taking liminf on both sides in the 

inequality above, 

       d=    liminf
𝑛→∞

  𝑥𝑛 − 𝑞  ≤ liminf𝑘𝑛
𝑛→∞

  𝑦𝑛 − 𝑞  = liminf
𝑛→∞

||𝑦𝑛 −

𝑞|| 

In addition, it follows from (3.2) that limsup
𝑛→∞

||𝑦𝑛 −

𝑞|| ≤d, thus  

lim
𝑛→∞

  𝑦𝑛 − 𝑞  = 𝑑                                                       (3.7)                            

Hence, by (2.1), (3.1), (3.6) and Lemma 2.2, we have 

||𝑦𝑛 − 𝑞||2=||an2 𝑥𝑛 − 𝑞 + bn2  PT1
n 𝑧𝑛 − 𝑞 +

 cn2  PT2
n 𝑧𝑛 − 𝑞 + dn2( PT3

n 𝑧𝑛 − q||2 

 ≤  

an2||𝑥𝑛 − 𝑞||2 + bn2||  PT1
n 𝑧𝑛 − 𝑞 ||2 + cn2|| PT2

n 𝑧𝑛 −

𝑞||2+dn2|| PT3
n 𝑧𝑛 −    q||2 − an2bn2cn2𝑔2||𝑥𝑛 −  PT1

n 𝑧𝑛 || 

≤ an2||𝑥𝑛 − 𝑞||2+(bn2 + cn2 + dn2) 𝑘𝑛
2||𝑧𝑛 − 𝑞||2 −

𝑚3𝑔2||𝑥𝑛 −  PT1
n 𝑧𝑛 || 

≤ (an2+(bn2 + cn2 + dn2) 𝑘𝑛
3) ||𝑥𝑛 − 𝑞||2 − 𝑚3𝑔2||𝑥𝑛 −

 PT1
n 𝑧𝑛 || 

 ≤     𝑘𝑛
3||𝑥𝑛 − 𝑞||2  − 𝑚3𝑔1||𝑥𝑛 −  PT1

n 𝑧𝑛 ||   

which implies that  𝑔2||𝑥𝑛 −  PT1
n 𝑦𝑛 ||      → 0 asn →∞. 

Since𝑔2 : *0 ,∞) →*0 ,∞) with 𝑔1 (0) = 0 is a continuous strictly 

increasing convex function, it follows that 

lim
𝑛→∞

||𝑥𝑛 −  PT1
n 𝑧𝑛 ||=0                                            (3.8)                      

Similarly we have , 

lim
𝑛→∞

||𝑥𝑛 −  PT2
n 𝑧𝑛 ||=0                                            (3.9)                                   

And  

lim
𝑛→∞

||𝑥𝑛 −  PT3
n 𝑧𝑛 ||=0                                                    (3.10)                        

Noting that, 

                  ||𝑥𝑛 − 𝑞||=||𝑥𝑛 −  PT1
n 𝑧𝑛 ||+|| PT1

n 𝑧𝑛 − q|| 

                                                 ≤ ||𝑥𝑛 −  PT1
n 𝑦𝑛 ||+𝑘𝑛 ||𝑧𝑛 − 𝑞|| 

we obtain from (3.4) that, by taking liminf on both sides in the 

inequality above, 

  d=liminf
𝑛→∞

  𝑥𝑛 − 𝑞  ≤ liminf𝑘𝑛
𝑛→∞

  𝑧𝑛 − 𝑞    

= liminf
𝑛→∞

||𝑧𝑛 − 𝑞|| 

In addition, it follows from (3.2) that limsup
𝑛→∞

||𝑧𝑛 −

𝑞|| ≤d, thus  

lim
𝑛→∞

  𝑧𝑛 − 𝑞  = 𝑑                                                           (3.11)      

Next, it follows from (2.1), (3.11) and Lemma 2.2 that 

||𝑧𝑛 − 𝑞||2=||an3 𝑥𝑛 − 𝑞 + bn3  PT1
n 𝑥𝑛 − 𝑞 +

 cn3  PT2
n 𝑥𝑛 − 𝑞 + dn3( PT3

n 𝑥𝑛 − q||2 

≤ an3||𝑥𝑛 − 𝑞||2 + bn3||  PT1
n 𝑥𝑛 − 𝑞 ||2 + cn3|| PT2

n 𝑥 −

𝑞||2+dn3|| PT3
n 𝑥𝑛 −   q||2 − an3bn3cn3𝑔3||𝑥𝑛 −  PT1

n 𝑥𝑛 || 

 ≤ an3||𝑥𝑛 − 𝑞||2+(bn3 + cn3 + dn3) 𝑘𝑛 ||𝑥𝑛 − 𝑞||2 −

𝑚3𝑔2||𝑥𝑛 −  PT1
n 𝑥𝑛 || 

 ≤ (an3+(bn3 + cn3 + dn3) 𝑘𝑛
2) ||𝑥𝑛 − 𝑞||2 − 𝑚3𝑔2||𝑥𝑛 −

 PT1
n 𝑥𝑛 || 

  ≤ 𝑘𝑛
2||𝑥𝑛 − 𝑞||2  − 𝑚3𝑔3||𝑥𝑛 −  PT1

n 𝑥𝑛 ||   

which implies that  𝑔2||𝑥𝑛 −  PT1
n 𝑥𝑛 || → 0 asn →∞. Since𝑔3 : 

*0 ,∞) →*0 ,∞) with  𝑔3 (0) = 0 is a continuous strictly increasing 

convex function, it follows that 

lim
𝑛→∞

||𝑥𝑛 −  PT1
n 𝑥𝑛 ||=0                                                (3.12) 

Similarly we have , 

lim
𝑛→∞

||𝑥𝑛 −  PT2
n 𝑥𝑛 ||=0                                                 (3.13)    

And            
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lim
𝑛→∞

||𝑥𝑛 −  PT3
n 𝑧𝑛 ||=0                                        (3.14) 

Furthermore, we claim that ||𝑥𝑛+1 − 𝑥𝑛 || → 0, as n →∞. In 

fact, by (2.1), we have 

||𝑥𝑛+1 − 𝑥𝑛 ||=||bn1  PT1
n 𝑦𝑛 − 𝑥𝑛 +  cn1  PT2

n 𝑦𝑛 − 𝑥𝑛 +

dn1( PT3
n 𝑦𝑛 − 𝑥𝑛)|| 

     

≤

bn1|| PT1
n 𝑦𝑛 − 𝑥𝑛 ||+cn1|| PT2

n 𝑦𝑛 − 𝑥𝑛 ||+dn1|| PT3
n 𝑦𝑛 −

𝑥𝑛 || 

Hence, it follows from (3.4) , (3.5) and(3.6)   

lim
𝑛→∞

||𝑥𝑛+1 − 𝑥𝑛 ||=0                                                    (3.15)   

Since any asymptotically nonexpansive mapping with respect to 

P must be uniformly L-Lipschitzian with respect to P, where L = 

𝑠𝑢𝑝𝑛≥1 𝑘𝑛 ≥ 1 we have, 

  𝑥𝑛+1 −  P𝑇𝑖 𝑥𝑛+1    

≤   𝑥𝑛+1 −  P𝑇𝑖 
n+1𝑥𝑛+1  + || P𝑇𝑖 𝑥𝑛+1 −  P𝑇𝑖 

n+1𝑥𝑛+1|| 

      ≤   𝑥𝑛+1 −  P𝑇𝑖 
n+1𝑥𝑛+1  +L  𝑥𝑛+1 −  P𝑇𝑖 

n𝑥𝑛+1   

            

≤   𝑥𝑛+1 −  P𝑇𝑖 
n+1𝑥𝑛+1  +L  𝑥𝑛 −  P𝑇𝑖 

n𝑥𝑛+1  +L||𝑥𝑛+1 −

𝑥𝑛 || 

    ≤   𝑥𝑛+1 −  P𝑇𝑖 
n+1𝑥𝑛+1  +L  𝑥𝑛 −  P𝑇𝑖 

n𝑥𝑛+1  +L(𝐿 +

1)||𝑥𝑛+1 − 𝑥𝑛 || 

Consequently, by (3.13), (3.14), and (3.15), it can be obtained 

that, 

lim
𝑛→∞

  𝑥𝑛+1 −  P𝑇𝑖 𝑥𝑛+1  =0  

(i=1,2,3)                                                                (3.17) 

This completes the proof. 

 

Theorem 3.2. Let K be a nonempty closed convex subset of a 

real uniformly convex and smooth Banach space E with P as a 

sunny nonexpansive retraction. Let𝑇1, 𝑇2, 𝑇3  : K → E be three 

weakly inward nonself asymptotically nonexpansive mappings 

with respect to P with two sequences {𝑘𝑛
(1) },{𝑘𝑛

(2)  },{𝑘𝑛
(3)}   

,⊂*1,∞) satisfying satisfying   𝑘𝑛
 𝑖 − 1  <∞

𝑛=1

∞     ,    (i=1,2,3) respectively.suppose that sequence {𝑥𝑛 } 

defined by (2.1) 

where {𝑎𝑛𝑖  }  ,{ 𝑏𝑛𝑖  } { 𝑐𝑛𝑖  }  and{ 𝑑𝑛𝑖  } , (i =1 ,2,3) are sequences 

in *m,1−m+ for some m∈ (0,1). 

If P𝑇1and P𝑇2𝑎𝑛𝑑 𝑃𝑇3  satisfy Condition (B) with respect to the 

sequence {𝑥𝑛 } , i.e., there exists a nondecreasing function f : [0 

,∞) → *0,∞) with f(0) = 0 and f(r) > 0 for all r ∈ (0,∞) such that 

f(d(𝑥𝑛 ,𝐹1)) ≤𝑚𝑎𝑥1≤𝑖≤3  𝑥𝑛  −

      P𝑇𝑖 𝑥𝑛   and𝐹1 =F(P𝑇1)∩F(P𝑇2) ∩ F(P𝑇3) ={x ∈ K : P𝑇1x 

=P𝑇2𝑥 = 𝑃𝑇3𝑥  = x} = ∅, then {𝑥𝑛 }  converges strongly to a 

common fixed point of 𝑇1  , 𝑇2  𝑎𝑛𝑑 𝑇3. 

 

Proof.  It follows from Lemma 2.3 that 𝐹1 = F, where F is the 

common fixed point set of 𝑇1 , 𝑇2and 𝑇3. Since P𝑇1  , 

P𝑇2  𝑎𝑛𝑑1𝑃𝑇3   satisfy Condition (B) with respect to the 

sequence {𝑥𝑛  }, that is to say  

f(d(𝑥𝑛 ,𝐹)) ≤𝑚𝑎𝑥1≤𝑖≤3  𝑥𝑛 − (P𝑇𝑖)𝑥𝑛       

Taking limsup as n→∞on both sides in the inequality above, we 

get 

lim
𝑛→∞

f(d(𝑥𝑛 , 𝐹)) =0 

which implies lim
𝑛→∞

f(d(𝑥𝑛 , 𝐹)) =0  , by the definition of the 

function f.   

Now we show that {𝑥𝑛  } is a Cauchy sequence. By (3.3), we may 

assume that   𝛿𝑛
∞
𝑛=0  =M≥ 0Since lim

𝑛→∞
 (d(𝑥𝑛 ,F) = 0, then for 

any 휀>0, there exists a positive integer N such that d(𝑥𝑛 ,F) <
휀

2𝑒𝑀    

for all n ≥ N. On the other hand, there exists a p ∈ F such  that 

  𝑥𝑁 − P   = d(𝑥𝑁 ,F) <
휀

2𝑒𝑀   because  d(𝑥𝑁 ,F) =𝑖𝑛𝑓𝑞∈𝐹  𝑥𝑁 − q   

and F is closed. Thus, for any n>N, it follows from (3.3) that 

  𝑥𝑛 − p  =(1+𝛿𝑛 )   𝑥𝑛 − p   ≤   (1 + 𝛿𝑖
𝑛
𝑖=1  )   𝑥𝑁 − p                                 

≤ 𝑒  (1+𝛿𝑖)
𝑛
𝑖=1    𝑥𝑁 − p   
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  ≤ 𝑒𝑀    𝑥𝑁 − p   

Hence, for any n,m>N 

  𝑥𝑛 − 𝑥𝑚   ≤   𝑥𝑛 − p  +   𝑥𝑚 − p   

                       ≤2𝑒𝑀  𝑥𝑁 − p  < 휀 

This implies that {𝑥𝑛  } is a Cauchy sequence. Thus, there exists a 

x ∈ K such that 𝑥𝑛→ x as n →∞, since E is complete. Then, 

lim
𝑛→∞

d(𝑥𝑛 , 𝐹)  = 0 yields that d(x,F) = 0. Further, it follows from 

the closedness of F that x ∈ F. This completes the proof. 

Theorem 3.3. Let K be a nonempty closed convex subset of a 

uniformly convex and smooth Banach space E satisfying Opial’s 

condition with P as a sunny nonexpansive retraction. 

Let𝑇1, 𝑇2, 𝑇3  : K → E be two weakly inward nonself 

asymptotically nonexpansive mappings with respect to P with 

two sequences {𝑘𝑛
(1) },{𝑘𝑛

(2)  },{𝑘𝑛
(3)   },⊂*1,∞) satisfying 

   𝑘𝑛
 𝑖 − 1 < ∞       ,    ∞

𝑛=1 (i=1,2,3) respectively.suppose that 

sequence {𝑥𝑛 } defined    by  (2.1)where {𝑎𝑛𝑖  }  ,{ 𝑏𝑛𝑖  } { 𝑐𝑛𝑖  }  

and{ 𝑑𝑛𝑖  - , (i =1 ,2,3) are sequences in *m,1−m+ for some m∈ 

(0,1).  

If F := F(𝑇1)∩F(𝑇2) ∩ F(𝑇3) = ∅, then { 𝑥𝑛 )  } converges weakly to 

some common fixed point of 𝑇1  , 𝑇2  and 𝑇3. 

Proof. For any q ∈ F, by Lemma 3.1, we know that lim
𝑛→∞

  𝑥𝑛 −

q   exists. We now prove that {𝑥𝑛 } has a unique weakly 

subsequential limit in F. First of all, since P𝑇1 , P𝑇2  and P𝑇3  are 

self-mappings from K into itself, therefore, Lemmas 2.3, 2.4, 

and 3.1 guarantee that each weakly subsequential limit of {𝑥𝑛 }  

is a common fixed point of 𝑇1  , 𝑇2  and 𝑇3. Secondly, Opial’s 

condition guarantees that the weakly subsequential limit of{𝑥𝑛 } 

is unique. Consequently, {𝑥𝑛 } converges weakly to a common 

fixed point of𝑇1 , 𝑇2  and 𝑇3 . This completes the proof. 
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