FIXED POINT THEOREM FOR WEAKLY

INWARD NONSELF ASYMPTOTICALLY

NONEXPANSIVE MAPPINGS IN BANACH

SPACES

Anil Rajput ${ }^{*}$, Abha Tenguria ${ }^{* *}$ and Sanchita Pandey ${ }^{* * *}$
*Department of mathematics CSA Govt. PG College, Nodal Sehore
** Department of mathematics Govt. M.L.B college, Bhopal
*** Department of mathematics Technocrates institute of technology, Bhopal

Abstract

In this paper, we established some weak and strong convergence theorems for common fixed points of three nonself asymptotically Banach spaces. Our results extended and improve the result announ- ed by Wang[6] [Strong and weak convergence theorems for common fixed points of nonself asymptotically nonexpansive mappings, J. Math. Anal. Appl., 323(2006)550-557.] and WeiQiDeng, Lin Wang and Yi-Juan Chen[13] [Strong and Weak Convergence Theorems for common fixed points of two asymptotically nonexpansive mappings in Banach spaces, International Mathematical Forum, Vol. 7, 2012, no. 9, 407 - 417.]

For a smooth banach space E, let us assume that K is a nonempty closed convex subset of with P as a sunny nonexpansive retraction. Let, $\boldsymbol{T}_{1}, \boldsymbol{T}_{2}, \boldsymbol{T}_{3}: \mathrm{K} \rightarrow \mathrm{E}$ be three weakly inward nonself asymptotically nonexpansive mappings with respect to P with three sequences
$\left\{k_{n}{ }^{(i)}\right\} \quad\left[\quad[1, \infty)\right.$ satisfying $\sum_{n=1}^{\infty}\left(k_{n}{ }^{(i)}-1\right)<\infty,(\mathrm{i}=1,2,3)$ and $\mathrm{F}\left(T_{1}\right) \cap \mathrm{F}\left(T_{2}\right) \cap F\left(T_{3}\right)=\left\{x \epsilon k, T_{1} x=T_{2} x=T_{3} x=x\right\}$ respectively

For any given $x_{1} \in k$,suppose that $\left\{x_{n}\right\}$ is sequence generated iteratively by

$$
\begin{aligned}
& x_{n+1}=a_{n 1} x_{n}+b_{n 1}\left(P T_{1}\right)^{n} y_{n}+c_{n 1}\left(P T_{2}\right)^{n} y_{n}+d_{n 1}\left(P T_{3}\right)^{n} y_{n} \\
& y_{n=} a_{n 2} x_{n}+b_{n 2}\left(P T_{1}\right)^{n} y_{n}+c_{n 2}\left(P T_{2}\right)^{n} y_{n}+d_{n 2}\left(P T_{3}\right)^{n} y_{n}
\end{aligned}
$$

$z_{n}=a_{n 3} x_{n}+b_{n 3}\left(P T_{1}\right)^{n} y_{n}+c_{n 3}\left(P T_{2}\right)^{n} y_{n}+d_{n 3}\left(P T_{3}\right)^{n} y_{n}$
where, $\left\{\boldsymbol{a}_{\boldsymbol{n} i}\right\},\left\{\boldsymbol{b}_{n i}\right\},\left\{\boldsymbol{c}_{\boldsymbol{n} i}\right\},\left\{\boldsymbol{d}_{\boldsymbol{n} i}\right\}$ for $\mathrm{i}=(1,2,3)$ are sequences in $[a, 1-a]$ for some $a \in(0,1)$
satisfying $a_{n i}+b_{n i}+c_{n i}+d_{n i}=1 \quad(\mathrm{i}=1,2,3)$. some a $\in(0,1)$, Under some suitable conditions, the strong and weak convergence theorems of $\left\{x_{n}\right\}$ to a common fixed point of T_{1}, T_{2} and T_{3} are obtained.

Mathematics Subject Classification: 47H09, 47J25

Keywords :

Nonself asymptotically nonexpansive mapping, Strong and weak convergence, Common fixed point.

1 INTRODUCTION

For a self-mapping $\mathrm{T}: \mathrm{K} \rightarrow \mathrm{K}$, nonexpansive mapping is defined as $\|\mathrm{T} x-\mathrm{Ty}\| \leq\|\mathrm{x}-\mathrm{y}\|$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{K}$ and asymptotically nonexpansive if there exists a sequence $\left\{\boldsymbol{k}_{\boldsymbol{n}}\right\} \subset$ $[1, \infty)$ with $\boldsymbol{k}_{\boldsymbol{n}} \rightarrow 1$ as $\mathrm{n} \rightarrow \infty$ such that for all $\mathrm{n} \in \mathrm{N}$, where N stands for set of natural number,
$\left\|\boldsymbol{T}^{n} \boldsymbol{x}-\boldsymbol{T}^{n} \boldsymbol{y}\right\| \leq \boldsymbol{k}_{\boldsymbol{n}}\|\mathrm{x}-\mathrm{y}\|$
for all $x, y \in K$. T is called uniformly L-Lipschitzian if there exists a real number L>0suchthat $\left\|\boldsymbol{T}^{n} \boldsymbol{x}-\boldsymbol{T}^{\boldsymbol{n}} \boldsymbol{y}\right\| \leq \quad \mathrm{L}\|\mathrm{x}-\mathrm{y}\| \quad$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{K}$. and integers $\mathrm{n} \geq 1$.

As a generalization of the class of nonexpansive maps, the class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk [5] in 1972, who proved that if K is a nonempty bounded closed convex subset of a real uniformly convex Banach space and T is an asymptotically nonexpansive self-mapping of K , then T has a fixed point. Recently, Chidume et al.[1] further generalized the class of asymptotically nonexpansive mappings introduced by Goebel and Kirk [4], and proposed the concept of nonself asymptotically nonexpansive mapping defined as follows:

Definition1.1.[2] Let K be a nonempty subset of real normed linear space E . Let $\mathrm{P}: \mathrm{E} \rightarrow \mathrm{K}$ be the nonexpansive retraction of E onto K . (1) A nonself mapping $\mathrm{T}: \mathrm{K} \rightarrow \mathrm{E}$ is called asymptotically nonexpansive if there exist sequences $\left\{k_{n}\right.$ $\} \in[1, \infty)$ with $k_{n} \rightarrow 1$ as $\mathrm{n} \rightarrow \infty$ such that
$\left\|T(P T)^{n-1} x-T(P T)^{n-1} y\right\| \leq \boldsymbol{k}_{\boldsymbol{n}}\|\mathrm{x}-\mathrm{y}\| \quad$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{K}$.
(2)A nonself mapping $\mathrm{T}: \mathrm{K} \rightarrow \mathrm{E}$ is said to be uniformly LLipschitzian if there exists a constant $L \geq 0$ such that
$\left\|T(P T)^{n-1} x-T(P T)^{n-1} y\right\| \leq \mathrm{L}\|\mathrm{x}-\mathrm{y}\| \quad$ for all $\mathrm{x}, \mathrm{y} \in$ K.

By using the following iterative algorithm:
$x_{1} \in k, x_{n+1}=\mathrm{P}\left(\left(1-\alpha_{\mathrm{n}}\right) x_{\mathrm{n}}+\alpha_{\mathrm{n}} \mathrm{T}(\mathrm{PT})^{\mathrm{n}-1} x_{\mathrm{n}}\right)$,
$\forall \mathrm{n} \geq 1$
Some authors [2,6,7,11] have studied the strong and weak convergence theorem for such mappings.

As a matter of fact, if T is a self-mapping, then P is a identity mapping. Thus (1.3) and (1.4) reduce to (1.1) and (1.2) as T is a self-mapping, respectively. In addition, if $T: K \rightarrow E$ is asymptotically nonexpansive in light of (1.3) and $\mathrm{P}: \mathrm{E} \rightarrow \mathrm{K}$ is a nonexpansive retraction, then $\mathrm{PT}: \mathrm{K} \rightarrow \mathrm{K}$ is asymptotically
nonexpansive in light of (1.1). Indeed, for all $x, y \in K$ and $n \geq 1$, by (1.3), it follows that

$$
\begin{align*}
& \left\|(P T)^{n} x-(P T)^{n} y\right\|=\left\|P T(P T)^{n-1} x P T(P T)^{n-1} y\right\| \\
& \leq\left\|P T(P T)^{n-1} x-P T(P T)^{n-1} y\right\| \\
& \leq k_{n}\|\mathrm{x}-\mathrm{y}\| \tag{1.6}
\end{align*}
$$

Conversely, it may not be true. Therefore, Zhou et al.[13] introduced the following generalized definition recently.

Definition 1.2.[9] Let K be a nonempty subset of real normed linear space E . Let $\mathrm{P}: \mathrm{E} \rightarrow \mathrm{K}$ be a nonexpansive retraction of E onto K.
(1) A nonself mapping $\mathrm{T}: \mathrm{K} \rightarrow \mathrm{E}$ is called asymptotically nonexpansive with respect to P if there exist sequences $\{$ $\left.k_{n}\right\} \in[1, \infty)$ with $k_{n} \rightarrow 1$ asn $\rightarrow \infty$ such that , \| $(P T)^{n} x-$ $(P T)^{n} y\left\|\leq k_{n}\right\| \mathrm{x}-\mathrm{y} \| \forall x, \mathrm{y} \in \mathrm{K}, \mathrm{n} \geq 1(1.7)$
(2) A nonself mapping $\mathrm{T}: \mathrm{K} \rightarrow \mathrm{E}$ is said to be uniformly L Lipschitzian with respect to P if there exists a constant L ≥ 0 such that
$\left.\left\|(P T)^{n} x-(P T)^{n} y\right\| \leq \mathrm{L}\|\mathrm{x}-\mathrm{y}\| \mathrm{l} \mathrm{I}_{3}\right)$
$\forall x, y \in K \quad, \mathrm{n} \geq 1$
Furthermore, by studying the following iterative process:

$$
\begin{array}{ll}
x_{n+1}=\alpha_{n} \beta_{n}+\beta_{n}\left(P T_{1}\right)^{n} x_{n}+\gamma_{n}\left(P T_{2}\right)^{n} x_{n} & \forall x_{1} \in k, \\
\mathrm{n} \geq 1 \tag{1.9}
\end{array}
$$

where $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$, and $\left\{\gamma_{n}\right\}$ are three sequences in $[\mathrm{a}, 1-\mathrm{a}]$ for some a $\in(0,1)$, satisfying $\alpha_{n}+\beta_{n}+\gamma_{n}=1$, Zhou et al.[3] obtained some strong and weak convergence theorems for common fixed points of nonself asymptotically nonexpansive mappings with respect to P in uniformly convex Banach spaces. As a consequence, the main results of Chidume et al. [1] are deduced.

Inspired and motivated by those work mentioned above and three step iteration method proposed by Noor[8], in this paper, we construct a three step iteration scheme for approximating common fixed points of three nonself asymptotically nonexpansive mappings with respect to P and to prove some strong and weak convergence theorems for such mappings in uniformly convex Banach spaces.

2. PRELIMINARIES

Let K be a nonempty closed convex subset of a real uniformly convex Banach space E with retraction P . Let $T_{1}, T_{2}, T_{3}: \mathrm{K} \rightarrow \mathrm{E}$ be three nonself asymptotically nonexpansive mappings with respect to P. For approximating common fixed points of such mappings, we further generalize the iteration scheme(1.9) as follows:

$$
\begin{aligned}
& x_{1} \in k \\
& x_{n+1}=a_{n 1} x_{n}+b_{n 1}\left(P T_{1}\right)^{n} y_{n}+c_{n 1}\left(P T_{2}\right)^{n} y_{n}+d_{n 1}\left(P T_{3}\right)^{n} y_{n} \\
& y_{n}=a_{n 2} x_{n}+b_{n 2}\left(P T_{1}\right)^{n} y_{n}+c_{n 2}\left(P T_{2}\right)^{n} y_{n}+d_{n 2}\left(P T_{3}\right)^{n} y_{n} \\
& (2.1)
\end{aligned}
$$

$z_{n}=a_{n 3} x_{n}+b_{n 3}\left(P T_{1}\right)^{n} y_{n}+c_{n 3}\left(P T_{2}\right)^{n} y_{n}+d_{n 3}\left(P T_{3}\right)^{n} y_{n}$
Where, $\left\{a_{n i}\right\},\left\{b_{n i}\right\},\left\{c_{n i}\right\},\left\{d_{n i}\right\}, \mathrm{i}=\{1,2,3\}$ are sequences in $[0,1]$ satisfying
$a_{n i}+b_{n i}+c_{n i}+d_{n i}$ for $\{1,2,3\}$
Let E be a Banach space with dimension $\mathrm{E} \geq 2$. The modulus of E is the function $\delta_{E}(\varepsilon):(0,2] \rightarrow[0,1]$ defined by
$\delta_{E}(\varepsilon)=\inf \left\{1-\left\|\frac{1}{2}(x+y)\right\| ;\|x\| 1,\|y\|=1, \varepsilon=\|x-y\|\right\}$
A Banach space E is uniformly convex if and only if $\delta_{E}(\varepsilon)>0$ for all $\varepsilon \in(0,2]$. Let E be a Banach space and $S(E)=\{x \in E: x$ $=1$ \}. The space E is said to be smooth if

$$
\lim _{t \rightarrow 0} \frac{\|x+t y\|-\|x\|}{t}
$$

exists for all $x, y \in S(E)$.
A subset K of E is said to be retract if there exists continuous mapping $P: E \rightarrow K$ such that $P x=x$ for all $x \in K$. A mapping P $: \mathrm{E} \rightarrow \mathrm{E}$ is said to be a retraction if $P^{2}=\mathrm{P}$. Let C and K be subsets of a Banach space E . A mapping P from C into K is called sunny if $\mathrm{P}(\mathrm{P} x+\mathrm{t}(x-\mathrm{P} x))=\mathrm{P} x$ for $\mathrm{x} \in \mathrm{C}$ with $\mathrm{P} x+$ $\mathrm{t}(x-\mathrm{P} x) \in \mathrm{C}$ and $\mathrm{t} \geq 0$. Note that, if mapping P is a retraction, then $\mathrm{Pz}=\mathrm{z}$ for every $\mathrm{z} \in \mathrm{R}(\mathrm{P})$ (the range of P). It is well-known that every closed convex subset of a uniformly convex Banach space is a retract. For any $\mathrm{x} \in \mathrm{K}$, the inward set $I_{k}(x)$ is defined as follows: $I_{k}(x)=\{\mathrm{y} \in \mathrm{E}: \mathrm{y}=x+\lambda(\mathrm{z}-x), \mathrm{z} \in \mathrm{K}, \lambda \geq 0\}$. A mapping $\mathrm{T}: \mathrm{K} \rightarrow \mathrm{E}$ is said to satisfy the inward condition if $T_{x} \in I_{k}(x)$ for all $x \in \mathrm{~K}$. T is said to satisfy the weakly inward
condition if, for each $x \in \mathrm{~K}, T_{x} \in \operatorname{cl} I_{k}(x)\left(\left(\operatorname{cl} I_{k}(x)\right.\right.$ is the closure of : $I_{k}(x)$).

A Banach space E is said to satisfy Opial's condition if, for any sequence $\left\{x_{n}\right\}$ in $\mathrm{E}, x_{n} \rightarrow \mathrm{x}$ implies that

$$
\lim _{n \rightarrow \infty} \sup \left\|x_{n}-x\right\|<\underset{n \rightarrow \infty}{\limsup }\|x-y\|
$$

for all $y \in \mathrm{E}$ with $y \neq x$, where, $x_{n} \rightarrow \mathrm{x}$ denotes that $\left\{x_{n}\right\}$ converges weakly to x.

Let K be a nonempty closed subset of a real Banach space E . T : $K \rightarrow E$ is said to be demicompact if, for any sequence
$\left\{x_{n}\right\} \subset k$ with $\left\|x_{n}-\mathrm{T} x_{n}\right\| \rightarrow 0 \quad(n \rightarrow \infty) \quad$ their exists subsequence $\left\{x_{n j}\right\}$ of $\left\{x_{n}\right\}$ such that $\left\{x_{n}\right\}$ converges strongly to $x^{*} \in k$

A mapping T with domain $\mathrm{D}(\mathrm{T})$ and range $\mathrm{R}(\mathrm{T})$ inE is said to be demi- closed at p if whenever $\left\{x_{n}\right\}$ is a sequence in $\mathrm{D}(\mathrm{T})$ such that $\left\{x_{n}\right\}$ converges weakly to $x^{*} \in \mathrm{D}(\mathrm{T})$ and $\left\{\mathrm{T} x_{n}\right\}$ converges strongly to p , then $\mathrm{T} x^{*}=\mathrm{p}$

Lemma 2.1. [12] Let $\left\{a_{n}\right\},\left\{\delta_{n}\right\}$, and $\left\{b_{n}\right\}$ be sequences of nonnegative real numbers satisfying
$a_{n}+1 \leq\left(1+\delta_{n}\right) a_{n}+b_{n}, \forall \mathrm{n} \geq 1$, if
$\sum_{n=1}^{\infty} \delta_{n}<\infty$ and $\sum_{n=1}^{\infty} b_{n}<\infty$ then $\lim _{n \rightarrow \infty}$ exists.
Lemma 2.2. [6] Let E be a real uniformly convex Banach space and let $B_{r}(0)$ be the closed ball of E with center at the origin and radius $\mathrm{r} \geq 0$. Then, there exists a continuous strictly increasing convex function $g:[0, \infty) \rightarrow[0, \infty)$ with $g(0)=0$ such that
$||\lambda x+\mu y+\gamma z||^{2} \leq \lambda| | x| |^{2}+\mu\|y\|^{2}+\gamma\|z\|^{2}-\lambda \mu \mathrm{g}(\|x-y\|)$
For all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in B_{r}(0)$ and $\lambda, \mu, \gamma \in[0,1]$ with $\lambda+\mu+\gamma=1$
Lemma 2.3. [7] Let E be a real smooth Banach space, let K be a nonempty closed convex subset of E with P as a sunny nonexpansive retraction, and let $\mathrm{T}: \mathrm{K} \rightarrow \mathrm{E}$ be a mapping satisfying weakly inward condition. Then $F(P T)=F(T)$.

Lemma 2.4. [3] Let E be a uniformly convex Banach space and K a nonempty closed convex subset of E . Let $\mathrm{T}: \mathrm{K} \rightarrow \mathrm{K}$ be an asymptotically nonexpansive mapping with a sequence $\left\{k_{n}\right\}$
$\subset[1, \infty)$ such that $\left\{k_{n}\right\} \rightarrow 1$ as $\mathrm{n} \rightarrow \infty$. Then I-T is demiclosed at zero, that is, for each sequence $\left\{x_{n}\right\}$ \}in K , if the sequence $\left\{x_{n}\right\}$ converges weakly to $\mathrm{q} \in \mathrm{K}$ and $\left\{(\mathrm{I}-\mathrm{T}) x_{n}\right.$ converges strongly to 0 , then $(I-T) q=0$.

3 MAIN RESULTS

Lemma 3.1. Let K be a nonempty closed convex subset of a real uniformly convex Banach space E. Let, $T_{1}, T_{2,} T_{3}, \mathrm{~K} \rightarrow \mathrm{E}$ be three nonself asymptotically non expansive mappings with respect to P with three sequences $\left\{{k_{n}}^{(1)}\right\},\left\{k_{n}{ }^{(2)}\right\},\left\{k_{n}{ }^{(3)}\right\}, \subset[1, \infty)$ satisfying $\sum_{\mathrm{n}=1}^{\infty}\left(\mathrm{k}_{\mathrm{n}}{ }^{(\mathrm{i})}-1\right)<\infty \quad(\mathrm{i}=1,2,3)$, respectively. Suppose that $\left\{x_{n}\right\}$ is defined by (2.1), where $\left\{a_{n i}\right\},\left\{b_{n i}\right\}\left\{c_{n i}\right\}$ and $\left\{d_{n i}\right\},(\mathrm{i}=1$ $, 2,3$) are sequences in $[m, 1-m]$ for some $m \in(0,1)$. If $F=$ $\left.\mathrm{F}\left(T_{1}\right) \cap \mathrm{F}\left(T_{2}\right)\right) \cap \mathrm{F}\left(T_{3}\right)=\emptyset$, then
(1) $\lim _{n \rightarrow \infty}\left\|x_{n}-q\right\|$ exists, $\forall q \in F$;
(2) $\lim _{n \rightarrow \infty} \mathrm{~d}\left(x_{n}, \mathrm{~F}\right)$ exists, where $\mathrm{d}\left(x_{n}, \mathrm{~F}\right)=\inf _{q \in F}\left\|x_{n}-q\right\|$;
(3) $\lim _{n \rightarrow \infty}\left\|x_{n}-\left(P T_{i,}\right) x_{n}\right\|=0 \quad(\mathrm{i}=1,2,3)$

Proof: Setting $\quad k_{n}=\operatorname{maxim}\left(k_{n}{ }^{(1)}, k_{n}{ }^{(2)}, \quad k_{n}{ }^{(3)}\right\} \quad$ since, $\sum_{n=1}^{\infty}\left(k_{n}{ }^{(i)}-1\right)<\infty \quad(i=1,2,3)$

So, $\sum_{n=1}^{\infty}\left(k_{n}-1\right)<\infty$.
For any $q \in F$, by (2.1) we have

$$
\begin{align*}
& \left\|z_{n}-q\right\|=\| \mathrm{a}_{\mathrm{n} 3}\left(x_{n}-q\right)+\mathrm{b}_{\mathrm{n} 3}\left(\left(\mathrm{PT}_{1}^{\mathrm{n}}\right) x_{n}-q\right)+ \\
& \mathrm{c}_{\mathrm{n} 3}\left(\left(\mathrm{PT}_{2}^{\mathrm{n}}\right) x_{n}-q\right)+\mathrm{d}_{\mathrm{n} 3}\left(\left(\mathrm{PT}_{3}{ }^{\mathrm{n}}\right) x_{n}-q\right) \| \\
& \leq \mathrm{a}_{\mathrm{n} 3}\left\|x_{n}-q\right\|+\mathrm{b}_{\mathrm{n} 3} \mathrm{k}_{\mathrm{n}}\left\|x_{n} q\right\|+\mathrm{c}_{\mathrm{n} 3} \mathrm{k}_{\mathrm{n}}\left\|x_{n}-q\right\|+\mathrm{d}_{\mathrm{n} 3} \mathrm{k}_{\mathrm{n}} \| x_{n}- \\
& q \| \\
& \leq \mathrm{k}_{\mathrm{n}}\left\|x_{n}-q\right\| . \tag{3.1}
\end{align*}
$$

By (2.1) and (3.1) we have
$\left\|y_{n}-q\right\|=\| \mathrm{a}_{\mathrm{n} 2}\left(x_{n}-q\right)+\mathrm{b}_{\mathrm{n} 2}\left(\left(\mathrm{PT}_{1}{ }^{\mathrm{n}}\right) z_{n}-q\right)+$
$\mathrm{c}_{\mathrm{n} 2}\left(\left(\mathrm{PT}_{2}{ }^{\mathrm{n}}\right) z_{n}-q\right)+\mathrm{d}_{\mathrm{n} 2}\left(\left(\mathrm{PT}_{3}{ }^{\mathrm{n}}\right) z_{n}-q\right) \|$
$\leq \mathrm{k}_{\mathrm{n}}{ }^{2}\left\|x_{n}-q\right\|$.
And hence, it follows from (2.1) and (3.2)
$\left|\mid x_{n+1}-q\|=\| \mathrm{a}_{\mathrm{n} 1}\left(x_{n}-q\right)+\mathrm{b}_{\mathrm{n} 1}\left(\left(\mathrm{PT}_{1}{ }^{\mathrm{n}}\right) y_{n}-q\right)+\right.$ $\mathrm{c}_{\mathrm{n} 1}\left(\left(\mathrm{PT}_{2}{ }^{\mathrm{n}}\right) y_{n}-q\right)+\mathrm{d}_{\mathrm{n} 1}\left(\left(\mathrm{PT}_{3}{ }^{\mathrm{n}}\right) \mathrm{y}_{\mathrm{n}}-\mathrm{q}\right) \|$
\leq
$\mathrm{a}_{\mathrm{n} 1}\left\|x_{n}-q\right\|+\mathrm{b}_{\mathrm{n} 1} \mathrm{k}_{\mathrm{n}}{ }^{3}\left\|x_{n} q\right\|+\mathrm{c}_{\mathrm{n} 1} \mathrm{k}_{\mathrm{n}}{ }^{3}\left\|x_{n}-q\right\|+\mathrm{d}_{\mathrm{n} 1} \mathrm{k}_{\mathrm{n}}{ }^{3} \| x_{n}-$ $q \|$

$$
\begin{equation*}
\leq \mathrm{k}_{\mathrm{n}}{ }^{3}\left\|x_{n}-q\right\| \tag{3.3}
\end{equation*}
$$

Where, $\quad \delta_{n}=\mathrm{k}_{\mathrm{n}}{ }^{3}-1$ satisfying $\sum_{n=1}^{\infty} \delta_{n}<\infty$, since $\sum_{n=1}^{\infty}\left(\mathrm{k}_{\mathrm{n}}-1\right)<\infty$ is equivalent to

$$
\sum_{n=1}^{\infty}\left(\mathrm{k}_{\mathrm{n}}^{3}-1\right)<\infty \text {.Thus by (3.3) and lemma (2.1) }
$$

, we obtain that

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-q\right\| \text { exists, } \forall \mathrm{q} \in F
$$

(2)This conclusion can be easily shown by taking infimum in (3.3) for all $q \in F$.
(3) Assume, by conclusion of (1), $\lim _{n \rightarrow \infty} \mid\left\|x_{n}-q\right\|=\mathrm{d}$ and from lemma (2.2) , we have,

$$
\left\|x_{n}-q\right\|^{2}=
$$

$$
\begin{gathered}
\| \mathrm{a}_{\mathrm{n} 1}\left(x_{n}-\mathrm{q}\right)+\mathrm{b}_{\mathrm{n} 1}\left(\left(\mathrm{PT}_{1}^{\mathrm{n}}\right) \mathrm{y}_{\mathrm{n}}-\mathrm{q}\right)+\mathrm{c}_{\mathrm{n} 1}\left(\left(\mathrm{PT}_{2}^{\mathrm{n}}\right) \mathrm{y}_{\mathrm{n}}-\mathrm{q}\right)^{2} \\
+\mathrm{d}_{\mathrm{n} 1}\left(\left(\mathrm{PT}_{3}^{\mathrm{n}}\right) \mathrm{y}_{\mathrm{n}}-\mathrm{q} \|\right.
\end{gathered}
$$

$\leq \mathrm{a}_{\mathrm{n} 1}\left\|x_{n}-q\right\|^{2}+\mathrm{b}_{\mathrm{n} 1}\left\|\left(\left(\mathrm{PT}_{1}{ }^{\mathrm{n}}\right) y_{n}-q\right)\right\|^{2}+\mathrm{c}_{\mathrm{n} 1} \|\left(\mathrm{PT}_{2}{ }^{\mathrm{n}}\right) y_{n}-$ $q\left\|^{2}+\mathrm{d}_{\mathrm{n} 1}\right\|\left(\mathrm{PT}_{3}{ }^{\mathrm{n}}\right) y_{n}-\mathrm{q}\left\|^{2}-\mathrm{a}_{\mathrm{n} 1} \mathrm{~b}_{\mathrm{n} 1} \mathrm{c}_{\mathrm{n} 1} g_{1}\right\| x_{n}-\left(\mathrm{PT}_{1}{ }^{\mathrm{n}}\right) y_{n} \|$

$$
\leq \mathrm{a}_{\mathrm{n} 1}\left\|x_{n}-q\right\|^{2}+\left(\mathrm{b}_{\mathrm{n} 1}+\mathrm{c}_{\mathrm{n} 1}+\right.
$$

$$
\left.\mathrm{d}_{\mathrm{n} 1}\right) \mathrm{k}_{\mathrm{n}}^{2}\left\|\mathrm{y}_{\mathrm{n}}-\mathrm{q}\right\|^{2}-\mathrm{m}^{3} \mathrm{~g}_{1}\left\|\mathrm{x}_{\mathrm{n}}-\left(\mathrm{PT}_{1}^{\mathrm{n}}\right) \mathrm{y}_{\mathrm{n}}\right\|
$$

$$
\leq\left(\mathrm{a}_{\mathrm{n} 1}+\left(\mathrm{b}_{\mathrm{n} 1}+\mathrm{c}_{\mathrm{n} 1}+\mathrm{d}_{\mathrm{n} 1}\right) k_{n}^{4}\right)\left\|x_{n}-q\right\|^{2}-m^{3} g_{1} \| x_{n}-
$$

$$
\left(\mathrm{PT}_{1}{ }^{\mathrm{n}}\right) y_{n} \|
$$

$$
\leq k_{n}{ }^{4}\left\|x_{n}-q\right\|^{2}-m^{3} g_{1}\left\|x_{n}-\left(\mathrm{PT}_{1}^{\mathrm{n}}\right) y_{n}\right\|
$$

which implies that $g_{1}\left\|x_{n}-\left(\mathrm{PT}_{1}{ }^{\mathrm{n}}\right) y_{n}\right\| \rightarrow 0$ asn $\rightarrow \infty$. Since g_{1} : $[0, \infty) \rightarrow[0, \infty)$ with $g_{1}(0)=0$ is a continuous strictly increasing convex function, it follows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-\left(\mathrm{PT}_{1}^{\mathrm{n}}\right) y_{n}\right\|=0 \tag{3.4}
\end{equation*}
$$

Similarly we have,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-\left(\mathrm{PT}_{2}^{\mathrm{n}}\right) y_{n}\right\|= \tag{3.5}
\end{equation*}
$$

And
$\lim _{n \rightarrow \infty}\left\|x_{n}-\left(\mathrm{PT}_{3}{ }^{\mathrm{n}}\right) y_{n}\right\|=0$
Noting that,

$$
\begin{aligned}
\left\|x_{n}-q\right\| & =\left\|x_{n}-\left(\mathrm{PT}_{1}^{\mathrm{n}}\right) y_{n}\right\|+\left\|\left(\mathrm{PT}_{1}^{\mathrm{n}}\right) y_{n}-\mathrm{q}\right\| \\
& \leq\left\|x_{n}-\left(\mathrm{PT}_{1}^{\mathrm{n}}\right) y_{n}\right\|+k_{n}\left\|y_{n}-q\right\|
\end{aligned}
$$

we obtain from (3.4) that, by taking liminf on both sides in the inequality above,

$$
\mathrm{d}=\liminf _{n \rightarrow \infty}| | x_{n}-q\left\|\left|\leq \liminf _{n \rightarrow \infty}\right|\left|y_{n}-q \|=\liminf _{n \rightarrow \infty}\right| \mid y_{n}-\right.
$$ $q \|$

In addition, it follows from (3.2) that $\quad \limsup _{n \rightarrow \infty} \| y_{n}-$
$q \| \leq \mathrm{d}$, thus
$\lim _{n \rightarrow \infty}| | y_{n}-q \|=d$
Hence, by (2.1), (3.1), (3.6) and Lemma 2.2, we have

$$
\begin{aligned}
& \left\|y_{n}-q\right\|^{2}=\| \mathrm{a}_{\mathrm{n} 2}\left(x_{n}-q\right)+\mathrm{b}_{\mathrm{n} 2}\left(\left(\mathrm{PT}_{1}^{\mathrm{n}}\right) z_{n}-q\right)+ \\
& \mathrm{c}_{\mathrm{n} 2}\left(\left(\mathrm{PT}_{2}^{\mathrm{n}}\right) z_{n}-q\right)+\mathrm{d}_{\mathrm{n} 2}\left(\left(\mathrm{PT}_{3}^{\mathrm{n}}\right) z_{n}-\mathrm{q} \|^{2}\right. \\
& \leq \\
& \mathrm{a}_{\mathrm{n} 2}\left\|x_{n}-q\right\|^{2}+\mathrm{b}_{\mathrm{n} 2}\left\|\left(\left(\mathrm{PT}_{1}^{\mathrm{n}}\right) z_{n}-q\right)\right\|^{2}+\mathrm{c}_{\mathrm{n} 2} \|\left(\mathrm{PT}_{2}^{\mathrm{n}}\right) z_{n}- \\
& q\left\|^{2}+\mathrm{d}_{\mathrm{n} 2}\right\|\left(\mathrm{PT}_{3}{ }^{\mathrm{n}}\right) z_{n}-\mathrm{q}\left\|^{2}-\mathrm{a}_{\mathrm{n} 2} \mathrm{~b}_{\mathrm{n} 2} \mathrm{c}_{\mathrm{n} 2} g_{2}\right\| x_{n}-\left(\mathrm{PT}_{1}^{\mathrm{n}}\right) z_{n} \| \\
& \leq \mathrm{a}_{\mathrm{n} 2}\left\|x_{n}-q\right\|^{2}+\left(\mathrm{b}_{\mathrm{n} 2}+\mathrm{c}_{\mathrm{n} 2}+\mathrm{d}_{\mathrm{n} 2}\right) k_{n}^{2}\left\|z_{n}-q\right\|^{2}- \\
& m^{3} g_{2}\left\|x_{n}-\left(\mathrm{PT}_{1}^{\mathrm{n}}\right) z_{n}\right\| \\
& \leq\left(\mathrm{a}_{\mathrm{n} 2}+\left(\mathrm{b}_{\mathrm{n} 2}+\mathrm{c}_{\mathrm{n} 2}+\mathrm{d}_{\mathrm{n} 2}\right) k_{n}^{3}\right)\left\|x_{n}-q\right\|^{2}-m^{3} g_{2} \| x_{n}- \\
& \left(\mathrm{PT}_{1}^{\mathrm{n}}\right) z_{n} \| \\
& \leq k_{n}{ }^{3}\left\|x_{n}-q\right\|^{2}-m^{3} g_{1}\left\|x_{n}-\left(\mathrm{PT}_{1}^{\mathrm{n}}\right) z_{n}\right\|
\end{aligned}
$$

which implies that $g_{2}\left\|x_{n}-\left(\mathrm{PT}_{1}{ }^{\mathrm{n}}\right) y_{n}\right\| \quad \rightarrow 0$ asn $\rightarrow \infty$.
Since $g_{2}:[0, \infty) \rightarrow[0, \infty)$ with $g_{1}(0)=0$ is a continuous strictly increasing convex function, it follows that
$\lim _{n \rightarrow \infty}\left\|x_{n}-\left(\mathrm{PT}_{1}{ }^{\mathrm{n}}\right) z_{n}\right\|=0$
Similarly we have,
$\lim _{n \rightarrow \infty}\left\|x_{n}-\left(\mathrm{PT}_{2}{ }^{\mathrm{n}}\right) z_{n}\right\|=0$
And
$\lim _{n \rightarrow \infty}\left\|x_{n}-\left(\mathrm{PT}_{3}{ }^{\mathrm{n}}\right) z_{n}\right\|=0$
Noting that,

$$
\begin{aligned}
\left\|x_{n}-q\right\|=\| x_{n}- & \left(\mathrm{PT}_{1}^{\mathrm{n}}\right) z_{n}\|+\|\left(\mathrm{PT}_{1}^{\mathrm{n}}\right) z_{n}-\mathrm{q} \| \\
& \leq\left\|x_{n}-\left(\mathrm{PT}_{1}^{\mathrm{n}}\right) y_{n}\right\|+k_{n}\left\|z_{n}-q\right\|
\end{aligned}
$$

we obtain from (3.4) that, by taking liminf on both sides in the inequality above,

$$
\begin{aligned}
\mathrm{d}=\liminf _{n \rightarrow \infty}| | x_{n}-q| | \leq & \liminf _{n \rightarrow \infty}| | z_{n}-q| | \\
& =\liminf _{n \rightarrow \infty}| | z_{n}-q \|
\end{aligned}
$$

In addition, it follows from (3.2) that $\quad \limsup _{n \rightarrow \infty} \| z_{n}-$ $q \| \leq \mathrm{d}$, thus
$\lim _{n \rightarrow \infty}| | z_{n}-q| |=d$
Next, it follows from (2.1), (3.11) and Lemma 2.2 that

$$
\begin{aligned}
& \left\|z_{n}-q\right\|^{2}=\| \mathrm{a}_{\mathrm{n} 3}\left(x_{n}-q\right)+\mathrm{b}_{\mathrm{n} 3}\left(\left(\mathrm{PT}_{1}^{\mathrm{n}}\right) x_{n}-q\right)+ \\
& \mathrm{c}_{\mathrm{n} 3}\left(\left(\mathrm{PT}_{2}{ }^{\mathrm{n}}\right) x_{n}-q\right)+\mathrm{d}_{\mathrm{n} 3}\left(\left(\mathrm{PT}_{3}{ }^{\mathrm{n}}\right) x_{n}-\mathrm{q} \|^{2}\right. \\
& \leq \mathrm{a}_{\mathrm{n} 3}\left\|x_{n}-q\right\|^{2}+\mathrm{b}_{\mathrm{n} 3}\left\|\left(\left(\mathrm{PT}_{1}^{\mathrm{n}}\right) x_{n}-q\right)\right\|^{2}+\mathrm{c}_{\mathrm{n} 3} \|\left(\mathrm{PT}_{2}^{\mathrm{n}}\right) x- \\
& q\left\|^{2}+\mathrm{d}_{\mathrm{n} 3}\right\|\left(\mathrm{PT}_{3}^{\mathrm{n}}\right) x_{n}-\mathrm{q}\left\|^{2}-\mathrm{a}_{\mathrm{n} 3} \mathrm{~b}_{\mathrm{n} 3} \mathrm{c}_{\mathrm{n} 3} g_{3}\right\| x_{n}-\left(\mathrm{PT}_{1}^{\mathrm{n}}\right) x_{n} \| \\
& \leq \mathrm{a}_{\mathrm{n} 3}\left\|x_{n}-q\right\|^{2}+\left(\mathrm{b}_{\mathrm{n} 3}+\mathrm{c}_{\mathrm{n} 3}+\mathrm{d}_{\mathrm{n} 3}\right) k_{n}\left\|x_{n}-q\right\|^{2}- \\
& m^{3} g_{2}\left\|x_{n}-\left(\mathrm{PT}_{1}^{\mathrm{n}}\right) x_{n}\right\| \\
& \leq\left(\mathrm{a}_{\mathrm{n} 3}+\left(\mathrm{b}_{\mathrm{n} 3}+\mathrm{c}_{\mathrm{n} 3}+\mathrm{d}_{\mathrm{n} 3}\right){k_{n}^{2}}^{2}\right)\left\|x_{n}-q\right\|^{2}-m^{3} g_{2} \| x_{n}- \\
& \left(\mathrm{PT}_{1}^{\mathrm{n}}\right) x_{n} \| \\
& \leq k_{n}{ }^{2}\left\|x_{n}-q\right\|^{2}-m^{3} g_{3}\left\|x_{n}-\left(\mathrm{PT}_{1}^{\mathrm{n}}\right) x_{n}\right\|
\end{aligned}
$$

which implies that $g_{2}\left\|x_{n}-\left(\mathrm{PT}_{1}{ }^{\mathrm{n}}\right) x_{n}\right\| \rightarrow 0$ asn $\rightarrow \infty$. Since g_{3} : $[0, \infty) \rightarrow[0, \infty)$ with $g_{3}(0)=0$ is a continuous strictly increasing convex function, it follows that
$\lim _{n \rightarrow \infty}\left\|x_{n}-\left(\mathrm{PT}_{1}{ }^{\mathrm{n}}\right) x_{n}\right\|=0$
Similarly we have,
$\lim _{n \rightarrow \infty}\left\|x_{n}-\left(\mathrm{PT}_{2}{ }^{\mathrm{n}}\right) x_{n}\right\|=0$
And
$\lim _{n \rightarrow \infty}\left\|x_{n}-\left(\mathrm{PT}_{3}{ }^{\mathrm{n}}\right) z_{n}\right\|=0$
Furthermore, we claim that $\left\|x_{n+1}-x_{n}\right\| \rightarrow 0$, as $\mathrm{n} \rightarrow \infty$. In fact, by (2.1), we have
$\left\|x_{n+1}-x_{n}\right\|=\| \mathrm{b}_{\mathrm{n} 1}\left(\left(\mathrm{PT}_{1}^{\mathrm{n}}\right) y_{n}-x_{n}\right)+\mathrm{c}_{\mathrm{n} 1}\left(\left(\mathrm{PT}_{2}{ }^{\mathrm{n}}\right) y_{n}-x_{n}\right)+$ $\mathrm{d}_{\mathrm{n} 1}\left(\left(\mathrm{PT}_{3}{ }^{\mathrm{n}}\right) y_{n}-x_{n}\right) \|$
\leq
$\mathrm{b}_{\mathrm{n} 1}\left\|\left(\mathrm{PT}_{1}{ }^{\mathrm{n}}\right) y_{n}-x_{n}\right\|+\mathrm{c}_{\mathrm{n} 1}\left\|\left(\mathrm{PT}_{2}{ }^{\mathrm{n}}\right) y_{n}-x_{n}\right\|+\mathrm{d}_{\mathrm{n} 1} \|\left(\mathrm{PT}_{3}{ }^{\mathrm{n}}\right) y_{n}-$
$x_{n} \|$
Hence, it follows from (3.4) , (3.5) and(3.6)
$\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0$
Since any asymptotically nonexpansive mapping with respect to P must be uniformly L-Lipschitzian with respect to P , where $\mathrm{L}=$ $\sup _{n \geq 1}\left\{k_{n}\right\} \geq 1$ we have,

$$
x_{n} \|
$$

$$
\text { 1) }\left\|x_{n+1}-x_{n}\right\|
$$

Consequently, by (3.13), (3.14), and (3.15), it can be obtained that,
$\lim _{n \rightarrow \infty}| | x_{n+1}-\left(\mathrm{P} T_{i}\right) x_{n+1}| |=0$
($\mathrm{i}=1,2,3$)
This completes the proof.

Theorem 3.2. Let K be a nonempty closed convex subset of a real uniformly convex and smooth Banach space E with P as a
sunny nonexpansive retraction. Let $T_{1}, T_{2}, T_{3}: \mathrm{K} \rightarrow \mathrm{E}$ be three weakly inward nonself asymptotically nonexpansive mappings with respect to P with two sequences $\left\{k_{n}{ }^{(1)}\right\},\left\{k_{n}{ }^{(2)}\right\},\left\{k_{n}{ }^{(3)}\right\}$,$\subset[1, \infty) \quad$ satisfying \quad satisfying $\quad \sum_{n=1}^{\infty}\left(k_{n}{ }^{(i)}-1\right)<$ ∞, ($\mathrm{i}=1,2,3$) respectively.suppose that sequence $\left\{x_{n}\right\}$ defined by (2.1)
where $\left\{a_{n i}\right\},\left\{b_{n i}\right\}\left\{c_{n i}\right\}$ and $\left\{d_{n i}\right\},(\mathrm{i}=1,2,3)$ are sequences in $[m, 1-m]$ for some $m \in(0,1)$.

If $\mathrm{P} T_{1}$ and $\mathrm{P} T_{2}$ and $P T_{3}$ satisfy Condition (B) with respect to the sequence $\left\{x_{n}\right\}$, i.e., there exists a nondecreasing function $\mathrm{f}:$ [0 $, \infty) \rightarrow[0, \infty)$ with $\mathrm{f}(0)=0$ and $\mathrm{f}(\mathrm{r})>0$ for all $\mathrm{r} \in(0, \infty)$ such that $\mathrm{f}\left(\mathrm{d}\left(x_{n}, F_{1}\right)\right) \quad \leq \max _{1 \leq i \leq 3}| | x_{n}-$
$\left(\mathrm{P} T_{i}\right) x_{n} \|$ and $F_{1}=\mathrm{F}\left(\mathrm{P} T_{1}\right) \cap \mathrm{F}\left(\mathrm{P} T_{2}\right) \cap \mathrm{F}\left(\mathrm{P} T_{3}\right)=\left\{\mathrm{x} \in \mathrm{K}: \mathrm{P} T_{1} \mathrm{x}\right.$ $\left.=\mathrm{P} T_{2} x=P T_{3} x=\mathrm{x}\right\}=\emptyset$, then $\left\{x_{n}\right\}$ converges strongly to a common fixed point of T_{1}, T_{2} and T_{3}.

Proof. It follows from Lemma 2.3 that $F_{1}=\mathrm{F}$, where F is the common fixed point set of T_{1}, T_{2} and T_{3}. Since $\mathrm{P} T_{1}$, PT_{2} and $_{1} P T_{3}$ satisfy Condition (B) with respect to the sequence $\left\{x_{n}\right\}$, that is to say
$\mathrm{f}\left(\mathrm{d}\left(x_{n}, F\right)\right) \leq \max _{1 \leq i \leq 3}| | x_{n}-\left(\mathrm{P} T_{i}\right) x_{n}| |$
Taking limsup as $n \rightarrow \infty$ on both sides in the inequality above, we get
$\lim _{n \rightarrow \infty} \mathrm{f}\left(\mathrm{d}\left(x_{n}, F\right)\right)=0$
which implies $\lim _{n \rightarrow \infty} \mathrm{f}\left(\mathrm{d}\left(x_{n}, F\right)\right)=0$, by the definition of the function f .

Now we show that $\left\{x_{n}\right\}$ is a Cauchy sequence. By (3.3), we may assume that $\sum_{n=0}^{\infty} \delta_{n}=\mathrm{M} \geq 0$ Since $\lim _{n \rightarrow \infty}\left(\mathrm{~d}\left(x_{n}, \mathrm{~F}\right)=0\right.$, then for any $\varepsilon>0$, there exists a positive integer N such that $\mathrm{d}\left(x_{n}, \mathrm{~F}\right)<\frac{\varepsilon}{2 e^{M}}$ for all $\mathrm{n} \geq \mathrm{N}$. On the other hand, there exists a $\mathrm{p} \in \mathrm{F}$ such that $\left.\left|\mid x_{N}-\mathrm{P} \|=\mathrm{d}\left(x_{N}, \mathrm{~F}\right)<\frac{\varepsilon}{2 e^{M}}\right.$ because $\left.\mathrm{d}\left(x_{N}, \mathrm{~F}\right)=\inf f_{q \in F}\right|\left|x_{N}-\mathrm{q}\right| \right\rvert\,$ and F is closed. Thus, for any $\mathrm{n}>\mathrm{N}$, it follows from (3.3) that $\left|\left|x_{n}-\mathrm{p}\right|\right|=\left(1+\delta_{n}\right)| | x_{n}-\mathrm{p}| | \leq \prod_{i=1}^{n}\left(1+\delta_{i}\right)| | x_{N}-\mathrm{p}| |$
$\leq e^{\sum_{i=1}^{n}\left(1+\delta_{i}\right)}| | x_{N}-\mathrm{p}| |$

$$
\leq e^{M}| | x_{N}-\mathrm{p}| |
$$

Hence, for any $n, m>N$

$$
\begin{aligned}
\left|\left|x_{n}-x_{m}\right|\right| \leq & \left|\left|x_{n}-\mathrm{p}\right|\right|+\left|\left|x_{m}-\mathrm{p}\right|\right| \\
& \leq 2 e^{M}| | x_{N}-\mathrm{p}| |<\varepsilon
\end{aligned}
$$

This implies that $\left\{x_{n}\right\}$ is a Cauchy sequence. Thus, there exists a $\mathrm{x} \in \mathrm{K}$ such that $x_{n} \rightarrow \mathrm{x}$ as $\mathrm{n} \rightarrow \infty$, since E is complete. Then, $\lim _{n \rightarrow \infty} \mathrm{~d}\left(x_{n}, F\right)=0$ yields that $\mathrm{d}(\mathrm{x}, \mathrm{F})=0$. Further, it follows from the closedness of F that $x \in F$. This completes the proof.

Theorem 3.3. Let K be a nonempty closed convex subset of a uniformly convex and smooth Banach space E satisfying Opial's condition with P as a sunny nonexpansive retraction. Let $T_{1}, T_{2}, T_{3}: \mathrm{K} \rightarrow \mathrm{E}$ be two weakly inward nonself asymptotically nonexpansive mappings with respect to P with two sequences $\left\{k_{n}{ }^{(1)}\right\},\left\{k_{n}{ }^{(2)} \quad\right\},\left\{k_{n}{ }^{(3)} \quad\right\}, \subset[1, \infty)$ satisfying $\sum_{n=1}^{\infty}\left(k_{n}{ }^{(i)}-1\right)<\infty \quad, \quad(\mathrm{i}=1,2,3)$ respectively.suppose that sequence $\left\{x_{n}\right\}$ defined by (2.1)where $\left\{a_{n i}\right\},\left\{b_{n i}\right\}\left\{c_{n i}\right\}$ and $\left\{d_{n i}\right\}$, $(i=1,2,3)$ are sequences in $[m, 1-m]$ for some $m \in$ $(0,1)$.

If $\mathrm{F}:=\mathrm{F}\left(T_{1}\right) \cap \mathrm{F}\left(T_{2}\right) \cap \mathrm{F}\left(T_{3}\right)=\emptyset$, then $\left.\left\{x_{n}\right)\right\}$ converges weakly to some common fixed point of T_{1}, T_{2} and T_{3}.

Proof. For any $q \in F$, by Lemma 3.1, we know that $\lim _{n \rightarrow \infty}| | x_{n}-$ $\mathrm{q}\left|\mid\right.$ exists. We now prove that $\left\{x_{n}\right\}$ has a unique weakly subsequential limit in F . First of all, since $\mathrm{P} T_{1}, \mathrm{P} T_{2}$ and $\mathrm{P} T_{3}$ are self-mappings from K into itself, therefore, Lemmas $2.3,2.4$, and 3.1 guarantee that each weakly subsequential limit of $\left\{x_{n}\right\}$ is a common fixed point of T_{1}, T_{2} and T_{3}. Secondly, Opial's condition guarantees that the weakly subsequential limit of $\left\{x_{n}\right\}$ is unique. Consequently, $\left\{x_{n}\right\}$ converges weakly to a common fixed point of T_{1}, T_{2} and T_{3}. This completes the proof.

REFERENCES

[^0][3] H. Y. Zhou, G. T. Guo, H. J. Hwang, and Y. J. Cho, On the iterativemethods for nonlinear operator equations in Banach spaces, Pan American Math. J., 14(2004): 61-68
[4] H. Y. Zhou, Y. J. Cho, and S. M. Kang, A New Iterative Algorithm forApproximating Common Fixed Points for Asymptotically Nonexpansive
Mappings, Fixed Point Theory and Applications, vol. 2007, Article ID64874, 10 pages, 2007.
[5] K. Goebel and W. A. Kirk,, A fixed point theorem for asymptoticallynonexpansive mappings, Proc.Amer. Math. Soc., 35(1972): 171174.
[6] L. Wang, Strong and weak convergence theorems for common fixed pointsof nonself asymptotically nonexpansive mappings, J. Math Anal. Appl., 323(2006): 550-557.
[7] L.P. Yang, Modified multistep iterative process for some common fixed points of a finite family of nonself asymptotically nonexpansive mappings,
Mathematical and Computer Modeling, 45(2007): 1157-1169.
[8] M.A.Noor, New appxoimation schemes for general variational inequalities, J.Math.Anal.Appl. 251(2000): 217-229.
[9] M.O.Oslike, S.C. Aniagbosor and G. Akuchu, Fixed points of asymptotically demicontractive mappings in arbitrary Banach spaces, Pan Amer.
Math. J., 12(2002):77-88.
[10] S.S. Chang, Y,J, Cho, H. Zhou, Demi-closed principle and weak convergence problems for asymptotically nonexpansive mappings, J. Korean Math. Soc., 38(2001): 1245-1260
[11] S.H. Khan, N. Hussain, Convergence theorems for nonself asymptoticallynonexpansive mappings, Computers and Mathematics with applications,55(11)(2008): 2544-2553.
[12] W. Takahashi, Nonlinear Functional Analysis. Fixed Point Theory and Its Applications, Yokohama Publishers, Yokohama, Japan, 2000.
[13]Wei -Qi Dang, Lin Wang and Yi- Juen Chen ,Strong and Weak Convergence Theorems for common fixed points of two asymptotically nonexpansive mappings in Banach spaces, International Mathematical Forum, Vol. 7, 2012, no. 9, 407-417.

[^0]: [1] C.E. Chidume, E.U. Ofoedu and H. Zegeye, Strong and weak convergence theorems for asymptotically nonexpansive mappings, Math. Anal. andAppl., 280(2003): 364-374.
 [2] H.K. Pathak, Y.J. Cho, S.M. Kang, Strong and weak convergence theoremsfor nonsef asymptotically peturbed nonexpansive mappings, NonlinearAnal., 70(5)(2009): 1929-1938.

