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Abstract: 

The sequence space      ̅̅ ̅̅ ̅̅   {       
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 was introduced and studied by B. Choudhary and 

S.K. Mishra [3]. In the present paper, we generalize the space     ̅̅ ̅̅ ̅̅   by means of an infinite diagonal matrix 

        {
          
          

  and introduce a new sequence space       ̅̅ ̅̅ ̅̅ ̅  . We shall study some properties of      ̅̅ ̅̅ ̅̅ ̅ and find its  - dual. 

Furthermore we characterize the matrix classes       ̅̅ ̅̅ ̅̅ ̅     and       ̅̅ ̅̅ ̅̅ ̅   . 
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I.PRELIMINARIES, BACKGROUND and NOTATIONS  

By  , we denote the space of all complex valued sequences . Any vector subspace of    is called a sequence space. We write   , c 

and    for the sequence spaces of all bounded, convergent and null sequences, respectively.  

A linear topological space   over the real field   is said to be a paranormed space if there is a subadditive function         such 

that       ,            and scalar multiplication is continuous i.e. |    |    and            imply        

      for all      and all      , where    is the zero vector in the linear space   . We shall assume here and after      be a 

bounded sequence of strictly positive real numbers with         and                            . The linear space      was 

defined by Maddox as follows: 

      {         ∑|  |

 

  

  } 

(1.1) 

which is a complete space paranormed by 

     (∑|  |

 

  

)

  ⁄

 

For simplicity in notation , the summation without limits is assumed to run from 1 to  .  

Let         be any two sequence spaces and         be an infinite matrix of real numbers     , where      . Then we write 

          , the A- transform of x, if        ∑        converges for each     . If     implies that      then we say 

that   defines matrix transformation from   into   and denote it by      . By       we mean the class of all infinite matrices   

such that      .  
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The matrix domain    of an infinite matrix   in a sequence space   is defined by  

                   

(1.2) 

which is a sequence space. 

In 1993, Choudhary and Mishra [3] have defined and studied the sequence space     ̅̅ ̅̅ ̅ which consists of all sequences such that  - 

transforms are in l    . Here         is the matrix  given by 

    {
       
    

 

for all       . 

For        a bounded sequence of strictly positive real numbers the sequence space     ̅̅ ̅̅ ̅ is given by 

    ̅̅ ̅̅ ̅  {        ∑|     |    

 

   

} 

where 

      ∑  

 

   

 

When      for every k , the sequence space     ̅̅ ̅̅ ̅ is reduced to the sequence space 

  ̅  {        ∑|     |   

 

   

}  

In 2002, Altay and Basar [2] have studied the space       which consists of all sequences whose Riesz transforms are in the space 

l    .  

In 2004, Malkowsky and Savas [5] have defined and studied the sequence space          which consists all sequences such that 

       transforms are in   {          }. The matrix              called generalized weighted mean or factorable matrix is 

given by 

    {
          

    
  

for all       ; where   depends only on n and    depends only on k.   

With the notation of (1.2) , the spaces     ̅̅ ̅̅ ̅ ,          and       may be represented as 

                    ,     ̅̅ ̅̅ ̅          and                

where the matrix        
   of the Riesz mean        is given by 

   
  {

  ∑   

 

   

⁄      

    

 

with the sequence of positive real      .  
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II. NEW PARANORMED SEQUENCE SPACE       ̅̅ ̅̅ ̅̅ ̅ 

Before defining new sequence space, we take an infinite diagonal matrix         given by 

    {
       
          

 

Following Choudhary and Mishra [3], Altay and Basar [2] and Malkowsky and Savas [5]  

for        a bounded sequence of strictly positive real numbers we define the sequence space      ̅̅ ̅̅ ̅̅ ̅ by 

     ̅̅ ̅̅ ̅̅ ̅  {              ̅̅ ̅̅ ̅} 

(2.1) 

Thus,      ̅̅ ̅̅ ̅̅ ̅ is now the set of all sequences      whose   –transforms are in the sequence space     ̅̅ ̅̅ ̅ . Using the notation as in (1.2) 

     ̅̅ ̅̅ ̅̅ ̅ can be represented as 

     ̅̅ ̅̅ ̅̅ ̅  [     ̅̅ ̅̅ ̅ ]  

Here the sequence      is given by 

     ∑
 

  

 

   

|     |   

Thus      ̅̅ ̅̅ ̅̅ ̅ can be rewritten as  

     ̅̅ ̅̅ ̅̅ ̅  {        ∑
 

  

 

   

|     |    } 

Also when       for every k  , the sequence space      ̅̅ ̅̅ ̅̅ ̅ is reduced to the sequence space 

   ̅̅ ̅̅  {        ∑
 

  
|     |   

 

   

}  

We shall now present some properties of   psl  and psl . 

 

Property 2.1 .  

 psl  is linearly isomorphic to  pl . 

Proof:  

For each x  psl , we have        ̅̅ ̅̅ ̅ where         is given by 

    {
       
           

 

Moreover A is linear and bijective. 

 Also the matrix  nkbB  defined by 

        {
      
           

   

is inverse of A. Thus  psl  is linearly isomorphic to  pl . 
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Corollary 2.1.  

psl and pl are linearly isomorphic. 

Proof:  

Using the same arguments as given in property (2.1), it can be shown that psl and pl are linearly isomorphic. 

 

Property 2.2. 

 psl is complete paranormed space paranormed by  

   
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k
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k
xtxg
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2
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2

1
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Proof:  

Since  psl  and  pl are linearly isomorphic  and  pl  is a complete paranormed space with paranorm  

   
M

k

p

k

k
xtxg

1

1



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


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



 where 









k
kpM sup,1max  , then from property (2.1)  psl  is a complete paranormed space with 

paranorm , 

   AxPxg  ; where P is usual paranorm on  pl . 

 

Property 2.3.  

psl is a Banach space for 1 p   and 0 ( ) 0t x  ; normed by  

x  

1

0

1

2

pp

kk
k

t x




 
 
 
  

Proof :  

The proof follows immediately by using the fact that x pAx  where p. is the usual norm on pl . 

 

Property 2. 4.  

2sl is a Hilbert space with inner product    ytxtyx k

k

k

k





1

22, , where bar denotes the conjugate.  

Proof :  

 We have 2l is a Hilbert space with inner product    ytxtyx k

k

k





1

, .  

Also from property (2.1) for 2slx , 2lAx . 

Setting AyAxyx ,,  which is usual inner product in 2l ; we can easily see that 2sl is also a Hilbert space. 

 

Property 2.5. 

If z be a closed subset of  pl , then 
k

z

2
is a closed subset of  psl . 

Proof : 

Since  plz ,
k

z

2
   psl . Let x belongs to closure of 

k

z

2
. Then there exists a sequence  

2

n

k

z
x  such that  nx  

converges to x. 
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This implies that   0 asng x x n   . Hence by definition, from above, 

    .n

k kt x t x This completes the proof.  

 

 

Now we state a proposition which gives characterization of compact sets on ( )sl p . 

 

Proposition 2.1:  

A set ( )G sl p  is compact if and only if  

i ) G is closed and bounded, 

ii ) Given 0  , there exists a positive integer 0n  such that 

1

( )
pk

k

k n

t x 


 

  for x G whenever  0n n , 

iii ) If : ( )kd sl p  is given by ( ) ( )k kd x t x for all ( )x sl p , then ( )kd G is compact for all 1k  . 

 

Proof: 

Following the same arguments as in proposition 4.1.7 in [11] , we can easily prove the proposition. 

 

 

III. Dual 

For a sequence space   we define  -dual of   as 

    {        ∑                                 

 

   

} 

Theorem 3.1 

Let 
2

1
0  kp  for every Nk . Then    pslpsl 



where  

 

1 1
2 21
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( ): converges and sup
2 2 2
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  

  ;  

N ≥ 1, 1 kkk aaa i.e.  the  β- dual of    issl p sl p .   

 

Proof : 

 

Necessary Part:  

 Let   psla . Then the series 
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1k

kk xa  converges for each  plsx . 
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     . .ka a l p i e l p 

    . Hence there exists a sequence    plyy k   such that 
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So , it follows that the series  


1k

kk ua does not converge which is the contradiction to the assumption that   psla . Hence we 

must have, 






 
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sup , thereby showing that β- dual of  psl

 
exists and is  psl .  

 

Sufficient part : 

 

 Let  psla   and  pslx . We can choose a positive integer N ≥ 1 such that  
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We know ( ) ( )l p l p
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This implies that M  ;  which is impossible. Hence right hand side of (3.2) is absolutely convergent. 
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IV. MATRIX TRANSFORMATION 

Let  YX ,  denote the  set of all infinite matrices which transforms X into Y. Now we shall provide characterization for the classes 

 lpsl ,)(  and  cpsl ,)( . 

 

Theorem 4.1. : 
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Conversely let   lpslA ,)( . Since 
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Then )( pslu  and )1(
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; which is now a contradiction to the fact that   lpslA ,)( . Hence we 

must have, 
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,

sup . 

 

Theorem 4.2. 

Let 
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1
0  kp  for every Nk . Then  ( ) ,A sl p c  if and only if 

i ) An 1,
22

/1
2

/1
1

1

2









































 Nc
NN

kp

N

p
k

N





 ; 

ii )  ( ) ,B l p c  where                ;       

iii ) lim nk k
n

a 


  ( k is fixed ).  

 

 

Proof: 

Let us assume that the above conditions hold. Then for any  
1

( ) ,k nk k

k

x x sl p a x




   is absolutely convergent, and that, 

1 1

lim nk k k k
n

k k

a x x
 


 

  . Hence  cpslA ,)( . 
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Conversely, let  cpslA ,)( . Then 
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  converges for each   )( pslxx k  and for n . If we define the sequence 
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Then it can easily be verified that  )( pslv  and ( )nk ka as n   . 

Since x  ,)(
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then the necessity of (i) follows. We need to show that  cplB ,)( .  

On the contrary we assume that  cplB ,)( . Following the same arguments as in Theorem 4. 1 , it can easily be verified that , 

1 1

nk k nk k

k k

a u b y
 

 

   
    

   
  c , where   )( plyy k   and   )( psluu k  . 

This is a contradiction to the fact that  cplB ,)( . This proves the necessity of (ii). 
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