Sequence Space $\overline{\boldsymbol{l}(\boldsymbol{p})}$ Generated by an Infinite Diagonal Matrix

Shailendra K. Mishra ${ }^{1}$, Vinod Parajuli ${ }^{2}$, Suresh Ray ${ }^{3}$
1,2 Department of Engineering Science and Humanities, Central Campus, Pulchowk, Institute of Engineering, Tribhuvan University; Nepal
${ }^{3}$ Department of Mathematics, Tri-Chandra Multiple Campus, Kathmandu, Tribhuvan University; Nepal

Abstract:

The sequence space $\overline{\mathbf{1}(\mathbf{p})}=\left\{\mathbf{x}=\left(\mathbf{x}_{\mathbf{k}}\right): \sum_{k=1}^{\infty}\left|t_{k}(x)\right|^{p_{k}}<\infty\right\}$ where $\mathbf{t}_{\mathbf{k}}(\mathbf{x})=\sum_{i=1}^{k} x_{i}$ was introduced and studied by B. Choudhary and S.K. Mishra [3]. In the present paper, we generalize the space $\overline{\mathbf{l}(\mathbf{p})}$ by means of an infinite diagonal matrix $A=\left(a_{n k}\right)=\left\{\begin{array}{cc}\mathbf{2}^{-\mathbf{n}} & \text { for } n=k \\ 0 & \text { otherwise }\end{array}\right.$ and introduce a new sequence space $\overline{\boldsymbol{s l}(p)}$. We shall study some properties of $\overline{s l(p)}$ and find its $\boldsymbol{\beta}$ - dual. Furthermore we characterize the matrix classes $\left(\overline{\mathbf{s l}(\mathbf{p})}, 1_{\infty}\right)$ and $(\overline{\mathbf{s l}(\mathbf{p})}, \mathbf{c})$.

Keywords: Paranormed sequence space, β - dual , matrix transformation

2010 MATHEMATICS SUBJECT CLASSIFICATION: 46A45, 46A35, 46B45

I.PRELIMINARIES, BACKGROUND and NOTATIONS

By ω, we denote the space of all complex valued sequences. Any vector subspace of ω is called a sequence space. We write l_{∞}, c and c_{0} for the sequence spaces of all bounded, convergent and null sequences, respectively.

A linear topological space X over the real field \mathbb{R} is said to be a paranormed space if there is a subadditive function $g: X \rightarrow \mathbb{R}$ such that $g(\theta)=0, g(x)=g(-x)$ and scalar multiplication is continuous i.e. $\left|\alpha_{n}-\alpha\right| \rightarrow 0$ and $g\left(x_{n}-x\right) \rightarrow 0$ imply $g\left(\alpha_{n} x_{n}-\right.$ $\alpha x) \rightarrow 0$ for all $\alpha \in \mathbb{R}$ and all $x \in X$, where θ is the zero vector in the linear space X. We shall assume here and after $\left\{p_{k}\right\}$ be a bounded sequence of strictly positive real numbers with $\sup p_{k}=H$ and $\quad M=\max \{1, H\}$. The linear space $l(p)$ was defined by Maddox as follows:

$$
\begin{equation*}
l(p)=\left\{x=\left(x_{k}\right) \in \omega: \sum_{k}\left|x_{k}\right|^{p_{k}}<\infty\right\} \tag{1.1}
\end{equation*}
$$

which is a complete space paranormed by

$$
g(x)=\left(\sum_{k}\left|x_{k}\right|^{p_{k}}\right)^{1 / M}
$$

For simplicity in notation, the summation without limits is assumed to run from 1 to ∞.
Let X and Y be any two sequence spaces and $A=\left(a_{n k}\right)$ be an infinite matrix of real numbers $a_{n k}$, where $n, k \in \mathbb{N}$. Then we write $A x=\left((A x)_{n}\right)$, the A - transform of x, if $(A x)_{n}=\sum_{k} a_{n k} x_{k}$ converges for each $n \in \mathbb{N}$. If $x \in X$ implies that $A x \in Y$ then we say that A defines matrix transformation from X into Y and denote it by $A: X \rightarrow Y$. By (X, Y) we mean the class of all infinite matrices A such that $A: X \rightarrow Y$.

The matrix domain X_{A} of an infinite matrix A in a sequence space X is defined by

$$
\begin{equation*}
X_{A}=\left\{x=\left(x_{k}\right) \in \omega: A x \in X\right\} \tag{1.2}
\end{equation*}
$$

which is a sequence space.
In 1993, Choudhary and Mishra [3] have defined and studied the sequence space $\overline{l(p)}$ which consists of all sequences such that S transforms are in $l(p)$. Here $S=\left(s_{n k}\right)$ is the matrix given by

$$
s_{n k}=\left\{\begin{array}{cc}
1, & 0 \leq k \leq n \\
0 & k>n
\end{array}\right.
$$

for all $n, k \in \mathbb{N}$.
For $p=\left\{p_{k}\right\}$ a bounded sequence of strictly positive real numbers the sequence space $\overline{l(p)}$ is given by

$$
\overline{l(p)}=\left\{x=\left(x_{k}\right): \sum_{k=1}^{\infty}\left|t_{k}(x)\right|^{p_{k}}<\infty\right\}
$$

where

$$
t_{k}(x)=\sum_{i=1}^{k} x_{i}
$$

When $p_{k}=p$ for every k, the sequence space $\overline{l(p)}$ is reduced to the sequence space

$$
\overline{l_{p}}=\left\{x=\left(x_{k}\right): \sum_{k=1}^{\infty}\left|t_{k}(x)\right|^{p}<\infty\right\}
$$

In 2002, Altay and Basar [2] have studied the space $r^{t}(p)$ which consists of all sequences whose Riesz transforms are in the space $l(p)$.

In 2004, Malkowsky and Savas [5] have defined and studied the sequence space $Z(u, v ; p)$ which consists all sequences such that $G(u, v)$ transforms are in $X \in\left\{l_{\infty}, c, c_{0}, l_{p}\right\}$. The matrix $G(u, v)=\left(g_{n k}\right)$ called generalized weighted mean or factorable matrix is given by

$$
g_{n k}=\left\{\begin{array}{cc}
u_{n} v_{k}, & 0 \leq k \leq n \\
0 & k>n
\end{array}\right.
$$

for all $n, k \in \mathbb{N}$; where u_{n} depends only on n and v_{k} depends only on k.
With the notation of (1.2), the spaces $\overline{l(p)}, Z(u, v ; p)$ and $r^{t}(p)$ may be represented as
$Z(u, v ; p)=[X]_{G(u, v)}, \overline{l(p)}=[l(p)]_{S}$ and $r^{t}(p)=[l(p)]_{R^{t}}$
where the matrix $R^{t}=\left(r_{n k}^{t}\right)$ of the Riesz mean $\left(R, t_{n}\right)$ is given by

$$
r_{n k}^{t}=\left\{\begin{array}{cc}
t_{k} / \sum_{k=0}^{n} t_{k} & 0 \leq k \leq n \\
0 & k>n
\end{array}\right.
$$

with the sequence of positive real $\left(t_{k}\right)$.

II. NEW PARANORMED SEQUENCE SPACE $\overline{s l(p)}$

Before defining new sequence space, we take an infinite diagonal matrix $A=\left(a_{n k}\right)$ given by

$$
a_{n k}=\left\{\begin{array}{cc}
2^{-n}, & n=k \\
0 & \text { otherwise }
\end{array}\right.
$$

Following Choudhary and Mishra [3], Altay and Basar [2] and Malkowsky and Savas [5]
for $p=\left\{p_{k}\right\}$ a bounded sequence of strictly positive real numbers we define the sequence space $\overline{s l(p)}$ by

$$
\begin{equation*}
\overline{s l(p)}=\left\{x=\left(x_{k}\right): A x \in \overline{l(p)}\right\} \tag{2.1}
\end{equation*}
$$

Thus, $\overline{s l(p)}$ is now the set of all sequences $\left\{v_{k}\right\}$ whose A-transforms are in the sequence space $\overline{l(p)}$. Using the notation as in (1.2) $\overline{s l(p)}$ can be represented as

$$
\overline{s l(p)}=[\overline{l(p)}]_{A}
$$

Here the sequence $\left\{v_{k}\right\}$ is given by

$$
\left\{v_{k}\right\}=\sum_{r=1}^{k} \frac{1}{2^{r}}\left|t_{r}(x)\right|^{p_{r}}
$$

Thus $\overline{s l(p)}$ can be rewritten as

$$
\overline{s l(p)}=\left\{x=\left(x_{k}\right): \sum_{k=1}^{\infty} \frac{1}{2^{k}}\left|t_{k}(x)\right|^{p_{k}}<\infty\right\}
$$

Also when $p_{k}=p$ for every k, the sequence space $\overline{s l(p)}$ is reduced to the sequence space

$$
\overline{s l_{p}}=\left\{x=\left(x_{k}\right): \sum_{k=1}^{\infty} \frac{1}{2^{k}}\left|t_{k}(x)\right|^{p}<\infty\right\}
$$

We shall now present some properties of $\overline{s l(p)}$ and $\overline{s l_{p}}$.

Property 2.1 .
$\overline{s l(p)}$ is linearly isomorphic to $\overline{l(p)}$.

Proof:

For each $x \in \overline{s l(p)}$, we have $A x \in \overline{l(p)}$ where $A=\left(a_{n k}\right)$ is given by

$$
a_{n k}=\left\{\begin{array}{cc}
2^{-n}, & n=k \\
0, & \text { otherwise }
\end{array}\right.
$$

Moreover A is linear and bijective.
Also the matrix $B=\left(b_{n k}\right)$ defined by
$B=\left(b_{n k}\right)=\left\{\begin{array}{cc}2^{n}, & n=k \\ 0, & \text { otherwise }\end{array}\right.$
is inverse of A. Thus $\overline{s l(p)}$ is linearly isomorphic to $\overline{l(p)}$.

Corollary 2.1.

$\overline{s l_{p}}$ and $\overline{l_{p}}$ are linearly isomorphic.

Proof:

Using the same arguments as given in property (2.1), it can be shown that $\overline{s l_{p}}$ and $\overline{l_{p}}$ are linearly isomorphic.

Property 2.2.

$\overline{s l(p)}$ is complete paranormed space paranormed by
$g(x)=\left(\sum_{k=1}^{\infty} \frac{1}{2^{k}}\left|t_{k}(x)\right|^{p_{k}}\right)^{\frac{1}{M}}$ where $M=\max \left(\frac{1}{2}, \sup _{k} \frac{p_{k}}{2^{k}}\right)$

Proof:

Since $\overline{s l(p)}$ and $\overline{l(p)}$ are linearly isomorphic and $\overline{l(p)}$ is a complete paranormed space with paranorm
$g(x)=\left(\sum_{k=1}^{\infty}\left|t_{k}(x)\right|^{p_{k}}\right)^{\frac{1}{M}}$ where $M=\max \left(1, \sup _{k} p_{k}\right)$, then from property (2.1) $\overline{s l(p)}$ is a complete paranormed space with paranorm, $g(x)=P(A x)$; where P is usual paranorm on $\overline{l(p)}$.

Property 2.3.

$\overline{s l_{p}}$ is a Banach space for $1 \leq p<\infty$ and $t_{0}(x)=0$; normed by
$\|x\|=\left(\sum_{k=0}^{\infty} \frac{1}{2^{k}}\left|t_{k}(x)\right|^{p}\right)^{\frac{1}{p}}$
Proof:
The proof follows immediately by using the fact that $\|x\|=\|A x\|_{p}$ where $\|\cdot\|_{p}$ is the usual norm on $\overline{l_{p}}$.

Property 2. 4.

$\overline{s l_{2}}$ is a Hilbert space with inner product $\langle x, y\rangle=\sum_{k=1}^{\infty} 2^{2 k} t_{k}(x) \overline{t_{k}(y)}$, where bar denotes the conjugate.

Proof :

We have \bar{l}_{2} is a Hilbert space with inner product $\langle x, y\rangle=\sum_{k=1}^{\infty} t_{k}(x) \overline{t_{k}(y)}$.
Also from property (2.1) for $x \in \overline{s l_{2}}, A x \in \overline{l_{2}}$.
Setting $\langle x, y\rangle=\langle A x, A y\rangle$ which is usual inner product in \bar{l}_{2}; we can easily see that $\overline{s l_{2}}$ is also a Hilbert space.

Property 2.5.

If z be a closed subset of $\overline{l(p)}$, then $\frac{z}{2^{k}}$ is a closed subset of $\overline{s l(p)}$.
Proof:
Since $z \in \overline{l(p)}, \frac{z}{2^{k}} \in \overline{s l(p)}$. Let x belongs to closure of $\frac{z}{2^{k}}$. Then there exists a sequence $\left(x^{n}\right) \subset \frac{z}{2^{k}}$ such that $\left(x^{n}\right)$ converges to x .

This implies that $g\left(x^{n}-x\right) \rightarrow 0$ as $n \rightarrow \infty$. Hence by definition, from above, $t_{k}^{n}(x)-t_{k}(x) \rightarrow 0$ i.e. $\quad t_{k}^{n}(x) \rightarrow t_{k}(x)$.This completes the proof.

Now we state a proposition which gives characterization of compact sets on $\overline{s l(p)}$.

Proposition 2.1:

A set $G \subset \overline{s l(p)}$ is compact if and only if
i) G is closed and bounded,
ii) Given $\varepsilon>0$, there exists a positive integer n_{0} such that $\sum_{k=n+1}^{\infty}\left|t_{k}(x)\right|^{p_{k}}<\varepsilon$ for $x \in G$ whenever $n \geq n_{0}$,
iii) If $d_{k}: \overline{s l(p)} \rightarrow \square$ is given by $d_{k}(x)=t_{k}(x) \quad$ for all $x \in \overline{s l(p)}$, then $d_{k}(G)$ is compact for all $k \geq 1$.

Proof:

Following the same arguments as in proposition 4.1 .7 in [11] , we can easily prove the proposition.

III. Dual

For a sequence space X we define β-dual of X as

$$
X^{\beta}=\left\{a=\left(a_{k}\right): \sum_{k=1}^{\infty} a_{k} x_{k} \text { is convergent for each } x \in X\right\}
$$

Theorem 3.1

Let $0<p^{k} \leq \frac{1}{2}$ for every $k \in N$. Then $\overline{s l(p)}{ }^{\beta}=\overline{s l_{\infty}(p)}$ where

$$
\overline{s l_{\infty}(p)}=\left\{a=\left(a_{k}\right): \sum_{k=1}^{\infty} a_{k}\left(-\sum_{v=1}^{k-1}\left(\frac{N^{-2}}{2^{N}}\right)^{\frac{1}{p_{v}}}+\left(\frac{N^{-2}}{2^{N}}\right)^{\frac{1}{p_{k}}}\right) \text { converges and } \sup \left|\frac{\Delta a_{k}}{2^{k}}\right|<\infty\right\}
$$

$\mathrm{N} \geq 1, \Delta a_{k}=a_{k}-a_{k+1}$ i.e. the β - dual of $\overline{s l(p)}$ is $\overline{s l_{\infty}(p)}$.

Proof :

Necessary Part:

Let $a \in \overline{s l(p)^{\beta}}$. Then the series $\sum_{k=1}^{\infty} a_{k} x_{k}$ converges for each $x \in \overline{s l(p)}$.
Since, $x=\left\{-\sum_{v=1}^{k-1}\left(\frac{N^{-2}}{2^{N}}\right)^{1 / p_{v}}+\left(\frac{N^{-2}}{2^{N}}\right)^{1 / p_{k}}\right\} \in \overline{\operatorname{sl}(p)} ;$ it follows that $\sum_{k=1}^{\infty} a_{k}\left(-\sum_{v=1}^{k-1}\left(\frac{N^{-2}}{2^{N}}\right)^{1 / p_{v}}+\left(\frac{N^{-2}}{2^{N}}\right)^{1 / p_{k}}\right)$ converges.
Next we need to show that $\sup _{k}\left(\frac{\Delta a_{k}}{2^{k}}\right)^{p_{k}}<\infty$. On the contrary we assume that $\sup _{k}\left(\frac{\Delta a_{k}}{2^{k}}\right)^{p_{k}}=\infty$. Then
$\Delta a=\left(\Delta a_{k}\right) \notin \overline{l_{\infty}(p)}$ i.e. $\overline{l(p)}{ }^{\beta}$. Hence there exists a sequence $y=\left(y_{k}\right) \in \overline{l(p)}$ such that $\sum_{k=1}^{\infty} \Delta a_{k} y_{k}$ does not converge. Whenever we define the sequence $u=\left(u_{k}\right)$ by
$u_{k}=\left\{\begin{array}{c}\frac{y_{1}}{2} \text { for } k=1 \\ \frac{y_{k}}{2^{k}}-\frac{y_{k-1}}{2^{k-1}} \text { for } k>1\end{array}\right.$
Then $u \in \overline{\operatorname{sl(p)}}$ and $\sum_{k=1}^{\infty} a_{k} u_{k}=\sum_{k=1}^{\infty} \Delta a_{k} \frac{y_{k}}{2^{k}}$.
So, it follows that the series $\sum_{k=1}^{\infty} a_{k} u_{k}$ does not converge which is the contradiction to the assumption that $a \in \overline{s l(p)^{\beta}}$. Hence we must have, $\sup _{k}\left(\frac{\Delta a_{k}}{2^{k}}\right)^{p_{k}}<\infty$, thereby showing that β - dual of $\overline{s l(p)}$ exists and is $\overline{s l_{\infty}(p)}$.

Sufficient part :

Let $a \in \overline{s l_{\infty}(p)}$ and $x \in \overline{s l(p)}$. We can choose a positive integer $\mathrm{N} \geq 1$ such that

$$
\begin{equation*}
\left(\frac{1}{2^{k}}\left|t_{k}(x)\right|\right)^{p_{k}} \leq \frac{1}{2^{N} N^{2}} \tag{3.1}
\end{equation*}
$$

We have,
$\sum_{k=1}^{m} a_{k} x_{k}=\sum_{k=1}^{m-1} \Delta a_{k} \frac{1}{2^{k}} t_{k}(x)+\Delta a_{m} \frac{1}{2^{m}} t_{m}(x), m \in N$
so that
$\left|\sum_{k=1}^{m} a_{k} x_{k}\right| \leq \sum_{k=1}^{m-1}\left|\Delta a_{k}\right| \frac{1}{2^{k}}\left|t_{k}(x)\right|+\left|a_{m}\right| \frac{1}{2^{m}}\left|t_{m}(x)\right|$
$\leq \sum_{k=1}^{m-1}\left|\Delta a_{k}\right|\left(\frac{N^{-2}}{2^{N}}\right)^{1 / p_{k}}+\left|a_{m}\right|\left(\frac{N^{-2}}{2^{N}}\right)^{1 / p_{m}}$.
Since $\left|\Delta a_{k}\right|^{p_{k}}$ is bounded, so that for some $\mathrm{M}>0,\left|\Delta a_{k}\right|^{p_{k}}<M \Rightarrow\left|\Delta a_{k}\right| \leq M^{1 / p_{k}}$.
Hence, $\sum_{k=1}^{\infty}\left|\Delta a_{k}\right|\left(\frac{N^{-2}}{2^{N}}\right)^{1 / p_{k}} \leq \sum_{k=1}^{\infty} M^{1 / p_{k}}\left(\frac{N^{-2}}{2^{N}}\right)^{1 / p_{k}}<\infty$
Now the sequence $\left\{\left(\frac{N^{-2}}{2^{N}}\right)^{1 / p_{k}}\right\} \in \overline{l(p)}$. Also if $\sum_{k=1}^{\infty} M^{1 / p_{k}}\left(\frac{N^{-2}}{2^{N}}\right)^{1 / p_{k}}$ does not converge, then the sequence $\left\{M^{1 / p_{k}}\right\} \notin \overline{l(p)}{ }^{\beta}$

We know $\overline{l(p)}{ }^{\beta}=\overline{l_{\infty}(p)}=\left\{a=\left(a_{k}\right): \sum_{k=1}^{\infty} a_{k}\left(-\sum_{k=1}^{\infty}\left(N^{-2}\right)^{1 / p_{v}}+\left(N^{-2}\right)^{1 / p_{k}}\right)<\infty\right.$ and $\left.\sup \left|a_{k}\right|^{p_{k}}<\infty\right\}$.
This implies that $\quad M>\infty$; which is impossible. Hence right hand side of (3.2) is absolutely convergent.
Moreover, $\sum_{k=1}^{m} a_{k}\left(-\sum_{v=1}^{k-1}\left(\frac{N^{-2}}{2^{N}}\right)^{1 / p_{v}}+\left(\frac{N^{-2}}{2^{N}}\right)^{1 / p_{k}}\right)=\sum_{k=1}^{m-1} \Delta a_{k}\left(\frac{N^{-2}}{2^{N}}\right)^{1 / p_{k}}+a_{m}\left(\frac{N^{-2}}{2^{N}}\right)^{1 / p_{m}} ; m \in \square$,
Hence there exists a sequence $\left\{a_{m}\left(\frac{N^{-2}}{2^{N}}\right)^{1 / p_{m}}\right\}$ having a finite limit and hence the series $\sum_{k=1}^{\infty} a_{k} x_{k}$ converges for each $x \in \overline{\operatorname{sl}(p)}$ i.e. $a \in \overline{s l_{\infty}(p)}$.

IV. MATRIX TRANSFORMATION

Let (X, Y) denote the set of all infinite matrices which transforms X into Y . Now we shall provide characterization for the classes $\left(\overline{s l(p)}, l_{\infty}\right)$ and $(\overline{s l(p)}, c)$.

Theorem 4.1. :
Let $0<p_{k} \leq \frac{1}{2}$ for every $k \in N$. Then $A \in\left(\overline{s l(p)}, l_{\infty}\right)$ if and only if
i) $\sup _{n}\left|\sum_{k=1}^{\infty} a_{n, k}\left(-\sum_{v=1}^{k-1}\left(\frac{N^{-2}}{2^{N}}\right)^{1 / p_{v}}+\left(\frac{N^{-2}}{2^{N}}\right)^{1 / p_{k}}\right)\right|<\infty ; N \geq 1$
ii) $\sup _{n, k}\left|\Delta a_{n, k}\right|^{p_{k}}<\infty$ where $\Delta a_{n, k}=a_{n, k}-a_{n, k+1}$.
Proof:
Let the conditions hold. Now
$\left|\sum_{k=1}^{\infty} a_{n, k}\left(-\sum_{v=1}^{k-1}\left(\frac{N^{-2}}{2^{N}}\right)^{1 / p_{v}}+\left(\frac{N^{-2}}{2^{N}}\right)^{1 / p_{k}}\right)\right|$
$\leq \sup _{n}\left|\sum_{k=1}^{\infty} a_{n, k}\left(-\sum_{v=1}^{k-1}\left(\frac{N^{-2}}{2^{N}}\right)^{1 / p_{v}}+\left(\frac{N^{-2}}{2^{N}}\right)^{1 / p_{k}}\right)\right|<\infty ;$
i.e. $\sum_{k=1}^{\infty} a_{n, k}\left(-\sum_{v=1}^{k-1}\left(\frac{N^{-2}}{2^{N}}\right)^{1 / p_{v}}+\left(\frac{N^{-2}}{2^{N}}\right)^{1 / p_{k}}\right)$ converges .

It implies that $A_{n} \in \overline{s l(p)}{ }^{\beta}=\overline{s l_{\infty}(p)}$ and hence $A_{n}(x)=\sum_{k=1}^{\infty} a_{n k} x_{k}$ converges for each $x \in \overline{s l(p)}$ and for each $n \in \square$.
Convergence of $A_{n}(x)$ implies that $\left|A_{n}(x)\right|=\left|\sum_{k=1}^{\infty} a_{n k} x_{k}\right|<\infty \Rightarrow A x \in l_{\infty}$.

Conversely let $A \in\left(\overline{\operatorname{sl}(p)}, l_{\infty}\right)$. Since $\sigma=\left\{-\sum_{v=1}^{k-1}\left(\frac{N^{-2}}{2^{N}}\right)^{1 / p_{v}}+\left(\frac{N^{-2}}{2^{N}}\right)^{1 / p_{k}}\right\} \in \overline{\operatorname{sl}(p)}$, we have $A_{n} \sigma<\infty$ for each $n \in N$ and that $A_{n} \sigma \in l_{\infty}$. So $\sup _{n}\left|\sum_{k=1}^{\infty} a_{n k} \sigma\right|<\infty$.
We now prove the necessity of (ii).
We assume that the necessity of (ii) is false. Let us define the matrix $B=\left(b_{n k}\right)$ by $b_{n k}=\Delta a_{n k} ; n, k \in \square$.
Then $B \notin\left(\overline{l(p)}, l_{\infty}\right)$ by the fact that when $0<p_{k} \leq 1$ for every $k \in N$, then $A \in\left(\overline{l(p)}, l_{\infty}\right)$ iff $\sup _{n, k}\left|a_{n k}\right|^{p_{k}}<\infty$. Hence there is a sequence $y=\left(y_{k}\right) \in \overline{l(p)}$ such that
$\sum_{k=1}^{\infty} b_{n, k} y_{k} \neq O(1)$. However, if we define the sequence $u=\left(u_{k}\right)$ by
$u_{k}=\left\{\begin{array}{c}\frac{y_{1}}{2} \text { for } k=1 \\ \frac{y_{k}}{2^{k}}-\frac{y_{k-1}}{2^{k-1}} \text { for } k>1\end{array}\right.$
Then $u \in \overline{s l(p)}$ and $\sum_{k=1}^{\infty} a_{n, k} u_{k}=\sum_{k=1}^{\infty} b_{n, k} \frac{y_{k}}{2^{k}} \neq O(1)$; which is now a contradiction to the fact that $A \in\left(\overline{s l(p)}, l_{\infty}\right)$. Hence we must have,
$\sup _{n, k}\left|\Delta a_{n, k}\right|^{p_{k}}<\infty$.

Theorem 4.2.

Let $0<p_{k} \leq \frac{1}{2}$ for every $k \in N$. Then $A \in(\overline{s l(p)}, c)$ if and only if
i) $A_{n}\left(-\sum_{v=1}^{k-1}\left(\frac{N^{-2}}{2^{N}}\right)^{1 / p_{v}}+\left(\frac{N^{-2}}{2^{N}}\right)^{1 / p_{k}}\right) \in c, N>1$;
ii) $B \in(\overline{l(p)}, c)$ where $B=\left(b_{n k}\right)=\left(\Delta a_{n k}\right) ; n, k \in \mathbb{N}$
iii $) \lim _{n \rightarrow \infty} \Delta a_{n k}=\Delta \alpha_{k}(\mathrm{k}$ is fixed $)$.

Proof:

Let us assume that the above conditions hold. Then for any $x=\left(x_{k}\right) \in \overline{\operatorname{sl}(p)}, \sum_{k=1}^{\infty} a_{n k} x_{k}$ is absolutely convergent, and that, $\lim _{n \rightarrow \infty} \sum_{k=1}^{\infty} a_{n k} x_{k}=\sum_{k=1}^{\infty} \alpha_{k} x_{k}$. Hence $A \in(\overline{s l(p)}, c)$.

Conversely, let $A \in(\overline{s l(p)}, c)$. Then $\sum_{k=1}^{\infty} a_{n k} x_{k}$ converges for each $x=\left(x_{k}\right) \in \overline{\operatorname{sl(p)}}$ and for $n \in \square$. If we define the sequence $v=\left(v_{k}\right)$ by
$v_{k}= \begin{cases}\frac{z_{1}}{2} & \text { for } k=1 \\ \frac{z_{k}}{2^{k}}-\frac{z_{k-1}}{2^{k-1}} & \text { for } k>1\end{cases}$
Then it can easily be verified that $v \in \overline{s l(p)}$ and $\Delta a_{n k} \rightarrow \Delta \alpha_{k}(\operatorname{as} n \rightarrow \infty)$.
Since $x=\left(-\sum_{v=1}^{k-1}\left(\frac{N^{-2}}{2^{N}}\right)^{1 / p_{v}}+\left(\frac{N^{-2}}{2^{N}}\right)^{1 / p_{k}}\right) \in \overline{s l(p)}$, then the necessity of (i) follows. We need to show that $B \in(\overline{l(p)}, c)$.
On the contrary we assume that $B \notin(\overline{l(p)}, c)$. Following the same arguments as in Theorem 4.1, it can easily be verified that, $\left(\sum_{k=1}^{\infty} a_{n k} u_{k}\right)=\left(\sum_{k=1}^{\infty} b_{n k} y_{k}\right) \notin \mathrm{c}$, where $y=\left(y_{k}\right) \in \overline{l(p)}$ and $u=\left(u_{k}\right) \in \overline{\operatorname{sl}(p)}$.
This is a contradiction to the fact that $B \in(\overline{l(p)}, c)$. This proves the necessity of (ii).

Acknowledgement

Our sincere thanks are due to the reviewer(s) for the valuable comments and suggestions.

References

1. B. Atlay, F. Basar, E. Malkowsky, Matrix transformation on some sequence spaces related to strong Cesaro summability and boundedness, Applied Mathematics and Computation 211 (2009) 255-264
2. B. Atlay, F. Basar, On the paranormed Riesz Sequence spaces of non-absolute type, Southeast Asian Bull. Math. 26 (2002) 701-715
3. B. Choudhary and S. K. Mishra, On Kothe-Toeplitz Duals of certain Sequence spaces and their matrix transformations, Indian Journal of Pure Appl. Mathematics, 24(5) May 1993
4. B. Choudhary and S. K. Mishra, A note on Kothe-Toeplitz Duals of certain Sequence spaces and their matrix transformations, International Journal of Mathematical Science (18), 1995 , No. 4, 681-688
5. E. Malkowsky, E.Savas, Matrix transformation between sequence spaces of generalized weighted means, Appl. Math. Comput. 147 (2004) 333-345
6. E. Malkowsky, V. Rakocevic, Snezana Zivkovic, Matrix Transformation Between The Sequence Space BV And Certain BK Spaces, Bulletin T.CXXIII de l' Academie Serbe des Science et des Arts- 2002, No. 27 (34-46)
7. H. Kizmaz , On certain sequence spaces , Canad. Math. Bull., 24(2) (1981), 169-176
8. E. Kreyszig, Introductory Functional Analysis With Applications, New York; John Wiley and Sons, 1978.
9. Kuldip Raj and Sunil K. Sharma, Some Multiplier Sequence Spaces Defined By A Musielak- Orlicz Functions In n- Normed Spaces, New Zealand Journal of Mathematics, vol 42 (2012), 45-56.
10. I.J. Maddox, Elements of Functional Analysis, Cambridge University Press, 1988.
11. S. K. Mishra, Sequence Spaces and Related Topics, PhD Thesis, Indian Institute of Technology, Delhi,November, 1993
