International Journal of Mathematics Trends and Technology — Volume 18 Number 2 — Feb 2015

Sequence Space sl(p) Generated by an Infinite Diagonal Matrix

Shailendra K. Mishra® , Vinod Parajuli %, Suresh Ray®

12 Department of Engineering Science and Humanities, Central Campus, Pulchowk , Institute of Engineering, Tribhuvan
University; Nepal

% Department of Mathematics, Tri-Chandra Multiple Campus, Kathmandu , Tribhuvan University; Nepal

Abstract:
P

0 k
The sequence space 1(p) = {x = (x}) : Z|tk (X)| <o where ty(x) = z X; was introduced and studied by B. Choudhary and
k=1 i=1

S.K. Mishra [3]. In the present paper, we generalize the space 1(p) by means of an infinite diagonal matrix

_ (2™ forn=Kk
A= (@) = { 0 otherwise

Furthermore we characterize the matrix classes (sl(p),1,,) and (sl(p), c).

and introduce a new sequence space sl(p) . We shall study some properties of sI(p) and find its B- dual.
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I.PRELIMINARIES, BACKGROUND and NOTATIONS

By w, we denote the space of all complex valued sequences . Any vector subspace of w is called a sequence space. We write [, C
and ¢, for the sequence spaces of all bounded, convergent and null sequences, respectively.

A linear topological space X over the real field R is said to be a paranormed space if there is a subadditive function g:X — R such
that g(8) =0, g(x) = g(—x) and scalar multiplication is continuous i.e. |a, —a| - 0 and g(x, —x) - 0 imply g(a,x, —
ax) —» 0 forall « € Rand all x € X, where 8 is the zero vector in the linear space X . We shall assume here and after {p,} be a
bounded sequence of strictly positive real numbers with sup p, = H and M = max{1, H}. The linear space [(p) was
defined by Maddox as follows:

1) = {x =) Ew Yl < oo}
k

(1.1

which is a complete space paranormed by

1/M
90 = (leup")
k

For simplicity in notation , the summation without limits is assumed to run from 1 to oo.

Let X and Y be any two sequence spaces and A = (a,;) be an infinite matrix of real numbers a,; , where n,k € N. Then we write
Ax = ((Ax),), the A- transform of x, if (Ax), = Xx anxx, converges for each n € N . If x € X implies that Ax € Y then we say
that A defines matrix transformation from X into Y and denote it by A: X — Y. By (X, Y) we mean the class of all infinite matrices A
suchthat 4:X - Y.
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The matrix domain X, of an infinite matrix A in a sequence space X is defined by
X, ={x=(x) €Ew:Ax € X}
(1.2)
which is a sequence space.

In 1993, Choudhary and Mishra [3] have defined and studied the sequence space I(p) which consists of all sequences such that S-
transforms are in I(p) . Here S = (s,,;) is the matrix given by

S _{1, 0<k<n
nk T 1o k>n
foralln,k e N.

For p = {p,} a bounded sequence of strictly positive real numbers the sequence space I(p) is given by
[OF [x = () ) @I < oo]

k=1

where
k

600 = ) x,

i=1

When p,, = p for every k , the sequence space (p) is reduced to the sequence space

L = [x = (30 ) @I < oo}
k=1

In 2002, Altay and Basar [2] have studied the space rt(p) which consists of all sequences whose Riesz transforms are in the space
() .

In 2004, Malkowsky and Savas [5] have defined and studied the sequence space Z(u, v; p) which consists all sequences such that
G (u,v) transforms are in X € {loo, c, co,l,,}. The matrix G(u,v) = (gn,) called generalized weighted mean or factorable matrix is
given by

_(upv,, 0<k<n
g"k_{ 0 k>n

for all n, k € N ; where u,,depends only on n and v, depends only on k.
With the notation of (1.2) , the spaces 1(p) , Z(u, v; p) and rt(p) may be represented as
Zw,v;p) = [Xlow » () = [l(P)]s and r*(p) = [I(P)]xe

where the matrix Rt = (r;%,) of the Riesz mean (R, t,,) is given by

n
tk/Ztk 0<k<n
k=0

0 k>n

t _
Tnk =

with the sequence of positive real (t;) .
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Il. NEW PARANORMED SEQUENCE SPACE sl(p)
Before defining new sequence space, we take an infinite diagonal matrix A = (a,;) given by

o {2‘", n==k
nk 0  otherwise

Following Choudhary and Mishra [3], Altay and Basar [2] and Malkowsky and Savas [5]
for p = {p,} a bounded sequence of strictly positive real numbers we define the sequence space sl(p) by
ST) = fx = (w): x € )
2.1)

Thus, si(p) is now the set of all sequences {v, } whose A —transforms are in the sequence space I(p) . Using the notation as in (1.2)
sl(p) can be represented as

W= [W]A

Here the sequence {v,} is given by

k
1
() = ) = 16O

Thus sl(p) can be rewritten as

1
Sl = [x = (1)1 ) Sl < oo]
k=1

Also when p, = p for every k , the sequence space sl(p) is reduced to the sequence space

_ 1
ST, = [x = ()7 ) e 6P < oo}
k=1

We shall now present some properties of Sli p) and S|p .

Property 2.1.
sl pi is linearly isomorphic to | p).
Proof:

For each Xe& Sl p ), we have Ax € 1(p) where A = (a,;) is given by

I {2‘", n==k
nk =1 0, otherwise

Moreover A is linear and bijective.

Also the matrix B=(b,, ) defined by
_ VA n==k
B = (bne) = {O, otherwise
is inverse of A. Thus SI(p) is linearly isomorphic to I p).
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Corollary 2.1.
sl, and | are linearly isomorphic.
Proof:

Using the same arguments as given in property (2.1), it can be shown that S|p and |p are linearly isomorphic.

Property 2.2.
Sli p ) is complete paranormed space paranormed by

o0

1
1 A\ 1
g(x):(g‘z_k“k Wl j where M =max| ,sup SE

Proof:
Since Sli p) and |i p iare linearly isomorphic and |i p) is a complete paranormed space with paranorm

1
e M
X)=(Z| t, (X)| P j where M = max(l,supk pkj , then from property (2.1) Sli p) is a complete paranormed space with
k=1

paranorm ,
9(x)= P(Ax); where P is usual paranorm on m

Property 2.3.
sl, isa Banach space for 1< p <oo and ty (X)=0; normed by

1
© 1 E
= (S 1u 0
koo 2
Proof : o
The proof follows immediately by using the fact that ||X||: ||AX|| b where || . || b is the usual norm on |p

Property 2. 4.

SI2 is a Hilbert space with inner product <X, y>=Z:22ktk (X)tk Y ), where bar denotes the conjugate.
k=1
Proof :

o0

We have E is a Hilbert space with inner product <X, y>:Ztk (X)m

k=1

Also from property (2.1) for XEE , AX EE :

Setting <X, y> :<AX, Ay> which is usual inner product in E ; we can easily see that S|2 is also a Hilbert space.

Property 2.5.
Z
If Z be a closed subset of 1( ), then o is a closed subset of S| p).
Proof :
YA YA
Since Z € ( } S SI . Let x belongs to closure of —- oK . Then there exists a sequence (X”) c2—k such that (X")

converges to X.
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This implies that g (X” - X)—)O as N — co. Hence by definition, from above,
t"(x)-t (x)>0ie t” (X)—>t, (X) . This completes the proof.

Now we state a proposition which gives characterization of compact sets on sl(p).

Proposition 2.1:

Aset G c sl(p) is compact if and only if
i) G is closed and bounded,

ks Pk
ii) Given &£>0, there exists a positive integer N such that Z |tk (X)| <¢ for XeG whenever n>n,,
k=n+1

iii ) If d, :sl(p) >0 isgivenby d, (X)=t, (X) forall xesl(p), then d, (G) is compact for all k>1.

Proof:
Following the same arguments as in proposition 4.1.7 in [11] , we can easily prove the proposition.

I11. Dual
For a sequence space X we define g-dual of X as

XB = {a = (ag): Z a, xiis convergent for each x € X}
k=1

Theorem 3.1

Let 0< p* S% forevery K €N . Then Sl(p)ﬁ =sl_(p)where

1 1
0 k-1 N—2 FV N—2 Fk Aa
sl(p)=1a=@)D.a| .| = | +| =& converges and sup|—{<o ;
a | a2 2 2
N>1, Ad, =8, —a,ie. the p-dualof sI(p)issl, (p).
Proof :
Necessary Part:
Let aesl(p)”. Then the series Zakxk converges for each xesl ( p).
k=1
k-1 N_2 Up, N_2 Uy o0 k-1 N_2 Up, N_2 py
Since, X= —Z( N j +( N ] € Sl(p); it follows that Zak —Z( N J +( N J converges.
v=1 k=1 v=l

Aa Pk Aa Py
Next we need to show that SUp (z—kkj <00, On the contrary we assume that SUP (Z—i(kj =00. Then
k k
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Aa=(Aak )eE I ( p) €. I(_p) # . Hence there exists a sequence Y :(yk )em such that iAak Y, does not converge.

k=1
Whenever we define the sequence U :(uk) by

R for k=1
2

y—;‘—h for k>1
2k 2%

Then u e sl(p) and Zak u, = ZAak o
k=1

So , it follows that the series Zak U, does not converge which is the contradiction to the assumption that aesl( p)” . Hence we
k=1

Aa Pk
must have, Sup(z—kkj <0, thereby showing that - dual of S| p) exists and is slwi p).
k

Sufficient part :

Let aesl 1 p Jand X € S ( p ' We can choose a positive integer N > 1 such that

1 i 1
(?‘tk (X)U = 2N N2

31)
We have,
Zakxk ZAak 1y (X) + Aa_ 2%1 t (x), meN
3.2)
so that
m
> ax, Z |Aak| |t (X)] + |a, | |t (x|
k=L
m-1 N2 P N2 Py
<> A —_— .
a3 ) vl
Since |Aak|pk is bounded , so that for some M >0, |Aak|pk <M =|Ag,|<M ¥
- N,Z 1Up, o N,z 1py
Hence , Z|Aak| N SZM”” N <
kL 2 =] 2
N2 1/py L © N 2 1/pg .
Now the sequence ( N J e I(p) . Also if ZM 1/‘){2—Nj does not converge, then the sequence {M””k }95 I(p)
k=L
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We know mﬁz I.(p) = {a:(ak):iak (—ZOO:(NZ)”W +(N2)VP j<oo and sup|a, | <oo}.

k=1

This implies that M >o0; which is impossible. Hence right hand side of (3.2) is absolutely convergent.

m K_1 N,z Up, N,Z 1/py m-1 N,2 1/py N,z Uy
Moreover, Zak _Z(Z_N] +£ o j = kz—llAak [Z—Nj +am( N J ;mell,

k=1 v=l

Up
2 m s
Hence there exists a sequence 4 &, (—] having a finite limit and hence the series Z a, X, converges for each x sl ( p)

2" a
ie. a esl_(p).

IV. MATRIX TRANSFORMATION
Let (X ,Y) denote the set of all infinite matrices which transforms X into Y. Now we shall provide characterization for the classes

(sI(p) ,1,,) and (sI(p),c).
Theorem 4.1. :
Let 0< p, S% for every ke N . Then Ae(sl(p) , Iw) if and only if

- k-1 N72 1/p, N72 1/ py
i) SI;IpZanvk —Z( T j +( > J <oo; N 21

k=1 v=l

P
" <oowhere Aa,, =a,, —a

n,k+1 -

ii) sup|Aa,,
n,k '

Proof :
Let the conditions hold. Now

0 k-1 N -2 Jll Py [ N -2 j]'/ Px
a,. |- +

» K1 N72 1/p, N72 1/ py
<sup | > a,, —Z( ZNJ +( 2“) <0

n k=1 v=l
_>\1/p, _o\1/p
. © k-1 N 2 N 2 k
l.e. Z an’k - Z AN + N converges .
k=1 v=l 2 2

It implies that A, eSI(p)ﬂ =sl_(p) and hence A, (X) :Zank X, converges for each xesl(p) and for each n €[] .

k=1
Convergence of A, (X) implies that |A, (X) |= Zank X |<o = Axel,.
ket
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K N_2 Up, N_2 U py
Conversely let Ae(sl(p),lw). Since o = —Z( o + o esl(p) ,we have A o <oo foreach ne N and
v=l

Da,o

k=1
We now prove the necessity of (ii).
We assume that the necessity of (ii) is false. Let us define the matrix B :(bnk) by

b,=Aa, ;nkel .

that A, o €l . So sup

n

<00,

Then Be(l(p) , IOO) by the fact that when 0< p, <1 for every ke N, then Ae(l(p) , Iw) iff Sup|ank|pk <00 Hence there is
n,k
a sequence y=(yk) € I(p) such that

Z b, Y« #O (1) . However, if we define the sequence U :(uk) by
k=1

A for k=1
2

Then uesl(p) and Zan,k u, =an’k %;ﬁO(l); which is now a contradiction to the fact that Ae(sl(p), Iw). Hence we
k=1 k=1
must have,

p
sup|Aay,|”
n,k Y

<00,

Theorem 4.2.

1 R
Let 0< p, < 3 forevery ke N . Then Ae (Sl(p),c) if and only if

k1 N\ -2 VP 2\
i) A, —Z(NzNJ +[N2NJ ec,N>1 :

v=l

i) Be (W,C) where B = (b,) = (Aay,) ;n,k €N
i) limAa, =Aa, (kis fixed ).

Proof:

Let us assume that the above conditions hold. Then for any X=(Xk)esl(p), Zank X, is absolutely convergent, and that,
k=1

lim Zank X, = Zak X, . Hence Ae(sl(p),c).
n—e0 4= k=1
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Conversely, IetAe(sI(p),c). Then Zank X, converges for each X:(Xk)e sl(p) and for nell . If we define the sequence

k=1
v=(v, ) by
z
1 for k=1
2
Vi =
Zk Zk—l
PeT=1 for k>1
Then it can easily be verified that v esl(p) and Aa, —>Aeg, (a8sn— ).
K1 N _o\Vp, N o\ b«
Since X= | — Z o + o esl(p), then the necessity of (i) follows. We need to show that B e (I (p), C).

v=l

On the contrary we assume that B ¢ (I (p), C). Following the same arguments as in Theorem 4. 1, it can easily be verified that ,
Zank u, |= ank Y, |ec,where y=(y,)el(p) and u :(uk)esl(p) :
k=1 k=1

This is a contradiction to the fact that B (I (p), C). This proves the necessity of (ii).
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