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Abstract 

A detailed discussion on equivariant estimation of the parameters of location, scale and location-

scale models are given by LEHMANN AND CASELLA (1998). EDWIN PRABAKARAN and 

CHANDRASEKAR (1994) developed simultaneous equivariant estimation approach and illustrated 

the method with examples. In this paper, uniform Location-Scale model is considered and QA–

MRE( Quadratic type MRE)  estimator(s) of the parameters based on type II censored samples are 

obtained.  

Key words:Censored sampling, Equivariant estimation,Location-scale model, QA– MREand 

Uniform model. 

1. Introduction 

Equivariance is a desirable property used for restricting the class of estimators whenever the 

model possesses symmetry. ZACKS (1971) and LEHMANN AND CASELLA (1998) provide a 

detailed study of the problem of equivariant estimation for certain models. In the case of location-

scale model, LEHMANN AND CASELLA (1998) develops marginal Equivariant procedure for 

estimating the parameters. EDWIN PRABAKARAN and CHANDRASEKAR (1994) have 

proposed a simultaneous Equivariant estimation for estimating the parameters of a location-scale 

model. For a detailed discussion on simultaneous equivariant estimation and related results the 

reader is referred to EDWIN PRABAKARAN (1995). Contributions to simultaneous Equivariant 

estimation based on censored samples studied in Leo Alexander(2000). 

In this paper, we consider uniform location-scale model and obtain MREQA estimators for the 

vector parameters ),(),( 2and based on the type II right censored samples. Further MRE 

estimator of ),( is obtained with respect to the Linex type loss function. 

Let ),...,,( 21 NXXXX have joint pdf 
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where f is known and ),( is unknown, .0,R  We wish to derive the MRE 

estimator of ),( m based on type II right censored sample when the loss function is invariant 

and has the form  
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We also derive the MRE estimator of ),( with respect to the invariance Linex loss function of 

the form  

)3.1...().1/(1/)();,( 2
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1.1 Preliminaries 

Suppose N randomly selected units were placed on a test simultaneously, the failure times of the 

first n units to fail were observed. Thus the number of completely determined life spans is n and the 

number of censored ones is (N-n). letXi:N, i=1,2,…,n denote the failure times of the completely 

observed items. Then the joint probability density function (pdf) of ),...,,( ::2:1 NnNN XXX (BAIN, 

1978) is 
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Here f  and F  denote the common pdf and the distribution function of the failure times of the 

units selected randomly, which are put to test. Further n is assumed to be known in advance. 

2 uniform location – scale model 

 In this case, the common pdf is taken to be  
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Note that .),( Thus (1.4) reduces to  

 

.0,;

)1.2...(,
)(

1
1

)!(

!
),...,(

::1

:

::1

Rxx

x

nN

N
xxg

NnN

nN

Nn

nNnN  

Note that the above pdf belongs to a location – scale model. 
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Case (i):  We are interested in obtaining MREQA estimator for vector parameters 

),(),( 2and based on the Type-II right censosed sample. Following Edwin Prabakaran 

and Chandrasekar (1994), we obtain the MRE estimator of ),(),( 2and . Let us discuss 

the problem of estimating ),(),( 2and . In order to obtain MRE estimator of ),( , take  

 NX :101 )(X and .)( :1:02 NNn XXX  

Here )(0 X is an equivariant estimator and ),( ::1 NnN XX  is a sufficient statistic. Since we are 

interested in the evaluation of conditional distribution under )1,0(),( , we take 

)1,0(),( in (2.1), in order to find ),(
*
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and 
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Consider the transformation  
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Then  
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and the Jacobian of the transformation is 
2

2

n
ZJ . 

Thus the joint pdf of ),....,,( 21 nZZZZ is given by  
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Then the marginal pdf of ),....,( 3 nZZ is given by  
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So, the conditional pdf of ),( 21 ZZ given ),....,( 3 nZZ is given by 
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and the conditional pdf of 2Z given ),....,( 3 nZZ is given by 
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Put     ,)1( 21 zuz so that  
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Similarly  
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Thus, in view of (2.5),(2.6)and(2.7), we have  
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Therefore the MRE estimator ),(),(
*

2

*

1

* of is given by  
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Remark 2.1If n=N then the estimator of ),( reduce to  

  N/)( 0201
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which is same as the complete sample case (Edwin Prabakaran, 1994). 

Now let us consider the problem of estimating .),( 2  define  

 ,))(,)(()( 02010 XXX  

where .)()()( 2
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Taking ,)()( :1: NNn XXXg from equations (2.2) and (2.3), we obtain  

/)}]4()3)(2)(2{()4)(1()3)(2([ 2212

2

122211

*

1 NnNNnaaNnaNnaaw  

and 

/)]1/()2()1/()3()[4)(3( 1211

2

122211

*

2

2

naaNanNnaaNNw , 

where )]4)(1()3)(2([
2

122211 NnaNnaan . 

Therefore the MRE estimator ),(),( 2*

2

*

1

* of is given by 
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where
*

1w  and 
*

2w are as given above. It may be verified that the sufficient conditions of Edwin 

Prabakaran and Chandrasekar (1994) are satisfied for ),(
*

2

*

1 . Since the calculation is 

routine, we omit the details. 

Case (ii):  Consider the location – scale invariant Linex loss function (Varian, 1975) 
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In order to find ),(
*

2

*

1 ww , take NX :101 )(X   and   .)( :1:02 NNn XXX , consider  
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Then   
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in view of (2.4) and (2.7). 

Thus ),(
*
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1 ww  is to be obtained as the value of ),( 21 ww minimizing )|( zR . 

Therefore the MRE estimator of ),( is given by  
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