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Abstract 

Artificial Neural Network model was designed to describe the behavior of blood flow in which degree of 

stenosis, flow rate, pressure anastomotic angle are considered as input variable while pressure and flow 

rate as output. Model predicts higher degree blockage of the stenosed artery with higher drop of blood 

pressure at the stenosis region. Bypass surgery at optimized anastomotic angle is highly useful for 

regulating the blood pressure.  ANN provides reasonable predictive performance in resemblance to the 

experimental values. The Levenberg–Marquardt algorithm (LMA) was found best of BP algorithms with a 

minimum mean squared error (MSE) for training and cross validation. 
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Introduction 

Coronary Artery Disease (CAD) is one of the top 10 causes of worldwide deaths (WHO, 2008). Bypass 

surgery has been accepted as the most reliable treatment to restore blood flow in serious blockage of the 

coronary artery but found to be associated with several complications. About 25% of grafting surgery 

fails within one to ten years (Papaharilaou et al, 2002) for which abnormal bold flow is believed to be a 

major cause.  The complexity of blood flow in the complete model of arterial bypass has been recently the 

focus of investigation (Chua et al 2005, Ghista et al 2005, Chen et. al 2006, Qiao and Liu 2007). Bifurcating 

flow rate through bypass graft in the fully occluded host artery with complete flow- based on anastomotic 

angle (α) has been pointed out. Wiwatanapataphee et al. (2006) investigated the behavior of blood flow in 

a stenosed  right coronary artery (RCA) with a bypass graft. Shaik et al (2008) analyzed blood behavior in 

a vessel with bypass graft simulated in a straight tube. Siddiqui et al (2009, 2010) studied blood flow 

simulated in a single tube with stenotic region. Chuchard et al.(2011) studied blood flow through the 

system of coronary arteries with diseased left anterior descending.  

 

Neural network provides an approach to obtain accurate numerical values in a computationally less 

intensive fashion. Arora et al, 2011 has recently reported ANN modelling for the blood flow through 

tapered artery with mild stenosis. The present paper reports flow fields in a partially stenosed artery with 

a complete bypass graft having different severity stenosis, occluded area and anastomotic angles.  

 

Materials and Methods 

The Fluid Model 

Blood is assumed as an incompressible non-Newtonian fluid. The motion of blood flow is governed by 

the continuity equation and the Navier-Stokes equations, which can be expressed as follows: 

                              ∇ · u = 0                                                          (1) 

                 ∂u/∂t + (u · ∇)u =1/ρ∇ · σ                                        (2) 

where u is the blood velocity, ρ is blood density and σ is the total stress which is given by 

 

                       σ = −pI + η( ˙γ)[∇u + (∇u)
T
]                                  (3) 

where p is the blood pressure. and denote the viscosity of blood and shear rate, respectively. In this work, 

the relation between η and ˙γ are described by Carreau’s shear-thinning model,  
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    η = η∞ + (η0 − η∞) [1 + (λγ˙)
 2
]

 (n−1)/2                                                            
(4) 

where η∞, η0, λ, and n are parameters, and the shear rate is defined by 

       γ˙ =[2tr(1/2(∇u + (∇u)
T
)

2
]

1/2
.                                                 (5) 

considering the pulsatile behavior of blood flow. 

 

The pulsatile pressure p (t) and flow rate Q (t) can be expressed by the truncated Fourier series with the 

mean pressure and the mean flow rate respectively were measured through power lab (Lab Chart 

Software).  We impose the corresponding pulsatile pressure condition,  

 

p(t) = p0(t),        η[(∇u + (∇u)
T
]

2
                                                  (6) 

No-slip condition is applied to the outer arterial wall. We find u and p such that equations (1&2) and all 

boundary conditions are satisfied. To investigate the effect of the stenosis severity, we study the pressure 

distribution along the arterial axis of the stenosed artery. Three different degrees of stenosis including 

50%, 75% and 100% are chosen.  

 

ANN Structure 

Neural Network Toolbox Neuro Solution6.0 ® mathematical software was used. A single-layer ANN 

model was designed considering degree of stenosis, flow rate, pressure and anastomotic angle as input 

while pressure out and flow out as output with sigmoid axon transfer function. Network represents 

functional relationship between inputs and output, provided sigmoid layer has enough neurons. 

Levenberg- Marquardt algorithm is fastest training algorithm for network of moderate size, therefore, 

used in the present study.  

 

Back propagation training algorithm 
The back propagation algorithm is a generalization of the least mean square algorithm modifying network 

weights to minimize the mean square error between the desired and actual outputs of the network. Back 

propagation uses supervised learning in which the network is trained using data for which inputs as well 

as desired outputs are frozen and used to compute output values for new input samples. Start with 

randomly selected weights while MSE is unsatisfactory and computational bounds are not exceeded, do 

for each input pattern. The input is propagated through the ANN to the output and error ek on a single 

output neuron k is calculated as:   ek = dk - yk ,  where yk is the calculated output and dk is the desired 

output of neuron k. This error value is used to calculate a δk value, which is again used for adjusting the 

weights .The δk value is calculated by: δk = ek g’(yk), where g’ is derived activation function. The δk value 

and δj values were calculated for proceeding layers. The δj values of the previous layer are calculated 

from the δk values of this layer by the following equation: δj = ng’(yj)Σ δkWjK , where K = 0,1,2………n, 

where K is the number of neurons and η is the learning rate parameter. Using δ values, the δw values are 

calculated by: δwjk= δj yk . The δwjk value is used to adjust the weight wjk, by wjk = wjk + δwjk and the back 

propagation algorithm moves on to the next input and adjusts the weight according to the output. The 

process goes on until a certain stop criteria is reached. The stop criteria are typically determined by 

measuring the mean square error of the training data. 
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 Table 1 Optimized data for applied           Fig 1.   4,2,1 ANN 

Structure of of Blood Flow through                        Neural Network                                           

Stenosed Artery with Bypass graft 

  The sigmoid axon was considered transfer function with 0.7 momentums.  Series of experiment resulted 

into the evaluation of performance based on 60 % data for training, 20 % data for testing and 20 % data 

for cross validation at 1500 Epoch with 0.70000 momentums. With 20 neurons the performance of 

network simulation was evaluated in terms of mean square error (MSE) criterion. The minimum MSE in 

the group of the variables was determined for training and cross validation are 0.001783209 and 

0.006960692 respectively. Fig. 2 shows the result obtained by the Neural Network simulation for training, 

cross validation and testing data sets.  

 

 
 Fig 2. Graphical representation of MSE Value with 1500 EpochTesting and Sensitivity analysis   
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The developed network model was examined for its ability to predict the response of experimental data 

not forming the part of the training program. The network was finally tested for training, cross validation 

and testing data sets. The comparison results of desired outputs and network outputs are shown in Fig.3.  

  
 

Fig 3.  Comparison of desired output and network for training, cross validation, testing 

 

During testing a linear correlation coefficient of (R
2
 = 0.987, 0.9587 and 0.9098) were obtained for the 

training, cross validation and testing data sets. A sensitivity analysis was conducted to determine the 

degree of effectiveness of variables. Performance of the group of input vectors The blood pressure on the 

symmetric plane of the three cases with different stenosis severities, including 50%, 75%- and 100%-

occluded cases, are considered. It can be seen that the pressure in bypass graft is lesser in more severely 

occulted cases. Fig 5 shows as the flow rate increases pressure decreases. Fig 6 shows that the blood 

pressure drops more when the degree of stenosis is higher. The pressure on the symmetric planes of the 

three cases with α=30°, 50° and 70° respectively are considered. It can be seen that the pressure generally 

decreases as α increases in all the three cases with different α's, the pressure decreases in the constrict 

region. 

 

Conclusion 

 

The study indicates that stenosis bypass grafting have significant effects on the blood pressure. Higher 

degree of stenosis severity generated large drop of the pressure, causing the decrease of pressure in 

stenosed artery bypass grafting at optimized bypass angle. The developed ANN model describes the 

behavior of the complex interaction process within the range of experimental conditions adopted. The 

single layer ANN modeling technique was applied to optimize this process. The Levenberg–Marquardt 

algorithm (LMA) was found best of BP algorithms with a minimum mean squared error (MSE) for 

training and cross validation as 1.09372E-05 and 0.04217098 respectively.  

 

 

0

0.005

0.01

0.015

0.02

0.025

S1 S2 S3 S4 S5 P1 P2 P3 P4 P5 P6 R1 R2 R3 R4 R5 R6 R7 W1 W2 W3 W4 W5 W6

Se
n

si
ti

vi
ty

Input Name

Sensitivity About the Mean

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

T11

T12

http://www.ijmttjournal.org/


International Journal of Mathematics Trends and Technology- Volume 19 Number 1 Mar 2015 

ISSN: 2231-5373                                  http://www.ijmttjournal.org Page 38 

                      
 

Fig 4.  Pressure profile with flow rate                      Fig 5. Pressure profile along the stenosis artery                                                                                                    
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