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1. Preliminaries

This section presents a review of some fundamental notions of topological spaces and
rough set theory.

A topological space [12] is a pair (X ,z) consisting of a set X and a family r of subsets
of X satisfying the following conditions:

(T) per and X er.

(T2) 7 is closed under arbitrary union.
(T3) 7 is closed under finite intersection.

Throughout this paper (X,z) denotes a topological space, the elements of X are called
points of the space, the subsets of X belonging to z are called open sets in the space, the
complement of the subsets of X belonging to = are called closed sets in the space, and the
family of all closed subsets of X is denoted by z". The family = of open subsets of X is also
called a topology on X . Asubset A of X ina topological space (X,r) is said to be clopen if it
is both open and closed in (X,7).

A family Bc 7 is called a basis for (X,z) iff every nonempty open subset of X can be
represented as a union of subfamily of B. Clearly, a topological space can have many bases. A
family Sct is called a subbasis for (X,7) iff the family of all finite intersections of S is a
basis for (X,7).

The 7 —interior of a subset A of X is denoted by A’ and it is defined by
A =fGc X:GcAand G er}. Evidently, A’ is the largest open subset of X which
contained in A. Note that A is open iff A= A". The 7 —closure of a subset A of X is denoted
by A™ and it is defined by A" =~{F c X :AcF and F ez’}. Evidently, A~ is the smallest
closed subset of X which contains A. Note that A is closed iff A= A".

Some forms of near open sets which are essential for our present study are introduced in
the following definition.
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Definition 1.1. Let (X,z) be a topological space. The subset A of X is called:
i) Semi-open [14] ( briefly s—open) if AcA™".
ii) Pre-open [16] ( briefly p—open)if AcA™".

iii) y —open[7] (b-open[6])if AcA” UA™.

iv) a-open[17]if AcA .

v) S —open[1] ( Semi-pre-open[5]) if AcA "

The complement of an s —open (resp. p—open, y —open, o —open and S —open) set is
called s-—closed (resp. p—closed, y —closed, « —closed and S —closed) set. The family of all
s—open (resp. p—open, y —open, o —open and S —open) sets of (X,r) is denoted by SO(X)
(resp. PO(X), yO(X), aO(X) and BO(X)). The family of all s—closed (resp. p-—-closed,
y —closed, « —closed and g —closed) sets of (X,z) is denoted by SC(X) ( resp. PC(X),
yC(X), aC(X) and BC(X)).

The near interior ( resp. near closure) of a subset A of X is denoted by Al° (resp.
A7) and it is defined by
Al"=U{GcX:GcA, Gisa j—openset |
(resp. A\ =n{H X :AcH, Hisa j—closedset }), where
je{s, p.y,a, f}. Evidently, A’ is the largest j-open subset of X which contained in A. Note
that A is j-open iff A= Al°. Also, A'" is the smallest j-closed subset of X which contains
A. Note that A is j-closed iff A= Al™,

From known results [1, 7], we have the following remark.

Remark 1.1. Let (X,7) be a topological space. Then
) 7caO(X)cSO(X) (PO(X))= yO(X) < BO(X).
i) 7" caC(X) < SC(X) (PC(X))cyC(X) < FC(X).

Motivation for rough set theory has come from the need to represent subsets of a universe
in terms of equivalence classes of a partition of that universe. The partition characterizes a
topological space, called approximation space K = (X,R), where X is a set called the universe
and R is an equivalence relation [15, 18]. The equivalence classes of R are also known as the
granules, elementary sets or blocks. We shall use R, to denote the equivalence class containing
xe X, and X /R to denote the set of all elementary sets of R. In the approximation space
K =(X,R), the lower (resp. upper) approximation of a subset A of X is given by

RA={xe X :R, c A (resp. RA={xe X R, nA=¢]).
Pawlak noted [18] that the approximation space K = (X , R) with equivalence relation R
defines a uniquely topological space (X,7) where 7 is the family of all clopen sets in (X,7) and

X /R is a basis for 7. Moreover, the lower (resp. upper) approximation of any subset A of X
is exactly the interior (resp. closure) of A.
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If R is a general binary relation, then the approximation space K =(X,R) defines a
uniquely topological space (X,TK) such that 7, is the topology on X generated by the subbasis
S={xR:xe X}, where xR ={y e X : xRy} [4, 13].

Definition 1.2 [4]. Let K =(X,R) be an approximation space with general binary relation R
and 7, be the topology on X generated by the subbasis S={xR:xe X}, where
xR ={y e X : xR y}. Then the triple x = (X,R,7, ) is called a topologized approximation space.

Definition 1.3 [4]. Let K=(X,R,TK) be a topologized approximation space and let A be a

subset of X . The lower (resp. upper) approximation of A is denoted by RA (resp. RA) and it
is defined by
RA=A" (resp. RA=A").

The following general definition is given to introduce the near lower and near upper
approximations in a topologized approximation space x = (X,R,z,).

Definition 1.4 [4]. Let x = (X,R,7,) be atopologized approximation space and let A be a subset
of X . The near lower (briefly j-lower) (resp. near upper (briefly j-upper)) approximation of A is
denoted by R; A (resp. R;A ) and it is defined by

R, A=A" (resp. Rj A= A7), where je{s,p,7,a,pB}.

Proposition 1.1 [2]. Let x = (X,R,z,) be a topologized approximation space and let A be a

subset of X . Then
) RAcR,AcR.A(R,A)=R, A(X)cR,A.

i) RyAcR,AcR:A(RyAJ<R.ACRA.

Proposition 1.2 [4]. Let x = (X, R,‘L’K) be a topologized approximation space. If Ac X, then
RACR,AcAcR;AcRA Vje{s pya, b}

Proposition 1.3 [4]. Let k = (X, R,TK) be a topologized approximation space. If A and B are
two subsets of X, then

) R,¢p=Rjp=¢ and R, X =R; X =X.

i) If AcB,then R,AcR;B.

iii) If AcB,then RjAcCR;B.

iv) R;(X-A)=X-R;

V)  Rj(X-A)=X-R,
Where je{s,p,7.a, B}

> > N

2. Near rough connected topologized approximation spaces

The present section is devoted to introduce various levels of connectedness in
approximation spaces with general binary relations using some classes of near open sets.
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Definition 2.1 [4]. Let KZ(X,R,TK) be a topologized approximation space and let A be a
subset of X . Then

i) A is called totally R —definable (exact) set if RA= A=RA,

ii) A iscalled internally R —definable setif A=RA,

iii) A is called externally R —definable set if A=RA,

iv) A is called R—indefinable (rough) setif A=RA and A=RA.

Remark 2.1. Let k = (X, R,TK) be a topologized approximation space and let A be a subset of
X.
— If A isexact set, then it is both internally R —definable and externally R —definable set.
— RA isthe largest internally R —definable set contained in A.

— RA is the smallest externally R —definable set contains A.

Proposition 2.1 [9]. Let x =(X, R,‘L’K) be a topologized approximation space and let A be a

subset of X . Then
i) A isexactset if and only if X — A is exact.
i) A is internally R—definable (resp. externally R —definable) set if and only if X — A is
externally R —definable (resp. internally R —definable) set.

Definition 2.2 [3]. Let K=(X,R,TK) be a topologized approximation space and let A be a
subset of X . Then

i) A iscalled totally j-definable ( j-exact) setif R; A= A=RjA,

if) A iscalled internally j-definable setif A=R; A,

i) A is called externally j-definable set if A=R;A,
iv) Aiscalled j-indefinable ( j-rough) setif A=R; A and A=RjA.
Where je{s,p,7.a B}

Remark 2.2. Let k = (X, R,TK) be a topologized approximation space and let A be a subset of
X.
— If Ais j-exact set, then it is both internally j-definable and externally j-definable set

— R Aisthe largest internally j-definable set contained in A.

— Rj A is the smallest externally j-definable set contains A.
Where je{s,p,7.a B}

Proposition 2.2. Let x = (X, R,TK) be a topologized approximation space and let A be a subset
of X . Then
i) Ais j-exactsetifandonlyif X — A is j-exact.
ii) A is internally j-definable (resp. externally j-definable) set if and only if X —A is
externally j-definable (resp. internally j-definable) set.

Where je{s, p,y,a,p}.

Proof. By using Proposition 1.3, the proof is obvious. O

ISSN: 2231-5373 http://www.ijmttjournal.org Page 55




International Journal of Mathematics Trends and Technology- Volume 19 Number 1 Mar 2015

Definition 2.3 [9]. Let « = (X,R,rK) be a topologized approximation space. Then « is said to
be rough disconnected if there are two nonempty subsets A and B of X such that
AUB=X and ANRB=RANB=¢.

The space « = (X, R, TK) is said to be rough connected if it is not rough disconnected [9].

Definition 2.4 [10]. Let k = (X, R,TK) be a topologized approximation space. Then x is said to
be semi-rough (briefly s-rough) disconnected if there are two nonempty subsets A and B of X
such that

AUB=X and ANRsB=R;ANB=4¢.
The space x = (X, R, 7, ) is said to be s-rough connected if it is not s-rough disconnected [10].

Definition 2.5 [11]. Let x = (X, R,‘L’K) be a topologized approximation space. Then x is said to
be pre-rough (briefly p-rough) disconnected if there are two nonempty subsets A and B of X
such that

AUB=X and ANRy,B=R,AnB=4¢.

The space « = (X, R,TK) is said to be p-rough connected if it is not p-rough disconnected
[11].

Theorem 2.1 [9]. A topologized approximation space x = (X, R,TK) is rough disconnected if
and only if there exists a nonempty exact proper subset of X .

Theorem 2.2 [10]. A topologized approximation space « = (X, R,‘L’K) is s-rough disconnected
if and only if there exists a nonempty s-exact proper subset of X .

Theorem 2.3 [11]. A topologized approximation space « = (X, R,‘L’K) is p -rough disconnected
if and only if there exists a nonempty p -exact proper subset of X .

The following general definition introduces the concept of j-rough disconnected
topologized approximation space for all je{y,a,S}.

Definition 2.6. Let k = (X, R,TK) be a topologized approximation space. Then « is said to be
j -rough disconnected for all je{y,a, S} if there are two nonempty subsets A and B of X
such that

AUB=X and ANR;B=R;AnB=¢.

The space « =(X,R,z,) is said to be j-rough connected for all je{y,a,p} if it is not j-
rough disconnected.

Theorem 2.4. A topologized approximation space x = (X, R,TK) is j-rough disconnected for
all je{y,a,p} if and only if there exists a nonempty j-exact proper subset of X .

Proof. We shall prove this theorem in the case of j=/ and the other cases can be proved
similarly.
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Let x =(X, R,‘L’K) be a S-rough disconnected topologized approximation space. Then there
exist two nonempty subsets A and B of X such that
AUB=X and ANR;B=RsAnB=¢.But AcRs A, hence ANB=¢. Thus A=X —B.
Also A=X -RsB, since AnRs;B=¢ and AUR;BoAUB=X. Hence A=R,A and
B=R;B. Similarly B=R,B and A=Rp A. Therefore there exists a nonempty J-exact

proper subset A of X.
Conversely, Suppose that A is a nonempty [ -exact proper subset of X . Then by Proposition

2.2, we get B= X —A is also a nonempty f-exact proper subset of X .Hence AuUB =X and
ANR;B=ANB=R;AnB=4.
Thus x = (X,R,z, ) is B-rough disconnected. o

Example 2.1. Let x = (X, R,TK) be a topologized approximation space such that X ={a,b,c,d}
and R= {(a, a),(b,b),(d,d)(a, b),(b,a)}. Then aR ={a,b}=DbR, cR=¢ and dR ={d}. Hence
S ={p.{d} {a.b}}, B={X ¢, {d}{a.b}}, 7 = {X,¢.{d}.{a b} {a,b,d}},
BO(X) =1{X,¢{a}{b},{d},{a,b} {a c},{a,d}.{b.c},
{b,d}.{c,d}{a,b,c} {a,b,d} {a,c,d}.{b,c,d},

and

BC(X)=1{p, X {b,c,d}{a,c,d}.{a,b,c} {c,d}.{b,d}.{b,c}.{a d},
{a,c}.{a,b} {d}.{c} {b}.{a}}.

Since A={a,b,c} is a nonempty SB-exact proper subset of X , then the space x =(X,R,z,) is
B -rough disconnected.

Proposition 2.3. The implications between rough disconnected and j—rough disconnected
topologized approximation spaces for all j e{p,s,y,«, S} are given by the following diagram.

rough disconnected
U
o -rough disconnected = s -rough disconnected
U U
p - rough disconnected =y -rough disconnected

U

[ - rough disconnected

Proof. Let x = (X, R,TK) be s—rough disconnected topologized approximation space. Then by
Theorem 2.2, there exists a nonempty s-exact proper subset A of X .Hence R, A= A=R;A.
By Proposition 1.1 and Proposition 1.2, we get

A=R,AcR AcAcR,AcRA=A
Then R A=A= R,A. So A is a nonempty y-exact proper subset of X . Therefore
x =(X,R,7,) is y —rough disconnected.
The other cases can be proved similarly. o
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The converse of Proposition 2.3 does not hold, in general, as shown in the following
example.

Example 2.2. Let x =(X,R,7,) be the topologized approximation space which is given in
Example 2.1. Then
7 = {X.p{d}{a b} {a,b,d}}, 7 ={X.¢.{a.b,ch{c.d}{c}},
BO(X) = {X,¢,{a}{b}.{d}{a,b}.{a,c}.{a,d}.{b.c},
{b,d}.{c,d}{a,b,c}{a,b,d} {a,c,d}.{b,c,d},

and

BC(X)=1{p, X {b,c,d}{a,c,d}.{a,b,c} {c,d}.{b,d}.{b,c}.{a d},
{a,c}.{a b} {d}.{c} {b}.{a}}.

So x is S-rough disconnected, since A={a,b,c} is a nonempty p-exact proper subset of X .
But « is not rough disconnected, because there is not any exact proper subset of X .

Definition 2.7 [8]. Let x =(X,Rl,rK), Q= (Y, RZ,TQ) be two topologized approximation spaces.
Then a mapping f:x —Q is called near rough (briefly j-rough) continuous for all
je{p.s,y,a, B} if f _l(&V)g R, f (V) for every subset V of YinQ .

In Definition 2.7, f ' does not mean the inverse function, but it means the inverse image.

Theorem 25. Let f:x—>Q be a mapping from a topologized approximation space
K =(X,Rl,rK) to a topologized approximation space Q = (Y, RZ,rQ). Then for all je{y,a,p}
the following statements are equivalent.
i) f is j-rough continuous.
ii) The inverse image of each internally R, —definable set in Q is internally j -definable
setin x .
iii) The inverse image of each externally R, —definable set in Q is externally j-
definable set in « .
iv) f(ﬁj A)gR_2 f(A) for every subset A of X in «.
V)R, f*(B)cf ‘l(ﬁz B) for every subset B of YinQ .
Proof. We shall prove this theorem in the case of j=/ and the other cases can be proved
similarly.
(i)=(ii) Let f be B-rough continuous and let V be an internally R, —definable set in
Q.Then R,V =V and f *(V)isasubsetof X in «. By (i), we get
f (V)= f *(RV)c R, f (V). Then
f2(V)c R, f (V). But R, f *(V)c f (V). Hence
f ‘l(V)zﬁﬂ f *(V). Therefore f (V) is internally S-definable set in .
(i)= (i) Let A be a subset of Y in Q. Since R, Ac A, then f _1(&A)g f *(A). But
R, Aisinternally R, —definable setin Q , then by (ii), we get f ‘1(& A) is internally -
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definable set in x contained in f *(A). Hence f _l(&A)g R, f *(A)c f*(A), since
R, f 7(A) is the largest internally B-definable set contained in f *(A). Thus
f_l(&A)g R, f “(A) for every subset A of Y in Q. Therefore f is B-rough

continuous.

(if) = (iii) Let F be an externally R, —definable set in Q , then by Proposition 2.1, we
get Y — F isinternally R, —definable. Thus by (ii), we have f ‘l(Y - F) is internally g-
definable set in x. Since f (Y —F)=X —f *(F), then X — f *(F) is internally S-
definable set in x . Hence f *(F) is externally j-definable setin x .

Similarly we can prove (iii) = (ii).

(if)= (iv) Let A be asubset of X in x, then ﬁz f(A) is an externally R, —definable set
in Q. Hence Y —ﬁzf(A) is internally R, —definable set in Q . Thus by (ii), we get
f‘l(Y—ﬁzf(A))=X—f‘l(R_zf(A)) is internally p-definable set in &, and so
f‘l(R_2 f(A)) is externally S-definable set containing A in k. Thus
AcR,Acf ‘l(R_Zf(A)), since R, A is the smallest externally S-definable set
containing A in . Hence
fRey Al Flr (R A (AR, 1(4).
Therefore f(ﬁﬂ A)gR_2 f(A) for every subset A in x.

(iv)=>(v) Let B beasubsetof Y inQ.Let A= f *(B), then A isasubsetof X in .
By (iv), we get
f (R, A)<R, f(A)=R, f(f *(B))=R,B.
Hence R, Ac f *(R,B). Thus R, A=R,, f *(B)< f (R, B).
Therefore R, f *(B)c f ‘l(R_2 B) for every subset B of Y inQ .

(v)=(ii) Let G be an internally R, —definable setin Q , then B=Y —G is externally
R, —definable set in Q . Thus by (v), we get
R, f*(B)c f*(R,B).
Since B is externally R, —definable set, then f R_QB)z f *(B). Thus
R, f*(B)cf*(B).But f *(B)<R,f*(B) then R, f*(B)="*(B).Hence
f *(B) is externally S -definable set in x .
Since f*(B)=f *(Y-G)=X-1f*(G), then X —f*(G) is externally B-definable
setin « . Therefore f *(G) isinternally B-definable setin x. o

—

B

Example 2.3. Let « =(X,Rl,rK), Q= (Y, RZ,TQ) be two topologized approximation spaces such

that X ={a,b,c,d}, Y ={y1,y2,y3,y4},
R, =1{(a,a),(b,b),(d,d)(@b),(b,a)} and R, = {(y1, ¥.),(Ya: Ya): (1Y)} Then
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7 =X, ¢.{d}{ab}.{a,b,d}} and 7o = {¥. 4.y, }.£Vs Vo3 AV, V2, Vi) Hence
BO(X) =1{X,¢.{a}.{o} {d}.{a.b}.{a,c}.{a,d}.{b,c},
{b,d},{c,d},{a,b,c},{a,b,d},{a,c,d},{b,c,d}}.

Define a mapping f :x —Q such that

f(@)=y, f(b)=y, f(c)=y, and f(d)=y,.
Then f isnota g-rough continuous mapping, since V ={y,} is an internally R, —definable set
inQ,but f*(V)={c} isnotan internally S -definable set in « .

Lemma 2.1 [10]. Let K=(X,R1,TK) and Q =(Y,R2,TQ) be two topologized approximation
spaces. If f:x —Q isa s-rough continuous mapping, then the inverse image of each exact set
in Q is s-exact setin k.

Lemma 2.2 [11]. Let x=(X,R,,7,) and Q =(Y,R2,TQ) be two topologized approximation
spaces. If f :x —Q isa p-rough continuous mapping, then the inverse image of each exact set
inQ is p-exactsetin x.

Lemma 2.3. Let ¥ =(X,R,,7, ) and Q = (Y, R, ,rQ) be two topologized approximation spaces. If

f :x —Q isa j-rough continuous mapping for all je{y,a,f}, then the inverse image of each
exact setin Q is j-exactsetin «.

Proof. We shall prove this lemma in the case of j=a and the other cases can be proved
similarly.

Let A be anexact setin Q , then A is both internally and externally R, —definable set in
Q . Hence by Theorem 2.5, we get f ‘l(A) is both internally and externally « -definable set in

x . Therefore f (A) isan a -exactsetin k. o

Theorem 2.6. Let k =(X,Rl,rK), Q= (Y, RQ,TQ) be two topologized approximation spaces and
let f:x—Q bea j-rough continuous mapping of X onto Y for all je{p,s,y,a,pB}. If
x=(X,R,,7, ) is j-rough connected, then Q = (Y, RQ,TQ) IS rough connected.

Proof.
We shall prove this theorem in the case of j=y and the other cases can be proved

similarly.

Assumeythat Q =(Y, RZ,TQ) is rough disconnected topologized approximation space. Then by
Theorem 2.1, there exists a nonempty exact proper subset A of Y in Q. Since f is y-rough
continuous mapping from X onto Y, then by Lemma 2.3, we get f *(A) is a nonempty y-
exact proper subset of X in x. Thus x is y-rough disconnected, but this is a contradiction.
Therefore Q = (Y, RQ,TQ) is rough connected. O

3. Conclusions

In this paper, we used some classes of near open sets to introduce various levels of
connected topologized approximation spaces.
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