Some New Super Mean Graphs

P. Sugirtha, R. Vasuki and J. Venkateswari Department of Mathematics,
Dr. Sivanthi Aditanar College of Engineering Tiruchendur-628 215, Tamil Nadu, India.

Abstract - Let G be a graph and $f: V(G) \rightarrow \{1, 2, 3, ..., p + q\}$ be an injection. For each edge e = uv, the induced edge labeling f^* is defined as follows:

$$f^{*}(e) = \begin{cases} \frac{f(u) + f(v)}{2}, & \text{if } f(u) + f(v) \text{ is even} \\ \frac{f(u) + f(v) + 1}{2}, & \text{if } f(u) + f(v) \text{ is odd.} \end{cases}$$

Then *f* is called super mean labeling if $f(V(G)) \cup \{f^*(e) : e \in E(G)\} = \{1, 2, ..., p+q\}$. A graph that admits a super mean labeling is called super mean graph. In this paper, we establish the supermeanness of the graphs $H_n \odot mK_1$, $T_n \odot K_1$, $Q_n \odot K_1$, $C_n + v_1v_3$ ($n \ge 5$), $T_n(C_m)$ and slanting ladder SL_n for $n \ge 2$, $n \ne 3t + 1$, $t \ge 1$.

Key Words. super mean graph, super mean labeling.

AMS Subject Classification Number: 05C78

1. Introduction

Throughout this paper, by a graph we mean a finite, undirected and simple graph. Let G(V, E) be a graph with p vertices and q edges. For notations and terminology we follow [1].

The path on *n* vertices is denoted by P_n and a cycle on *n* vertices is denoted by C_n . A triangular snake is obtained from a path by identifying each edge of the path with an edge of the cycle C_3 . The graph $C_n + v_1v_3$ is obtained from the cycle C_n : $v_1v_2 \dots v_nv_1$ by adding an edge between the vertices v_1 and v_3 . The balloon of the triangular snake $T_n(C_m)$ is the graph obtained from C_m by identifying an end vertex of the basic path in T_n at a vertex of C_m . A quadrilateral snake is obtained from a path by identifying each edge of the path with an edge of the cycle C_4 . If *m* number of pendant vertices is attached at each vertex of G, then the resultant graph obtained from G is the graph G $\odot mK_1$. When m = 1, G \odot K₁ is the corona of G. The H-graph of a path P_n, denoted by H_n is the graph obtained from two copies of P_n with vertices $v_1, v_2, ..., v_n$ and $u_1, u_2, ..., u_n$ by joining the vertices $\frac{v_{n+1}}{2}$ and $\frac{u_{n+1}}{2}$ if *n* is odd and the vertices $\frac{v_{n+1}}{2}$ and $\frac{u_n}{2}$ if *n* is even. The slanting ladder SL_n is a graph obtained from two paths $u_1u_2 ... u_n$ and $v_1v_2 ... v_n$ by joining each u_i with v_{i+1} , $1 \le i \le n-1$.

The concept of mean labeling was introduced and studied by S.Somasundaram and R. Ponraj [4]. Some new families of mean graphs are discussed in [9, 10]. The concept of super mean labeling was introduced and studied by D. Ramya et al. [3]. Further some more results on super mean graphs are discussed in [2, 5, 6, 7, 8].

In this paper, we establish the supermeanness of the graphs $H_n \odot mK_1$, $T_n \odot K_1$, $Q_n \odot K_1$, $C_n + v_1 v_3$, $T_n(C_m)$ and slanting ladder SL_n for $n \ge 2$, $n \ne 3t + 1$, $t \ge 1$.

A vertex labeling of G is an assignment $f: V(G) \rightarrow \{1, 2, 3, ..., p + q\}$ be an injection. For a vertex labeling *f*, the induced edge labeling $f^*(e = uv)$ is defined by

$$f^{*}(e) = \begin{cases} \frac{f(u) + f(v)}{2}, & \text{if } f(u) + f(v) \text{ is even} \\ \frac{f(u) + f(v) + 1}{2}, & \text{if } f(u) + f(v) \text{ is odd.} \end{cases}$$

Then *f* is called super mean labeling if $f(V(G)) \cup \{f^*(e) : e \in E(G)\} = \{1, 2, ..., p+q\}$. Clearly f^* is injective. A graph that admits a super mean labeling is called super mean graph.

A super mean labeling of the graph K₂, ₄ is shown in Figure 1.

Figure 1.

2 Super Mean Graphs

Theorem 2.1. The graph $H_n \odot mK_1$ is a super mean graph for all positive integers m and n.

Proof. Let $u_1, u_2, ..., u_n$ and $v_1, v_2, ..., v_n$ be the vertices on the path of length n - 1. Let $x_{i, k}$ and $y_{i, k}, 1 \le k \le m$ be the pendant vertices at u_i and v_i respectively, for $1 \le i \le n$. The graph $H_n \odot mK_1$ has 2n(m+1) vertices and 2n(m+1)-ledges.

Define $f: V(H_n \odot mK_1) \to \{1, 2, 3, ..., p + q = 4n(m+1) - 1\}$ as follows: For $1 \le i \le n$,

$$\begin{split} f(u_i) = \begin{cases} 2(m+1)(i-1)+1, & i \text{ is odd} \\ 2(m+1)i-1, & i \text{ is oven} \end{cases} \\ f(v_i) = \begin{cases} f(u_i)+2n(m+1)+2m, & i \text{ is odd and n is odd} \\ f(u_i)+2n(m+1)-2m, & i \text{ is even and n is odd} \\ f(u_i)+2n(m+1), & n \text{ is even.} \end{cases} \end{split}$$

For $1 \leq i \leq n$ and $1 \leq k \leq m$,

$$f(x_{i,k}) = \begin{cases} 2(m+1)(i-1)+4k-1, & i \text{ is odd} \\ 2(m+1)(i-2)+4k+1, & i \text{ is even} \end{cases}$$

$$f(y_{i,k}) = \begin{cases} f(x_{i,k})+2n(m+1)-2m, & i \text{ is odd and n is odd} \\ f(x_{i,k})+2n(m+1)+2m, & i \text{ is even and n is odd} \\ f(x_{i,k})+2n(m+1), & n \text{ is even.} \end{cases}$$

The induced edge labels are obtained as follows:

For $1 \le i \le n - 1$, $f^*(u_i \, u_{i+1}) = 2i(m+1)$ and $f^*(v_i \, v_{i+1}) = f^*(u_i \, u_{i+1}) + 2n(m+1)$.

For $1 \le i \le n$ and $1 \le k \le m$,

$$f^{*}(u_{i} x_{i,k}) = 2(m+1)(i-1) + 2k$$

$$f^{*}(v_{i} y_{i,k}) = f^{*}(u_{i} x_{i,k}) + 2n(m+1)$$

$$f^{*}(u_{\frac{n+1}{2}} v_{\frac{n+1}{2}}) = 2n(m+1) \quad if \ n \ is \ odd$$

$$f^{*}(u_{\frac{n+2}{2}} v_{\frac{n}{2}}) = 2n(m+1) \quad if \ n \ is \ even.$$

Thus, *f* is a super mean labeling of $H_n \odot mK_1$. Hence $H_n \odot mK_1$ is a super mean graph for all positive integers m and n.

Figure 2.

Theorem 2.2. The graph $T_n \bigcirc K_1$ is a super mean graph, for $n \ge 1$.

Proof. Let u_1 , u_2 ,..., u_n , u_{n+1} be the vertices on the path of length n in T_n and let v_i , $1 \le i \le n$ be the vertices of T_n in which v_i is adjacent to u_i and u_{i+1} . Let $v_i'v_i$ be the path attached at each v_i , $1 \le i \le n$ and $u_i'u_i$ be the path attached at each u_i , $1 \le i \le n+1$. The graph $T_n \bigcirc K_1$ has 4n + 2 vertices and 5n + 1 edges.

Define $f: V(T_n \odot K_1) \rightarrow \{1, 2, 3, ..., p + q = 9n + 3\}$ as follows:

$f(u_{\rm i}) = 9{\rm i}-6,$	$1 \le i \le n+1$
$f(v_i) = 9i - 4,$	$1 \le i \le n$
$f(v_i') = 9i - 2,$	$1 \le i \le n$
$f(u_i') = 9i - 8,$	$1 \le i \le n+1$.

For the vertex labeling f, the induced edge labeling f^* is given as follows:

$f^*(u_iu_{i+1}) = 9i - 1,$	$1 \le i \le n$
$f^*(u_iv_i)=9i-5,$	$1 \le i \le n$
$f^*(v_iu_{i+1}) = 9i,$	$1 \le i \le n$
$f^*(v_iv_i')=9i-3,$	$1 \le i \le n$
$f^*(u_i u_i') = 9i - 7,$	$1 \le i \le n+1$

Thus, f is a super mean labeling and hence $T_n \odot K_1$ is a super mean graph, for $n \ge 1$.

For example, a super mean labeling of $T_5 \bigcirc K_1$ is shown in Figure 3.

Figure 3.

Theorem 2.3. The graph $Q_n \bigcirc K_1$ is a super mean graph for $n \ge 1$.

Proof. Let $u_1, u_2, ..., u_n, u_{n+1}$ be the vertices on the path of length n in Q_n and let v_i and w_i be the vertices of Q_n in which v_i is adjacent to u_i and w_i is adjacent to u_{i+1} , for each i, $1 \le i \le n$. Let $v_i'v_i, w_i'w_i$ be the path attached at each v_i, w_i respectively for each i, $1 \le i \le n$ and $u_i'u_i$ be the path attached at each $u_i, 1 \le i \le n+1$.

The graph $Q_n \odot K_1$ has 6n + 2 vertices and 7n + 1 edges.

Define $f: V(Q_n \odot K_I) \rightarrow \{1, 2, 3, \dots, p+q = 13n+3\}$ as follows:

$f(u_1) = 3;$	$f(u_i) = 13i - 14,$	$2 \le i \le n+1$
$f(v_1) = 5;$	$f(v_i) = 13i - 5,$	$2 \leq \! i \leq \! n$
$f(w_1) = 14;$	$f(w_i) = 13i - 3,$	$2 \leq \! i \leq \! n$
$f(u_1') = 1;$	$f(u_2') = 9; f(u_i') = 13i - 10,$	$3 \le i \le n+1$
$f(v_1') = 7;$	$f(v_i') = 13i - 8,$	$2 \leq \! i \leq \! n$
$f(w_1') = 16;$	$f(w_i') = 13i + 2,$	$2 \leq i \leq n$.

For the vertex labeling f, the induced edge labeling f^* is given as follows:

$$f^{*}(u_{i}v_{i}) = 13i - 9, \qquad 1 \le i \le n$$

$$f^{*}(v_{1}w_{1}) = 10$$

$$f^{*}(v_{i}w_{i}) = 13i - 4, \qquad 2 \le i \le n + 1$$

$$f^{*}(w_{1}u_{2}) = 13$$

$$f^{*}(w_{i}u_{i+1}) = 13i - 2, \qquad 2 \le i \le n$$

$$f^{*}(u_{1}u_{2}) = 8$$

$$f^{*}(u_{i}u_{i+1}) = 13i - 7, \qquad 2 \le i \le n$$

$$f^{*}(u_{i}'u_{1}) = 2$$

$$f^{*}(u_{i}'u_{1}) = 13i - 7, \qquad 3 \le i \le n + 1$$

$$f^{*}(u_{i}'u_{i}) = 13i + 1, \qquad 3 \le i \le n + 1$$

$$f^{*}(v_{i}'v_{i}) = 13i - 6, \qquad 2 \le i \le n$$

$$f^{*}(w_{i}'w_{i}) = 13i, \qquad 2 \le i \le n.$$

Hence, *f* is a super mean labeling and hence $Q_n \odot K_l$ is a super mean graph for $n \ge l$.

For example, a super mean labeling of $Q_5 \odot K_1$ is shown in Figure 4.

Proof. Let C_n be a cycle with vertices $v_1, v_2, ..., v_n$ and edges $e_1, e_2, ..., e_n$ and e' be the edges joining v_1v_3 . The graph $C_n + v_1v_3$ has n vertices and n +1 edges. Define $f: V(C_n + v_1v_3) \rightarrow \{1, 2, 3, ..., p + q = 2n + 1\}$ as follows: Case (i) : n is odd.

$$f(v_i) = \begin{cases} 6, & i = 1 \\ 1, & i = 2 \\ 3, & i = 3 \\ 10, & i = 4 \\ 4i - 5, & 5 \le i \le \frac{n+3}{2} \\ 4(n-i) + 8, & \frac{n+3}{2} + 1 \le i \le n-1 \\ 9, & i = n \end{cases}$$

For the vertex labeling *f*, the induced edge labels are obtained as follows:

$$f^{*}(v_{i}v_{i+1}) = \begin{cases} 4, & i = 1 \\ 2, & i = 2 \\ 7, & i = 3 \end{cases}$$

$$f^{*}(v_{i}v_{i+1}) = \begin{cases} 4i - 3, & 4 \le i \le \frac{n+1}{2} \\ 4(n-i) + 6 & \frac{n+3}{2} \le i \le n-2 \\ 11, & i = n-1 \end{cases}$$

$$f^{*}(v_{1}v_{3}) = 5 \quad and$$

$$f^{*}(v_{n}v_{1}) = 8.$$

Case (ii): n is even.

$$f(v_i) = \begin{cases} 6, & i = 1 \\ 1, & i = 2 \\ 3, & i = 3 \\ 4i - 6, & 4 \le i \le \frac{n+2}{2} \\ 4(n-i) + 9 & \frac{n+4}{2} + 1 \le i \le n. \end{cases}$$

For the vertex labeling *f*, the induced edge labels are obtained as follows:

$$f^{*}(v_{i}v_{i+1}) = \begin{cases} 4, & i=1\\ 2, & i=2\\ 7, & i=3\\ 4i-4, & 4 \le i \le \frac{n+2}{2}\\ 4(n-i)+7 & \frac{n+4}{2} \le i \le n-1 \end{cases}$$

$$f^{*}(v_{1}v_{3}) = 5 \quad and$$

$$f^{*}(v_{n}v_{1}) = 8.$$

Hence, *f* is a super mean labeling and hence $C_n + v_1v_3$ is a super mean graph for $n \ge 5$.

ISSN: 2231-5373

For example, a super mean labeling of $C_8 + v_1v_3$ and $C_9 + v_1v_3$ are shown in Figure 5.

 $C_8 + v_1 v_3$

 $C_9 + v_1 v_3$

Figure 5.

Theorem 2.5. If C_m is a super mean graph, then $T_n(C_m)$ is also a super mean graph for $n \ge 1$.

Proof. Let *f* be a super mean labeling of C_m (m \neq 4) with vertices $u_1, u_2, ..., u_m$. Let $u_1, u_2, ..., u_m, v_1, v_2, ..., v_n, v_{n+1}$ and $w_1, w_2, ..., w_n$ be the vertices of $T_n(C_m)$. The graph $T_n(C_m)$ has m + 2n vertices and m + 3n edges.

We define $g : V(T_n(C_m)) \to \{1, 2, 3, ..., p + q = 2m + 5n\}$ as follows:

$g(u_{\rm i})=f(u_{\rm i}),$	$1 \le i \le m$
$g(v_i)=2m+5(i-1),$	$1 \leq i \leq n+1$
$g(w_i) = 2(m + 1) + 5(i - 1),$	$1 \leq i \leq n$

For the vertex labeling g, the induced edge labeling g^* is defined as follows:

$g^{*}(u_{i}u_{i+1}) = f^{*}(u_{i}u_{i+1}),$	$1 \le i \le m$
$g^*(v_iv_{i+1}) = 2m + 5i - 2,$	$1 \leq i \leq n$
$g^*(\mathbf{v}_i\mathbf{w}_i)=2\mathbf{m}+5\mathbf{i}-4,$	$1 \leq i \leq n$
$g^*(w_i v_{i+1}) = 2m + 5i - 1,$	$1 \le i \le n$

It can be easily verified that g is a super mean labeling and hence $T_n(C_m)$ is a super mean graph for $n \ge 1$, $m \ge 3$ and $m \ne 4$.

For example, a super mean labeling of C_9 , C_{10} , $T_4(C_9)$, $T_4(C_{10})$ are shown in Figure 6.

Figure 6.

Remark 2.6. C_4 is not a super mean graph, but $T_n(C_4)$ is a super mean graph for $n \ge 1$.

A super mean labeling of $T_3(C_4)$ is shown in Figure 7.

Figure 7.

Theorem 2.7. The slanting ladder SL_n is a super mean graph, for $n \ge 2$ and $n \ne 3t + 1, t \ge 1$.

Proof. Let $u_1, u_2, ..., u_n$ and $v_1, v_2, ..., v_n$ be the vertices on the paths of length n–1. The graph SL_n has 2n vertices and 3(n–1) edges.

We define $f: V(SL_n) \rightarrow \{1, 2, \dots, p+q = 5n-3\}$ as follows:

$$\begin{aligned} f(u_{3i-2}) &= 15i - 10, & 1 \le i \le n-2 \\ f(u_{3i-4}) &= 15i - 23, & 2 \le i \le n-1 \\ f(u_{3i-6}) &= 15i - 34, & 3 \le i \le n \\ f(v_1) &= 1 & \\ f(v_{3i-4}) &= 15i - 27, & 2 \le i \le n-1 \\ f(v_{3i-6}) &= 15i - 33, & 3 \le i \le n \\ f(v_{3i-8}) &= 15i - 45, & 4 \le i \le n-2. \end{aligned}$$

For the vertex labeling f, the induced edge labeling f^* is defined as follows:

$$f^*(u_{3i-2}u_{3i-1}) = 15i - 9, \qquad 1 \le i \le n - 2$$

$$f^*(u_{3i-4}u_{3i-3}) = 15i - 21, \qquad 2 \le i \le n - 1$$

$$f^*(u_{3i-6}u_{3i-5}) = 15i - 29, \qquad 3 \le i \le n - 3$$

$$f^*(v_1v_2) = 2$$

$$f^*(v_{3i-4}v_{3i-3}) = 15i - 22, \qquad 2 \le i \le n - 1$$

$$f^*(v_{3i-6}v_{3i-5}) = 15i - 31, \qquad 3 \le i \le n - 3$$

$$f^*(v_{3i-8}v_{3i-7}) = 15i - 43, \qquad 4 \le i \le n - 2$$

ISSN: 2231-5373

http://www.ijmttjournal.org

$$f^{*}(u_{1}v_{2}) = 4$$

$$f^{*}(u_{3i-4}v_{3i-3}) = 15i - 20, \qquad 2 \le i \le n - 1$$

$$f^{*}(u_{3i-6}v_{3i-5}) = 15i - 32, \qquad 3 \le i \le n - 3$$

$$f^{*}(u_{3i-8}v_{3i-7}) = 15i - 41, \qquad 4 \le i \le n - 2.$$

Thus, *f* is a super mean labeling and hence SL_n is a super mean graph, for $n \ge 2$ and $n \ne 3t + 1$, $t \ge 1$.

For example, a super mean labeling of SL_{12} is shown in Figure 8.

Problem 2.8. Super meanness of SL_n for $n = 3t + 1, t \ge 1$ is to be discussed.

REFERENCES

- [1] F. Harary, *Graph Theory*, Addison-Wesley, Reading Mass., (1972).
- [2] A. Nagarajan, R. Vasuki and S. Arockiaraj, Super mean number of a graph, *Kragujevac Journal of Mathematics*, 36(1) (2012), 61-75.
- [3] D. Ramya, R. Ponraj and P. Jeyanthi, Super mean labeling of graphs, Ars Combin, 112 (2013), 65-72.
- [4] S. Somasundaram and R. Ponraj, Mean labelings of graphs, *National Academy Science letter*, 26 (2003), 210-213.
- [5] R. Vasuki and A. Nagarajan, Some results on super mean graphs, International J. Math. Combin., 3 (2009), 82-96.
- [6] R. Vasuki and A. Nagarajan, On the construction of new classes of super mean graphs, Journal of Discrete Mathematical Sciences & Cryptography, 13(3) (2010), 277-290.
- [7] R. Vasuki and A. Nagarajan, Further results on super mean graphs, Journal of Discrete Mathematical Sciences & Cryptography, 14(2) (2011), 193-206.
- [8] R. Vasuki and S. Arockiaraj, On super mean graphs, Util. Math., (To appear).
- [9] R. Vasuki and A. Nagarajan, Meanness of the graphs $P_{a,b}$ and P_a^b , International Journal of Applied Mathematics, 22(4) (2009), 663-675.
- [10] R. Vasuki and A. Nagarajan, On the Meanness of Arbitrary path super subdivision of paths, Australasian Journal of Combinatories, 51 (2011), 41-48.