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Abstract— In this paper a brief introduction to Henstock-Kurzweil integrals is given based on previous studies. This paper explains 

about definition and some properties of Henstock-Kurzweil integral. Henstock-Kurzweil integral is generalized from Riemann 

integral. The theory of the Riemann integral was not fully satisfactory. Many important functions do not have Riemann integral. So, 

Henstock and Kurzweil made the new theory of integral. 
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I. INTRODUCTION 

The theory of integration has a long history which dated back to thousand years ago. However the modern theory began with 

I. Newton (1642 - 1727) and G.W. von Leibniz (1646 - 1716) in the seventeenth century. The idea of fluxions, as Newton called 

his calculus, was further with application of mechanics, physics and other areas. 

The foundation of the modern theory of integration or what we now call classical integration theory, was laid by 

G.F.B.Riemann (1826 - 1866) in the nineteenth century. This is also the integration theory which is taught in the undergraduate 

years at the university. However, in 1902, H.Lebesgue (1875 - 1941) following the work of others established what is now 

known as Lebesgue integral, or in its abstract version measure theory. Of course, many great mathematicians, who came before 

and after Lebesgue, helped to initiate, to develop, and later perfected the theory. This is the theory that dominates the 

mathematics arena nowadays. It finds application in virtually every branch of mathematical analysis. 

However the Lebesgue integrals has its own defects. For example, it does not integrate the derivatives as the Newton 

calculus does. An integral that includes Lebesgue and is able to integrate the derivative was first define by A.Denjoy in 1912 

and later another version by O.Perron in 1914. It was until 1921 that the two integrals were proved to be equivalent. The fact 

that it took so many years shows the difficulty of the proof at the time. There has been active research on the Denjoy-Perron 

integral since then. 

Both the Denjoy and the Perron integrals were difficult to handle. The break-through came in 1957-1958 when Henstock and 

Kurzweil gave independently a Riemann-type definition to the Denjoy-Perron integral. Not only that the definition is now 

easier, but also the proofs using the Henstock-Kurzweil integral are often simpler. 

Here throughout we denote the set of real numbers by R. Now we will see few examples of functions which are neither 

Riemann integrals nor Lebesgue integrals, but they are Henstock-Kurzweil integral. And so it is important to study Henstock-

Kurzweil integrals. 

Example 1: Consider the following discontinuous system, 

 , where -  

If  and h (0) =0, then is a highly oscillating function and is not Lebesgue integrable on . However, 

with x (0) = 0, the above system has following solution 
-

 . 

The above integral is neither Riemann integral nor Lebesgue integral, it is Henstock-Kurzweil integral. 

 

Example 2: Define a function F on [0, 1] by F (0) = 0, otherwise  .  

The derivative of F is f, given by, f (0) = 0, , if . 

The above function f is neither Riemann integrable nor Lebesgue integrable, but f is Henstock-Kurzweil integrable. 

 

 

 

II. BASIC DEFINITIONS AND THEORY 
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Definition 1: Let [a, b] be a closed, bounded interval. A tagged partition P of [a, b] consists of partition  of [a, b] 

along with a set of points that satisfy -  for each i . 

Definition 2: Let [a, b] be a closed, bounded interval and Let  be a positive function (i.e.  for all x in [a, 

b]). A - fine tagged partition -  of [a , b] is a tagged partition of [a , b] that satisfies 

- -  for each  . 

Definition 3 : Let  and Let -  be a tagged partition of [a , b] . Then the Riemann Sum 

S(P , f ) of f on P is defined by - -  . 

Definition 4: A positive function  (i.e.  for all x in [a, b]) is known as a gauge on [a, b]. 

Theorem 1:(CousinsLemma) δ - fine partition exists for any gauge . 

Proof: We prove this theorem by method of contradiction.  

Let us assume the contrary. We divide [a, b] in two subintervals [a, c] and [c, b], where c is midpoint of [a, b]. Atleast 

one of the subintervals does not have  - fine partition. We denote it by  .  

Now, we bisect . Atleast one of the subintervals does not possess a  - fine partition, and denote it by  .  

Continuing we obtain a sequence of nested subintervals whose diameter tends to zero.  

By Cantor's Intersection Theorem, there exists a unique point x in the intersection. Since diameter tends to zero there 

exists some n large enough so that . Thus we arrive at a contradiction, and hence the theorem is proved. 

 

Definition 5 : A function  is Riemann integrable on [a , b] if there exists a number I such that for each  there 

exists   such that -  for all tagged partitions P of [a , b] with norm of P less than  . 

 

Now with a small change in the definition of Riemann integrable function we arrive to a more generalized definition 

and this is the definition of Henstock-Kurzweil integrable function. 
 

Definition 6 :A function  is Henstock-Kurzweil integrable on [a , b] if there exists a number I such that for each  

there exists a positive function  defined on [a , b] such that -  for all  - fine tagged partition P of [a , b] . 

Alternately we can also use the following definition. 

Let f be a function that is defined at every point of [a, b]. Then f is said to be Henstock-Kurzweil integrable on [a , b] if 

it satisfies the following point wise integrability criterion : there is a number I so that for every  there is a positive function 

with the property that - - -  whenever points are given  for which 

- -  with associated points -  . 

Theorem 2:Henstock-Kurzweil integral is well defined i.e. if f is a Henstock-Kurzweil integrable function on an interval [a, b], 

then the Henstock-Kurzweil integral of f on [a, b] is unique. 

Proof:Suppose that I and I' in R are both Henstock-Kurzweil integrals of f on [a, b].  

Let . Then there exists two positive functions  defined on [a , b] such that -  for all  - 

fine tagged partition P of [a , b], and such that -  for all  - fine tagged partition P of [a , b]. Define a function 

 by . Then, by the triangle inequality, for all  - fine tagged partition of [a, b], 

 

This implies that I = I’. 

It follows that Henstock-Kurzweil integral of f on [a, b] is unique. i.e. It is well defined. 

 

Theorem 3:Suppose that f and g are Henstock-Kurzweil integrable functions defined on [a, b] and that k, c, d are constants. 

Then  

(i)kf is Henstock-Kurzweil integrable on [a , b] and  . 
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(ii)f + g is Henstock-Kurzweil integrable on [a , b] and  . 

(iii)f - g is Henstock-Kurzweil integrable on [a , b] and - -  . 

(iv) cf + dg is Henstock-Kurzweil integrable on [a, b] and  . 

Proof: Let . 

Then there exists a real number   and a positive function  such that -   for all  - fine tagged 

partition P of [a, b]. Thus for all  - fine tagged partitions of [a, b], 

 

 

 

It follows that kf is Henstock-Kurzweil integrable on [a, b] and  . 

Now, if g is also Henstock-Kurzweil integrableon [a , b] with  , then there exists real numbers  and  and 

positive functions  such that - for all  - fine tagged partitions  of [a , b] and 

-  for all  - fine tagged partitions  of [a , b]. 

Define a positive function  for each x in [a , b]. Then for each  - fine tagged 

partition P, we have  

 

 

 

Thus, f + g is Henstock-Kurzweil integrable on [a, b] and  . 

Similarly, we can prove Statement (iii) of the theorem. 

Statement (iv) of the theorem can be proved by using Statements (i) and (ii). 

Thus, cf + dg is Henstock-Kurzweil integrable on [a, b] and  . 

 

Theorem 4: (Cauchy Criterion for Henstock-Kurzweil integrals) Let f be a function defined on the interval [a, b]. Then f is 

Henstock-Kurzweil integrable on [a , b] if and only if for each  there exists a positive function such that 

-  for all  - fine tagged partitions of [a , b]. 

 

Proof: Let us first assume that f is Henstock-Kurzweil integrable on [a, b].  

Let  and choose a positive function  such that -  for all  - fine tagged partitions of 

[a, b]. 

Now, Let  be two  - fine tagged partitions of [a, b]. Then,  

 

 

It follows that -  for all  - fine tagged partitions  of [a, b]. 

We will now prove the converse of thisstatement. 

Suppose that for each , there exists a positive function defined on [a, b] such that -  for all  - 

fine tagged partitions  of [a, b]. 

For each positive integer n, choose a positive function  such that -  for all  - fine tagged 

partitions  of [a, b].  

Without Loss of Generality, we may assume that the sequence  is decreasing (i.e. for each n,  for all 

x in [a, b]).  
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Now, for each n, let  be a  - fine tagged partition of [a, b]. If K is a positive integer, and m,n are positive integers 

greater than or equal to K, then the tagged partitions  - fine tagged partitions, since the sequence  is 

decreasing. It follows that -  . 

We can conclude that  is a Cauchy sequence. Since every Cauchy sequence of real numbers converges, 

define I in R to be the limit of this sequence. 

Let . Since  converges to I, there exists a positive number N such that and  

- For all . Define a positive function  on [a, b] by  , and suppose that P is a δ - fine tagged 

partitions of [a, b]. Then,  

 

It follows that f is Henstock-Kurzweil integrable on [a, b] and . 

 

Theorem 5: If f is Henstock-Kurzweil integrable on [a, b], then f is Henstock-Kurzweil integrable on each subinterval of [a, b]. 

 

Proof: Supposethat [c, d] is a subinterval of [a, b] and let .  

Since f is Henstock-Kurzweil integrable on [a, b], there exists a positive function  defined on [a, b] such that  

- For all  - fine tagged partitions of [a, b]. Let  be a tagged partition of the interval [a , c] such that 

- - and Let be a tagged partition of the interval [d , b] such that - - . 

Assume that for each partition, each tag occurs only once. Let  be two  - fine tagged partitions of [c, d], and 

suppose thatin each partition, each tag occurs only once. We note that both  and  are  - fine tagged 

partitions of [a, b]. Now,  

 

 

 

Hence by Theorem 4, it follows that f is Henstock-Kurzweil integrable on [c, d]. 

 

Theorem 6: Let and let c be in (a, b). If f is Henstock-Kurzweil integrable on the intervals [a, c] and [c, b] then f is 

Henstock-Kurzweil integrable on [a, b] and  . 

 

Proof: Let . Since f is Henstock-Kurzweil integrable on [a , c] and [c , b], there exists positive functions  and 

 such that -  for all  - fine tagged partition  of [a , c] and -  for all 

 - fine tagged partition  of [c , b]. 

Define a positive function  on [a, b] by 

 

Let -  be a  - fine tagged partition of [a, b]. We note that for any tag less c, the right endpoint of 

the tag's interval is less than c, and for any tag greater than c, the left endpoint of the tag's interval is greater than c. Thus, c must 

be a tag of P.  

Now, Let N be a positive integer such that  for all indices  and for all indices . Then 

-  is a  - fine tagged partition of [a, c]  

and  -  is a  - fine tagged partition of [c , b]. 

Let  denote the set of indices of tags of  and let  denote the set of indices of tags of . Thus, 

 

It follows that f is Henstock-Kurzweil integrable on [a, b] and  . 

 

Theorem 7: If f is continuous function on [a, b], then f is Henstock-Kurzweil integrable on [a, b]. 
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Proof:Since f is continuous on [a, b]. Hence for any given , there exists  with the property that -
-

 for 

all x, y in [a, b] such that -  . 

Here the function  is a gauge on [a, b]. 

Let  and be two  - fine tagged partitions of [a , b]. 

If  is a non-empty for some , we select and fix a point . 

On the other hand, if  is empty for some we set  . 

Let  and Let - for each pair of real numbers  satisfying . 

 

 

 

 

Hence by Theorem 4, f is Henstock-Kurzweil integrable on [a, b]. 

 

Theorem 8: If f is Henstock-Kurzweil integrable on [a, b], then  is also Henstock-Kurzweil integrable on [a, b]. 

 

Proof:Since f is bounded, there exists a positive real number M such that for all x in [a, b], we have . 

Since f is Henstock-Kurzweil integrable. Let  and choose a positive function .  

Let  be two  - fine tagged partition of [a, b]. Therefore by Theorem 4, -  

Now, - - - - - -  

Therefore,  

Thus, - -  

 

 

Hence by Theorem 4, is Henstock-Kurzweil integrable on [a, b]. 

 

Theorem 9:If f and g are Henstock-Kurzweil integrable on [a, b], then fg is Henstock-Kurzweil integrable on [a, b]. 

 

Proof:Given that f and g are Henstock-Kurzweil integrable on [a, b]. 

We know that, -  

Hence by Theorem 3 and Theorem 8, fg is Henstock-Kurzweil integrable on [a, b]. 

 

Theorem 10: (Fundamental Theorem of Calculus) Let  and Let f be a continuous function on [a, b]. If F is 

differentiable on (a, b) and for all x in (a, b), then f is Henstock-Kurzweil integrable on [a, b] and 

-  . 

 

Proof of the theorem can be seen in [3]. 

III. CONCLUSION 

In this paper, we have seen how a small change in to the definition of the Riemann integral and the introduction of the  - 

fine tagged partition has provided us with more generalized and much more stronger form of integral. This allows us to handle 

some improper Riemann integrals. We have seen a more generalized form of Fundamental Theorem of Calculus and some 

properties of integrals. Still there are many more results of Henstock-Kurzweil Integrals which are not proved and lot of work 

can be done in this area.  
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