Some common fixed point results for four mappings on p-cone metric type space using f-phi-psi-weakly contraction.

Eriola Sila ${ }^{\# 1}$, Elida Hoxha ${ }^{\# 2}$, Silvana Liftaj ${ }^{\# 3}$
\#1,2 Department of Mathematics, Faculty of Natural Sciences, University of Tirana, Tirana, Albania
\#3 Department of Mathematics, Faculty of Information Technology, University "A. Moisiu", Durres, Albania

Abstract

In this paper we prove some new theorems about common fixed point for multi-valued and single-valued mappings in p-cone metric type space satisfying a weak contractive condition. The theorems use weakly compatibility and $f-\psi-\varphi$-weakly contraction as [1].

Keywords- p-cone metric type space, common fixed point, generalized $f-\psi-\varphi$-weakly contraction, weakly compatible mappings.

I. Introduction

Huang and Zhang [3] have reviewed the concept of cone metric spaces replacing the set of real numbers by an ordered Banach space. They have generalized the Banach contraction in cone metric space, and have proved many other theorems. There are many authors who have extended these results to regular cone metric space as R. H. Haghi, Sh. Rezapour[7]. In other papers is used the normality of cone metric space. Also, there are many works with common fixed point theorems in normal cone metric space as Th . Abdeljawad and E. Karapinar[6] . E. Hoxha and A. H. Ansari[1] have given some results for discolated metric spaces. In this paper, we consider cone metric type space for $p \geq 1$ which is a generalization of cone metric spaces where $p=1$ and we have seen the results of [1] in this space. Also we have used a weakly contraction which is a generalization of [1]. We have given an example for our main result.

Now we recall some known notions, definitions and results which are used in this paper.

II. Preliminaries

Definition: 2.1 [3]

Let E be a real Banach space and P be a subset of $E . P$ is called a cone if and only if
(i) P is closed, $P \neq \varnothing, P \neq\{0\}$;
(ii) for all $x, y \in P \Rightarrow \alpha x+\beta y \in P$, where $\alpha, \beta \in R^{+}$;
(iii) $x \in P$ and $-x \in P \Rightarrow x=0$.

For a given cone $P \subset E$, we can define a partial ordering \leq with respect to P by $x \leq y$ if and only if $y-x \in P$. $x<y$ will stand $x \leq y$ and $x \neq y$, while $x \square y$ will stand for $y-x \in \operatorname{int} P$, int P denotes the interior of P. From now on, it is assumed that int $P \neq \Phi$.

The cone P is called normal if there is a number $K>0$ such that $0 \leq x \leq y \Rightarrow\|x\| \leq K\|y\|$, for all $x, y \in E$. The least positive k satisfying this is called the normal constant of P. Sh.Rezapour and R. Hamlbarani[5] have proved that doesn't exist a cone metric space with normal constant $\mathrm{K}<1$, so $\mathrm{K}>1$.

The cone P is called regular if every increasing sequence which is bounded above is convergent; that is if x_{n} is a sequence such that $x_{1} \leq x_{2} \leq \ldots \leq x_{n} \leq \ldots \leq y$, for some $y \in E$, then there is $x \in E$ such that $\left\|x_{n}-x\right\| \rightarrow 0$ as $n \rightarrow \infty$. Equivalently, the cone P is regular if every sequence which is bounded below is convergent.

Lemma:2.2 [5]
(i) Every regular cone is normal.
(ii) For each $\mathrm{k}>1$, there is a normal cone with normal constant $\mathrm{K}>\mathrm{k}$.
(iii) The cone P is regular if every decreasing sequence which is bounded from below is convergent.

Definition:2.3[3] Let X be a nonempty set. Suppose the mapping $d: X \times X \rightarrow E$ satisfies
(i) $0 \leq d(x, y)$ for all $x, y \in X$, and $d(x, y)=0$ if and only if $x=y$;
(ii) $d(x, y)=d(y, x)$ for all $x, y \in X$;
(iii) $d(x, y) \leq d(x, z)+d(z, y)$, for all $x, y, z \in X$.

Then, d is called a cone metric on X and (X, d) is called a cone metric space.
Definition:2.4[3] Let X be a nonempty set and $p \geq 1$. Suppose the mapping $d_{p}: X \times X \rightarrow E$ satisfies
(i) $0 \leq d_{p}(x, y)$ for all $x, y \in X$,
(ii) $d_{p}(x, y)=d_{p}(y, x)$ if and only if $x=y$;
(iii) $d_{p}(x, z) \leq p\left(d_{p}(x, y)+d_{p}(y, z)\right)$ for all $x, y, z \in X$

Then d_{p} is called p-cone metric on X, and $\left(X, d_{p}\right)$ is called a p-cone metric type space.
Definition:2.5 Let $\left(X, d_{p}\right)$ be a p-cone metric type space, $x \in X$ and let $\left\{x_{n}\right\}_{n \in N}$ be a sequence in X. Then
(i) $\left\{x_{n}\right\}_{n \in N}$ converges to x if for every $c \in E$ with $0 \square c$ there is a natural number n_{0}, such that $d_{p}\left(x_{n}, x\right) \square c$ for all $n \geq n_{0}$. It is denoted $\lim _{n \rightarrow \infty} x_{n}=x$ or $x_{n} \rightarrow x ;$
(ii) $\left\{x_{n}\right\}_{n \in N}$ is a Cauchy sequence if for every $c \in E$ with $0 \square c$ there is a natural number n_{0}, such that $d_{p}\left(x_{n}, x_{m}\right) \square c$ for all $n, m \geq n_{0} ;$
(iii) $\left(X, d_{p}\right)$ is a complete cone metric space if every Cauchy sequence in X is convergent in X.

Lemma:2.6[3] Let $\left(X, d_{p}\right)$ be a p-cone metric type space, let P be a normal cone constant K , and let $\left\{x_{n}\right\}_{n \in N}$ be a sequence in X . Then,
(i) The sequence $\left\{x_{n}\right\}_{n \in N}$ converges to x if and only if $d_{p}\left(x_{n}, x\right) \rightarrow 0$ (or equivalently $\left\|d_{p}\left(x_{n}, x\right)\right\| \rightarrow 0$);
(ii) The sequence $\left\{x_{n}\right\}_{n \in N}$ is Cauchy if and only if $d_{p}\left(x_{n}, x_{m}\right) \rightarrow 0$ (or equivalently $\left\|d_{p}\left(x_{n}, x_{m}\right)\right\| \rightarrow 0$);
(iii) The sequence $\left\{x_{n}\right\}_{n \in N}$ converges to x and the sequence $\left\{y_{n}\right\}_{n \in N}$ converges to y then $d_{p}\left(x_{n}, y_{n}\right) \rightarrow d_{p}(x, y)$.

Definition:2.7 [8]
P is called minihedral cone if $\sup \{x, y\}$ exists for all $x, y \in X$.

Let $\left(X, d_{p}\right)$ be a p-cone metric type space. We denote the family of all nonempty, bounded subset of X by $B(X)$.
Definition:2.8[2]
Let $A, B \in B(X)$,then $H(A, B)=\max \left\{\sup _{x \in A} d_{p}(x, B), \sup _{y \in B} d_{p}(y, A)\right\}, d_{p}(A, B)=\inf \left\{d_{p}(x, y): x \in A, y \in B\right\}$, $\delta_{p}(A, B)=\inf \left\{d_{p}(x, y): x \in A, y \in B\right\}$.

Definition:2.9[10]

The mappings $F: X \rightarrow B(X)$ and $f: X \rightarrow X$ are weakly compatible if they commute at coincidence points, so $\{t \in X / F t=\{f t\}\} \subseteq\{t \in X / F f t=f F t\}$.

Definition:2.10[4]

The function $\psi: P \rightarrow P$ which satisfies the following conditions

1. $\forall t \in P, \psi(t)<t$
2. $\forall t_{1}, t_{2} \in P, t_{1}<t_{2} \Rightarrow \psi\left(t_{1}\right)<\psi\left(t_{2}\right)$
is called a ultra altering function.

Remark:2.11

Note that in following theorem we take minihedral cone.

III. Main results

Definition:3.1

The function $f: P \times P \rightarrow P$ is called C-class if it is continuous and
(i) $f(s, t) \leq s$
(ii) $f(s, t)=s \Rightarrow s=0$ or $t=0$ for all $s, t \in P$
(iii) $f(0,0)=0$

Example:3.2

$E=R^{2}, P=\left\{(x, y) \in E^{2}, x, y>0\right\}, f(s, t)=s-t, f(s, t)=s \Rightarrow t=0$, so f is a C-class function.
Theorem:3.3
Let $\left(X, d_{p}\right)$ be a complete p-cone metric space. Let $F, G: X \rightarrow B(X)$ be mappings and $I, J: X \rightarrow X$ be self-mappings. Suppose that
(1) $\psi(H(F x, G y)) \leq f(\psi(N(x, y), \varphi(N(x, y))$ where
$N(x, y)=\max \left\{d_{p}(I x, J y), d_{p}(I x, F x), d_{p}(J y, G y), \frac{d_{p}(I x, G y)}{a}, \frac{d_{p}(J y, F x)}{a}\right\}$ for all $x, y \in P, a \geq p$ and φ, ψ are ultraaltering, ψ is continuous, φ is lower semi continuous function, and f a function of C-class
(2) $\cup G(X) \subseteq I(X), \cup F(X) \subseteq J(X)$ and either $I(X)$ or $J(Y)$ is closed,
(3) the pairs of mappings $\{F, I\}$ and $\{G, J\}$ are weakly compatible,
then F, G, I, J have a unique common fixed point $u \in X$ and $F u=G u=\{u\}$.

Proof:

Let $x_{0} \in X$ be an arbitrary point. By (2) there exist $x_{1} \in X$ such that $J x_{1} \in F x_{0}$. Furthermore, for this point x_{1} we can choose $x_{2} \in X$ such that $I x_{2} \in G x_{1}$ and $d_{p}\left(J x_{1}, I x_{2}\right) \leq H\left(F x_{0}, G x_{1}\right)$.

By condition (1) of Theorem1 and the property of function f, we have:
$\psi\left(d_{p}\left(J x_{1}, I x_{2}\right) \leq \psi\left(H\left(F x_{0}, G x_{1}\right)\right) \leq f\left(\psi\left(N\left(x_{0}, x_{1}\right)\right), \varphi\left(N\left(x_{0}, x_{1}\right)\right)\right) \leq \psi\left(N\left(x_{0}, x_{1}\right)\right)\right.$
Continuing this process, we can define inductively the sequence $\left\{x_{n}\right\}$ as follows $J x_{2 n+1} \in F x_{2 n}, I x_{2 n} \in G x_{2 n-1}$ for $n \in N$ and $d_{p}\left(I x_{2 n}, J x_{2 n+1}\right) \leq H\left(F x_{2 n}, G x_{2 n-1}\right)$.

Hence as ψ is monotonically increasing we have
$\psi\left(d_{p}\left(I x_{2 n}, J x_{2 n+1}\right)\right) \leq \psi\left(H\left(F x_{2 n}, G x_{2 n-1}\right)\right) \leq f\left(\psi\left(N\left(x_{2 n}, x_{2 n-1}\right)\right), \varphi\left(N\left(x_{2 n}, x_{2 n-1}\right)\right) \leq \psi\left(N\left(x_{2 n}, x_{2 n-1}\right)\right)\right.$
and $d_{p}\left(I x_{2 n}, J x_{2 n+1}\right) \leq N\left(x_{2 n-1}, x_{2 n}\right)$.(i)
$N\left(x_{2 n-1}, x_{2 n}\right)=\max \left\{d_{p}\left(I x_{2 n}, J x_{2 n-1}\right), d_{p}\left(I x_{2 n}, F x_{2 n}\right), d_{p}\left(J x_{2 n-1}, G x_{2 n-1}\right), \frac{d_{p}\left(I x_{2 n}, G x_{2 n-1}\right)}{a}, \frac{d_{p}\left(J x_{2 n-1}, F x_{2 n}\right)}{a}\right\}$
$\leq \max \left\{d_{p}\left(I x_{2 n}, J x_{2 n-1}\right), d_{p}\left(I x_{2 n}, J x_{2 n+1}\right), d_{p}\left(J x_{2 n-1}, I x_{2 n}\right), \frac{d_{p}\left(I x_{2 n}, I x_{2 n}\right)}{a}, \frac{d_{p}\left(J x_{2 n-1}, J x_{2 n+1}\right)}{a}\right\}$
$N\left(x_{2 n-1}, x_{2 n}\right) \leq \max \left\{d_{p}\left(I x_{2 n}, J x_{2 n-1}\right), d_{p}\left(I x_{2 n}, J x_{2 n+1}\right), d_{p}\left(J x_{2 n-1}, I x_{2 n}\right), \frac{p\left(d_{p}\left(J x_{2 n-1}, I x_{2 n}\right)+d_{p}\left(I x_{2 n}, J x_{2 n+1}\right)\right)}{a}\right\}$
$\leq \max \left\{d_{p}\left(I x_{2 n}, J x_{2 n+1}\right), d_{p}\left(J x_{2 n-1}, I x_{2 n}\right)\right\}$
If we have $\max \left\{d_{p}\left(I x_{2 n}, J x_{2 n+1}\right), d_{p}\left(J x_{2 n-1}, I x_{2 n}\right)\right\}=d_{p}\left(I x_{2 n}, J x_{2 n+1}\right) \Rightarrow \psi\left(d_{p}\left(I x_{2 n}, J x_{2 n+1}\right)\right) \leq \psi\left(N\left(x_{2 n-1}, x_{2 n}\right)\right)<\psi\left(d_{p}\left(I x_{2 n}, J x_{2 n+1}\right)\right)$
which is a contradiction.
So $d_{p}\left(I x_{2 n}, J x_{2 n+1}\right) \leq N\left(x_{2 n-1}, x_{2 n}\right) \leq d_{p}\left(I x_{2 n}, J x_{2 n-1}\right)$ (ii).
Also $d_{p}\left(I x_{2 n+2}, J x_{2 n+1}\right) \leq H\left(F x_{2 n+2}, G x_{2 n+1}\right)$ and
$\psi\left(d_{p}\left(I x_{2 n+2}, J x_{2 n+1}\right)\right) \leq \psi\left(H\left(F x_{2 n}, G x_{2 n+1}\right)\right) \leq f\left(\psi\left(N\left(x_{2 n}, x_{2 n+1}\right)\right), \varphi\left(N\left(x_{2 n}, x_{2 n+1}\right)\right)\right) \leq \psi\left(N\left(x_{2 n}, x_{2 n+1}\right)\right)$
so $d_{p}\left(I x_{2 n+2}, J x_{2 n+1}\right) \leq N\left(x_{2 n+1}, x_{2 n}\right)$.(iii)
In the same way, we prove that
$d_{p}\left(I x_{2 n+2}, J x_{2 n+1}\right) \leq N\left(x_{2 n}, x_{2 n+1}\right) \leq d_{p}\left(I x_{2 n}, J x_{2 n+1}\right)$.(iv)

Let put for convenience, $y_{k}=\left\{\begin{array}{cc}I x_{2 n}, & k=2 n \\ J x_{2 n-1}, & k=2 n-1\end{array}\right.$.
By (ii) and (iv), we conclude $d_{p}\left(y_{k+1}, y_{k}\right) \leq N\left(y_{k}, y_{k-1}\right) \leq d_{p}\left(y_{k}, y_{k-1}\right)$, for $k \in N$.
It implies that the sequence $\left\{d_{p}\left(y_{k}, y_{k+1}\right)\right\}$ is monotone non-increasing and bounded below, so it converges to $l \geq 0, \lim _{k \rightarrow \infty} d_{p}\left(y_{k}, y_{k+1}\right)=\lim _{k \rightarrow \infty} N\left(y_{k}, y_{k+1}\right)=l$.

Since ψ is continuous and φ is lower semi-continuous, $\psi(l)=\lim _{k \rightarrow \infty} \psi\left(N\left(y_{k}, y_{k+1}\right)\right)$ and $\varphi(l) \leq \liminf _{k \rightarrow \infty} \varphi\left(N\left(y_{k}, y_{k+1}\right)\right)$.
By (i) and (iv) and from the property of f, ψ, φ we conclude that
$\psi(l) \leq f(\psi(l), \varphi(l)) \leq \psi(l) \Rightarrow f(\psi(l), \varphi(l))=\psi(l) \Rightarrow \psi(l)=0$ or $\varphi(l)=0 \Rightarrow l=0$ and so
$\lim _{k \rightarrow \infty} d_{p}\left(y_{k}, y_{k+1}\right)=\lim _{k \rightarrow \infty} N\left(y_{k}, y_{k+1}\right)=0$.
Now let prove that sequence $\left\{y_{k}\right\}$ is Cauchy. Note $C_{k}=\sup \left\{d_{p}\left(y_{i}, y_{j}\right): i, j>k\right\}$. This sequence is decreasing. So this sequence converges to $C \geq 0$.
For every $r \in N$, there exist $k(r), s(r) \in N, k(r), s(r) \geq r$ and $C_{r}-\frac{1}{r} C_{0} \leq d_{p}\left(y_{k(r)}, y_{s(r)}\right) \leq C_{r}$, where $C_{0} \in P$. Taking the limit when $r \rightarrow \infty$, we have $d_{p}\left(y_{k(r)}, y_{s(r)}\right) \rightarrow C$. We have to prove that $C=0$.

Case 1
If $k(r)$ is even and $s(r)$ is odd, so $k(r)=2 q$ and $s(r)=2 t-1$ then
$d_{p}\left(y_{k(r)+1}, y_{s(r)+1}\right)=d_{p}\left(y_{2 q+1}, y_{2 t}\right)=d_{p}\left(J x_{2 q+1}, I x_{2 t}\right) \leq H\left(F x_{2 q}, G x_{2 t-1}\right)$.
By (1), we have

$$
\begin{aligned}
& \psi\left(d_{p}\left(y_{k(r)+1}, y_{s(r)+1}\right)\right)=\psi\left(d_{p}\left(y_{2 q+1}, y_{2 t}\right)\right)=\psi\left(d_{p}\left(J x_{2 q+1}, I x_{2 t}\right)\right) \leq \psi\left(H\left(F x_{2 q}, G x_{2 t-1}\right)\right) \leq f\left(\psi\left(N\left(x_{2 q}, x_{2 t-1}\right)\right), \varphi\left(N\left(x_{2 q}, x_{2 t-1}\right)\right)\right) \\
& \text { So, } d_{p}\left(y_{k(r)+1}, y_{s(r)+1}\right) \leq N\left(x_{2 q}, x_{2 t-1}\right)=N\left(x_{k(r)}, x_{s(r)}\right) \\
& N\left(x_{2 q}, x_{2 t-1}\right)=\max \left\{d_{p}\left(I x_{2 q}, J x_{2 t-1}\right), d_{p}\left(I x_{2 q}, F x_{2 q}\right), d_{p}\left(J x_{2 t-1}, G x_{2 t-1}\right), \frac{d_{p}\left(I x_{2 q}, G x_{2 t-1}\right)}{a}, \frac{d_{p}\left(J x_{2 t-1}, F x_{2 q}\right)}{a}\right\} \\
& \leq \max \left\{d_{p}\left(I x_{2 q}, J x_{2 t-1}\right), d_{p}\left(I x_{2 q}, J x_{2 q+1}\right), d_{p}\left(J x_{2 t-1}, I x_{2 t}\right), \frac{d_{p}\left(I x_{2 q}, I x_{2 t}\right)}{a}, \frac{d_{p}\left(J x_{2 t-1}, J x_{2 q+1}\right)}{a}\right\} \\
& =\max \left\{d_{p}\left(y_{k(r)}, y_{s(r)}\right), d_{p}\left(y_{k(r)}, y_{k(r)+1}\right), d_{p}\left(y_{s(r)}, y_{s(r)+1}\right), \frac{d_{p}\left(y_{k(r)}, y_{s(r)+1}\right)}{a}, \frac{d_{p}\left(y_{s(r)}, y_{k(r)+1}\right)}{a}\right\}
\end{aligned}
$$

Taking limit when $r \rightarrow \infty$, we have $\lim _{r \rightarrow \infty} N\left(x_{2 q}, x_{2 t-1}\right)=\lim _{r \rightarrow \infty} N\left(y_{k(r)}, x_{s(r)}\right)=\max \left\{C, 0,0, \frac{C}{a}, \frac{C}{a}\right\}=C$
Taking limit when $r \rightarrow \infty$ in inequality
$\psi\left(d_{p}\left(y_{k(r)+1}, y_{s(r)+1}\right)\right)=\psi\left(d_{p}\left(y_{2 q+1}, y_{2 t}\right)\right)=\psi\left(d_{p}\left(J x_{2 q+1}, I x_{2 t}\right)\right) \leq \psi\left(H\left(F x_{2 q}, G x_{2 t-1}\right)\right) \leq f\left(\psi\left(N\left(x_{2 q}, x_{2 t-1}\right)\right), \varphi\left(N\left(x_{2 q}, x_{2 t-1}\right)\right)\right)$
since ψ is continuous and φ lower semi-continuous, we have $\psi(C) \leq f(\psi(C), \varphi(C)) \leq \psi(C) \Rightarrow \psi(C)=0$ or $\varphi(C)=0 \Rightarrow C=0$.

So, $d_{p}\left(y_{k(r)}, y_{s(r)}\right) \xrightarrow[r \rightarrow \infty]{ } 0$, when $k(r)$ is even and $s(r)$ is odd. Similarly, if $k(r)$ is odd and $s(r)$ is even.
Case2. If $k(r)$ and $s(r)$ are even, so $k(r)=2 q$ and $s(r)=2 t$ we have
$d_{p}\left(y_{k(r)}, y_{s(r)}\right)=d_{p}\left(y_{2 q}, y_{2 t}\right)=d_{p}\left(I x_{2 q}, I x_{2 t}\right)$
$\leq p\left(d_{p}\left(I x_{2 q}, J x_{2 q+1}\right)+d_{p}\left(J x_{2 q+1}, I x_{2 t}\right)\right)=p\left(d_{p}\left(y_{k(r)}, y_{k(r)+1}\right)+d_{p}\left(y_{k(r)+1}, y_{s(r)}\right)\right)$
Taking $r \rightarrow \infty$ in this inequality, from Case1 we have that $\lim _{r \rightarrow \infty} d_{p}\left(y_{k(r)}, y_{s(r)}\right)=0$. Similarly, if $k(r)$ and $s(r)$ are odd. So the sequence $\left\{y_{k}\right\}_{k \in N}$ is Cauchy. Since $\left(X, d_{p}\right)$ is complete, $\left\{y_{k}\right\}_{k \in N}$ is convergent to y So $\lim _{n \rightarrow \infty} I x_{2 n}=\lim _{n \rightarrow \infty} J x_{2 n-1}=y$ and $\left\{F x_{2 n}\right\},\left\{G x_{2 n+1}\right\}$ converge at $\{y\}$. Since condition 2 of theorem, there is a point $z \in X$ such that $J z=y$. From (1) we have $\psi\left(d_{p}\left(F x_{2 n}, G z\right)\right) \leq \psi\left(H\left(F x_{2 n}, G z\right)\right) \leq f\left(\psi\left(N\left(x_{2 n}, z\right)\right), \varphi\left(N\left(x_{2 n}, z\right)\right)\right)$.

Now we see
$N\left(x_{2 n}, z\right)=\max \left\{d_{p}\left(I x_{2 n}, J z\right), d_{p}\left(I x_{2 n}, F x_{2 n}\right), d_{p}(J z, G z), \frac{d_{p}\left(I x_{2 n}, G z\right)}{a}, \frac{d_{p}\left(J z, F x_{2 n}\right)}{a}\right\}$
$=\max \left\{d_{p}\left(I x_{2 n}, y\right), d_{p}\left(I x_{2 n}, F x_{2 n}\right), d_{p}(y, G z), \frac{d_{p}\left(I x_{2 n}, G z\right)}{a}, \frac{d_{p}\left(y, F x_{2 n}\right)}{a}\right\}$
Taking the limit of both sides we have
$\lim _{n \rightarrow \infty} N\left(x_{2 n}, z\right)=\max \left\{d_{p}(y, y), d_{p}(y,\{y\}), d_{p}(y, G z), \frac{d_{p}(y, G z)}{a}, \frac{d_{p}(y,\{y\})}{a}\right\}=d_{p}(y, G z)$.
Also if we take the limit when $n \rightarrow \infty$ in $\psi\left(d_{p}\left(F x_{2 n}, G z\right)\right) \leq \psi\left(H\left(F x_{2 n}, G z\right)\right) \leq f\left(\psi\left(N\left(x_{2 n}, z\right)\right), \varphi\left(N\left(x_{2 n}, z\right)\right)\right)$ we obtain
$\psi\left(d_{p}(y, G z)\right) \leq f\left(\psi\left(d_{p}(y, G z)\right), \varphi\left(d_{p}(y, G z)\right)\right) \leq \psi\left(d_{p}(y, G z)\right)$
$\Rightarrow \psi\left(d_{p}(y, G z)\right)=0$ or $\varphi\left(d_{p}(y, G z)\right)=0 \Rightarrow d_{p}(y, G z)=0 \Rightarrow G z=\{y\}=\{J z\}$
But the pair of maps $\{G, J\}$ are weakly compatible, thus $G J z=J G z, G y=\{J y\}$.
Now we prove that y is a fixed point of G and J.
$N\left(x_{2 n}, y\right)=\max \left\{d_{p}\left(I x_{2 n} J y\right), d_{p}\left(I x_{2 n}, F x_{2 n}\right), d_{p}(J y, G y), \frac{d_{p}\left(I x_{2 n}, G y\right)}{a}, \frac{d_{p}\left(J y, F x_{2 n}\right)}{a}\right\}$.
We see
$\lim _{n \rightarrow \infty} N\left(x_{2 n}, y\right)=\max \left\{d_{p}(y, G y), d_{p}(J y,\{J y\}), \frac{d_{p}(y, G y)}{a}, \frac{d_{p}(y, G y)}{a}\right\}=d_{p}(y, G y)$.
By (1) we have

$$
\begin{aligned}
& \psi\left(d_{p}(y, G y)\right) \leq \psi(H(y, G y)) \leq f\left(\psi\left(d_{p}(y, G y)\right), \varphi\left(d_{p}(y, G y)\right)\right) \leq \psi\left(d_{p}(y, G y)\right) \\
& \Rightarrow \psi\left(d_{p}(y, G y)\right)=0 \operatorname{or} \varphi\left(d_{p}(y, G y)\right)=0 \Rightarrow d_{p}(y, G y)=0 \Rightarrow G y=\{y\}=\{J y\}
\end{aligned} .
$$

So y is a fixed point of G and J. Now from $\cup G(X) \subseteq I(X)$ implies that exists $w \in X$ such that $G y=I w$. Hence, $\{y\}=G y=\{J y\}=I w$ and $H(F w, y)=H(F w, G u)$. Using (1) we have
$\psi(H(F w, y))=\psi(H(F w, G y)) \leq f(\psi(N(w, y)), \varphi(N(w, y)))$
$N(w, y)=\max \left\{d_{p}(I w, J y), d_{p}(I w, F w), d_{p}(J y, G y), \frac{d_{p}(I w, G y)}{a}, \frac{d_{p}(J y, F w)}{a}\right\}=d_{p}(y, F w)$
So,
$\psi\left(H(F w, y) \leq f\left(\psi\left(d_{p}(F w, y), \varphi\left(d_{p}(F w, y)\right)\right) \leq \psi\left(d_{p}(F w, y)\right)\right.\right.$
$\Rightarrow \psi\left(d_{p}(F w, y)\right)=0$ or $\varphi\left(d_{p}(F w, y)\right)=0 \Rightarrow d_{p}(F w, y)=0 \Rightarrow F y=\{y\}=\{I y\}$
Hence, $\{y\}=G y=\{J y\}=F w=\{I w\}$. Since the pair of maps $\{F, I\}$ are compatible, $F I w=I F w$, so $F y=\{T y\}$.
Moreover
$\psi\left(d_{p}(F y, y)\right)=\psi(H(F y, y))=\psi(H(F y, G y)) \leq f(\psi(N(y, y)), \varphi(N(y, y)))$
$N(y, y)=\max \left\{d_{p}(I y, J y), d_{p}(I y, F y), d_{p}(J y, G y), \frac{d_{p}(I y, G y)}{a}, \frac{d_{p}(J y, F y)}{a}\right\}=d_{p}(y, F y)$
Since

$$
\begin{aligned}
& \psi\left(d_{p}(F y, y)\right) \leq \psi(H(F y, y)) \leq f\left(\psi\left(d_{p}(F y, y), \varphi\left(d_{p}(F y, y)\right)\right) \leq \psi\left(d_{p}(F y, y)\right)\right. \\
& \Rightarrow \psi\left(d_{p}(F y, y)\right)=0 \text { or } \varphi\left(d_{p}(F y, y)\right)=0 \Rightarrow d_{p}(F y, y)=0 \Rightarrow F y=\{I y\}=\{y\}=G y=\{J y\}
\end{aligned}
$$

So y is a common fixed point for F, G, J, I.
Now we prove that y is a unique fixed point of F, G, J, I. Suppose that there exist another fixed point $\psi\left(d_{p}(y, z)\right)=\psi(H(y, z))=\psi(H(F y, G z)) \leq f(\psi(N(y, z)), \varphi(N(y, z)))$
z of $F, G, J, I . \quad N(y, z)=\max \left\{d_{p}(I y, J z), d_{p}(I y, F y), d_{p}(J z, G z), \frac{d_{p}(I y, G z)}{a}, \frac{d_{p}(J z, F y)}{a}\right\}=d_{p}(y, z)$
So
$\psi\left(d_{p}(y, z)\right) \leq f\left(\psi\left(d_{p}(y, z), \varphi\left(d_{p}(y, z)\right)\right) \leq \psi\left(d_{p}(y, z)\right)\right.$
$\Rightarrow \psi\left(d_{p}(y, z)\right)=0$ or $\varphi\left(d_{p}(y, z)\right)=0 \Rightarrow d_{p}(y, z)=0 \Rightarrow y=z$

Example:3.4

Let $X=[0,1], E=C_{R}^{1}([0,1])$ with the norm $\|f\|=\|f\|_{\infty}+\left\|f^{\prime}\right\|_{\infty}$ and consider the cone $P=\{f \in E: f(t) \geq 0\}$ which is not normal.

Define $d: X \times X \rightarrow E, d(x, y)(t)=\left\{\begin{array}{l}e^{t} \max (x, y), x \neq y \\ 0, \quad x=y\end{array}, 0 \leq t \leq 1\right.$.
Now
we
take
$F, G: X \rightarrow B(X), F(x)=\left[0, \frac{x}{4}\right], G y=\left\{\frac{y}{4}\right\}$ and $I, J: X \rightarrow X, I(x)=\left\{\begin{array}{l}x, x \leq \frac{1}{2} \\ 2 x, x>\frac{1}{2}\end{array}, J(y)=y, \psi: P \rightarrow P, \psi(x)=\frac{x}{2}\right.$
and $\varphi: P \rightarrow P, \varphi(x)=\frac{x}{2}, f: P \times P \rightarrow P, f(s, t)=\frac{s}{1+t}$.
It's clear that the second and third conditions of theorem are true. Now let prove the first condition.
$H(F x, G y)=e^{t} \max \left\{\frac{x}{4}, \frac{y}{4}\right\}$.
For $0 \leq x \leq \frac{1}{2}, x<y, I x=x, d(I x, J y)=y e^{t}, d(I x, F x)=x e^{t}, d(I x, G y)=x e^{t}, N(x, y)=y e^{t}$
$\psi(N(x, y))=\frac{1}{2} y e^{t}=\varphi(N(x, y)), f(\psi(N(x, y)), \varphi(N(x, y)))=f\left(\frac{y}{2} e^{t}, \frac{y}{2} e^{t}\right)=\frac{\frac{y}{2} e^{t}}{1+\frac{y}{2} e^{t}}=\frac{y e^{t}}{2+y e^{t}}$
$H(F x, G y)=e^{t} \frac{y}{4}, \psi(H(F x, G y))=\frac{y}{8} e^{t}$.
Since $2+y e^{t}<8$ for $0<t<1,0 \leq y \leq \frac{1}{2}$
we have $\psi(H(F x, G y)) \leq f(\psi(N(x, y)), \varphi(N(x, y)))$.

For $0 \leq x \leq \frac{1}{2}, x>y, I x=x, N(x, y)=y e^{t}, \psi(N(x, y))=\frac{1}{2} x e^{t}=\varphi(N(x, y)) f(\psi(N(x, y)), \varphi(N(x, y)))=\frac{x e^{t}}{2+x e^{t}}$, $\psi(H(F x, G y))=\frac{x}{8} e^{t}$.

We have $\psi(H(F x, G y)) \leq f(\psi(N(x, y)), \varphi(N(x, y)))$.
For $\frac{1}{2}<x \leq 1,2 x \geq y, I x=2 x, d(I x, J y)=2 x e^{t}, d(I x, F x)=2 x e^{t}, d(I x, G y)=2 x e^{t}, N(x, y)=2 x e^{t}$
$\psi(N(x, y))=\frac{1}{2} 2 x e^{t}=x e^{t}=\varphi(N(x, y)), f(\psi(N(x, y)), \varphi(N(x, y)))=f\left(x e^{t}, x e^{t}\right)=\frac{x e^{t}}{1+x e^{t}}=\frac{x e^{t}}{1+x e^{t}}$.
$H(F x, G y)=\max \left\{\frac{x}{4}, \frac{y}{4}\right\} e^{t}, \quad \psi(H(F x, G y))=\frac{1}{2} \max \left\{\frac{x}{4}, \frac{y}{4}\right\} e^{t}<\frac{x}{4} e^{t}$. Since $1+x e^{t}<4$ for $0<t<1, \frac{1}{2}<y \leq 1$, we have $\psi(H(F x, G y)) \leq f(\psi(N(x, y)), \varphi(N(x, y)))$.
So F, G, I, J have a unique fixed point $x=0$.

Corollary:3.4

Let $\left(X, d_{p}\right)$ be a complete p-cone metric space. Let $F, G: X \rightarrow B(X)$ be mappings and $I, J: X \rightarrow X$ be self-mappings. Suppose that
(1) $\psi(H(F x, G y)) \leq \psi(N(x, y))-\varphi(N(x, y))$ where
$N(x, y)=\max \left\{d_{p}(I x, J y), d_{p}(I x, F x), d_{p}(J y, G y), \frac{d_{p}(I x, G y)}{a}, \frac{d_{p}(J y, F x)}{a}\right\}$ for all $x, y \in P, a \geq p$ and φ, ψ are ultraaltering, ψ is continuous, φ is lower semi continuous function, and f a function of C -class
(2) $\cup G(X) \subseteq I(X), \cup F(X) \subseteq J(X)$ and either $I(X)$ or $J(Y)$ is closed,
(3) the pairs of mappings $\{F, I\}$ and $\{G, J\}$ are weakly compatible,
then F, G, I, J have a unique common fixed point $u \in X$ and $F u=G u=\{u\}$.
Proof. Taking $f(s, t)=s-t$, we are in condition of theorem 3.3.

Corollary:3.5

Let $\left(X, d_{p}\right)$ be a complete p-cone metric space. Let $F, G: X \rightarrow B(X)$ be mappings and $I, J: X \rightarrow X$ be self-mappings. Suppose that
(1) $H(F x, G y) \leq N(x, y)-\varphi(N(x, y))$ where
$N(x, y)=\max \left\{d_{p}(I x, J y), d_{p}(I x, F x), d_{p}(J y, G y), \frac{d_{p}(I x, G y)}{a}, \frac{d_{p}(J y, F x)}{a}\right\}$ for all $x, y \in P, a \geq p$ and φ are ultraaltering, φ is lower semi continuous function, and f a function of C-class
(2) $\cup G(X) \subseteq I(X), \cup F(X) \subseteq J(X)$ and either $I(X)$ or $J(Y)$ is closed,
(3) the pairs of mappings $\{F, I\}$ and $\{G, J\}$ are weakly compatible,
then F, G, I, J have a unique common fixed point $u \in X$ and $F u=G u=\{u\}$.

Proof:

Taking $f(s, t)=s-t$ and $\psi: P \rightarrow P, \psi(s)=s$, we are in condition of theorem 3.3.

Theorem:3.6

Let $\left(X, d_{p}\right)$ be a complete p-cone metric space. Let $F, G: X \rightarrow B(X)$ be mappings and $J: X \rightarrow X$ be self-mapping. Suppose that
(1) $\psi(H(F x, G y)) \leq f(\psi(N(x, y), \varphi(N(x, y))$ where
$N(x, y)=\max \left\{d_{p}(J x, J y), d_{p}(J x, F x), d_{p}(J y, G y), \frac{d_{p}(J x, G y)}{a}, \frac{d_{p}(J y, F x)}{a}\right\}$ for all $x, y \in P, a \geq p$ and φ, ψ are ultra-altering, ψ is continuous, φ is lower semi continuous function, and f a function of C -class
(2) $\cup G(X) \subseteq J(X), \cup F(X) \subseteq J(X)$ and $J(X)$ is closed,
(3) the pairs of mappings $\{F, J\}$ and $\{G, J\}$ are weakly compatible,
then F, G, J have a unique common fixed point $u \in X$ and $F u=G u=\{u\}$.

Proof:

We see that F, G, J are in conditions of theorem1 where $I=J$, so there exists a unique common fixed point $u \in X$ and $F u=G u=\{u\}$.

Theorem:3.7
Let $\left(X, d_{p}\right)$ be a complete p-cone metric space. Let $F, G: X \rightarrow B(X)$ be mappings. Suppose that
(1) $\psi(H(F x, G y)) \leq f(\psi(N(x, y), \varphi(N(x, y))$ where
$N(x, y)=\max \left\{d_{p}(x, y), d_{p}(x, F x), d_{p}(y, G y), \frac{d_{p}(x, G y)}{a}, \frac{d_{p}(y, F x)}{a}\right\}$ for all $x, y \in P, a \geq p$ and φ, ψ are ultraaltering, ψ is continuous, φ is lower semi continuous function, and f a function of C-class
then F, G have a unique common fixed point $u \in X$ and $F u=G u=\{u\}$.

Proof:

We see that F, G are in conditions of theorem1 where $I=J=I_{X}, \cup G(X) \subseteq I(X)=X, \cup F(X) \subseteq J(X)=X$ and the pairs $\{F, I\}$ and $\{G, J\}$ are weakly compatible, so there exists a unique common fixed point $u \in X$ and $F u=G u=\{u\}$.

Theorem:3.8

Let $\left(X, d_{p}\right)$ be a complete p-cone metric space. Let $F, G, I, J: X \rightarrow X$ be self-mappings. Suppose that
(1) $\psi(H(F x, G y)) \leq f(\psi(N(x, y), \varphi(N(x, y))$ where
$N(x, y)=\max \left\{d_{p}(I x, J y), d_{p}(I x, F x), d_{p}(J y, G y), \frac{d_{p}(I x, G y)}{a}, \frac{d_{p}(J y, F x)}{a}\right\}$ for all $x, y \in P, a \geq p$ and φ, ψ are ultraaltering, ψ is continuous, φ is lower semi continuous function, and f a function of C-class
(2) $G(X) \subseteq I(X), F(X) \subseteq J(X)$ and either $I(X)$ or $J(Y)$ is closed,
(3) the pairs of mappings $\{F, I\}$ and $\{G, J\}$ are weakly compatible,
then F, G, I, J have a unique common fixed point $u \in X$.

Proof:

We see that F, G, I, J are in conditions of theorem1 where $G x=\{G x\}$ and $F x=\{F x\}$, so there exists a unique common fixed point $u \in X$.

Theorem:3.9
Let $\left(X, d_{p}\right)$ be a complete p-cone metric space. Let $F, G: X \rightarrow X$ be mappings. Suppose that
(1) $\psi(H(F x, G y)) \leq f(\psi(N(x, y), \varphi(N(x, y))$ where
$N(x, y)=\max \left\{d_{p}(x, y), d_{p}(x, F x), d_{p}(y, G y), \frac{d_{p}(x, G y)}{a}, \frac{d_{p}(y, F x)}{a}\right\}$ for all $x, y \in P, a \geq p$ and φ, ψ are ultraaltering, ψ is continuous, φ is lower semi continuous function, and f a function of C-class
then F, G have a unique common fixed point $u \in X$ and $F u=G u=u$.

Proof:

We see that F, G are in conditions of theorem 3 where $I=J=I_{X}, G x=\{G x\}$ and $F x=\{F x\}$, so there exists a unique common fixed point $u \in X$ and $F u=G u=u$.

Corollary:3.10

Let $\left(X, d_{p}\right)$ be a complete p-cone metric space. Let $F, G: X \rightarrow X$ be mappings. Suppose that
(1) $\psi(H(F x, G y)) \leq \psi(N(x, y))-\varphi(N(x, y))$ where
$N(x, y)=\max \left\{d_{p}(x, y), d_{p}(x, F x), d_{p}(y, G y), \frac{d_{p}(x, G y)}{a}, \frac{d_{p}(y, F x)}{a}\right\}$ for all $x, y \in P, a \geq p$ and φ, ψ are ultraaltering, ψ is continuous, φ is lower semi continuous function, then F, G has a unique fixed point $u \in X$.

Proof:

Taking $f(s, t)=s-t$, we are in conditions of theorem 5 , so F, G has a common unique fixed point $u \in X$.
Theorem:3.11
Let $\left(X, d_{p}\right)$ be a complete p-cone metric space. Let $F: X \rightarrow X$ be a mapping. Suppose that
(1) $\psi(d(F x, F y)) \leq f(\psi(N(x, y)), \varphi(N(x, y)))$ where
$N(x, y)=\max \left\{d_{p}(x, y), d_{p}(x, F x), d_{p}(y, F y), \frac{d_{p}(x, F y)}{a}, \frac{d_{p}(y, F x)}{a}\right\}$ for all $x, y \in P, a \geq p$ and φ, ψ are ultra-
altering, ψ is continuous, φ is lower semi continuous function, and f a function of C-class
then F has a unique fixed point $u \in X$.

Proof:

We see that F are in conditions of theorem 3, where $I=J=I_{X}, F x=G x=\{F x\}$, so F has a unique fixed point $u \in X$.

Corollary:3.12

Let $\left(X, d_{p}\right)$ be a complete p-cone metric space. Let $F: X \rightarrow X$ be a mapping. Suppose that
(1) $\psi(d(F x, F y)) \leq \psi(N(x, y))-\varphi(N(x, y))$ where
$N(x, y)=\max \left\{d_{p}(x, y), d_{p}(x, F x), d_{p}(y, F y), \frac{d_{p}(x, F y)}{a}, \frac{d_{p}(y, F x)}{a}\right\}$ for all $x, y \in P, a \geq p$ and φ, ψ are ultra-
altering, ψ is continuous, φ is lower semi continuous function, then F has a unique fixed point $u \in X$.
Proof:
Taking $f(s, t)=s-t$, we are in condition of theorem 6 , so F has a unique fixed point $u \in X$.

Corollary:3.13

Let $\left(X, d_{p}\right)$ be a complete p-cone metric space. Let $F: X \rightarrow X$ be a mapping. Suppose that
(1) $d(F x, F y) \leq N(x, y)-\varphi(N(x, y))$ where
$N(x, y)=\max \left\{d_{p}(x, y), d_{p}(x, F x), d_{p}(y, F y), \frac{d_{p}(x, F y)}{a}, \frac{d_{p}(y, F x)}{a}\right\}$ for all $x, y \in P, a \geq p$ and φ, ψ are ultraaltering, ψ is continuous, φ is lower semi continuous function, then F has a unique fixed point $u \in X$.

Proof:

Taking $f(s, t)=s-t$ and $\psi: P \rightarrow P, \psi(s)=s$, we are in condition of theorem 6 , so F has a unique fixed point $u \in X$.

References

[1] Elida Hoxha, Arslan H.Ansari, Kastriot Zoto, Some common fixed point results through generalized altering distances on dislocated metric spaces, Proceedings of EIIC, september 1-5, 2014, pages 403-409
[2] Bae, J.S, 2003, Fixed point theorems for weakly contractive multivalued mapps, J. Math. Anal. Appl284, 690-697
[3] Huang Long-Guang, Zhang Xian, Cone metric spaces and fixed point theorems of contractive mappings. Jounal of Mathematical Analysis and Applications, 332 (2007) 1468-1476.
[4] B.E. Rhoades, "A Comparison of various defintions of contractive mappings", Transactions of American Mathematical Society, Vol 226,pp 257-290,1977.
[5] Sh. Rezapour and R. Hamlbarani, "Some notes on Cone metric spaces and fixed point theorems of contractive mappings," Journal of Mathematical Analysis and Applications,vol. 345, no. 2, pp. 719-724, 2008.
[6] T. Abdeljaward and E. Karapinar, "Quasi-cone metric spaces and generalization of Caristi Kirk's Theorem", Fixed Point Theory and Application, Vol. 2009, no 1, article ID 574387.
[7] R.H. Haghi, Sh. Rezapour, Fixed points of multifunctions on regular cone metric spaces, Expo. Math. 28 (2010) $71-77$
[8] Deimling, K., Nonlinear Functional Analysis. Berlin-Heidelberg-New York-Tokyo, Springer-Verlag, 1985.
[9] Pant, R. P, A generalization of contractive principle, J. Indian Math. Soc., 68(1-4) (2001), 25-32
[10] G. Jungck and B. E. Rhoades, Fixed Point Theorems for occasionally weakly compatible mappings, Fixed Point Theory, Volume 7, No. 2, 2006, 287-296

