Some New Classes of Graceful Lobsters Obtained by Applying Inverse and Component Moving Transformations

Debdas Mishra ${ }^{1}$ and Pratima Panigrahi ${ }^{2}$
1 Department of Mathematics
C. V. Raman College of Engineering
Bidya Nagar, Mahura, Janala
Bhubaneswar - 752054, Khurda, Orissa
2 Department of Mathematics
Indian Institute of Technology
Kharagpur- 721302
West Midnapore, West Bengal
e-mail: debdasmishra@gmail.com ${ }^{1}$ pratima@maths.iitkgp.ernet.in ${ }^{2}$

Abstract

We observe that a lobster with diameter at least five has a unique path $H=x_{0} x_{1} \ldots x_{m}$ with the property that besides the adjacencies in H both x_{0} and x_{m} are adjacent to the centers of at least one $K_{1, s}$, where $s>0$, and each $x_{i}, 1 \leq i \leq$ $m-1$, is at most adjacent to the centers of some $K_{1, s}$, where $s \geq 0$. This unique path H is called the central path of the lobster. We call $K_{1, s}$ an even branch if s is nonzero even, an odd branch if s is odd, and a pendant branch if $s=0$. In this paper we give graceful labelings to some new classes of lobsters with diameter at least five, in which the degree of each vertex $x_{i}, 0 \leq i \leq m-1$, on the central path is even and the degree of the vertex x_{m} may be odd or even. The lobsters appear in [5] also possess this property. However, in the lobsters of [5], at most the vertex x_{0} is attached to a combination of all three types of branches, whereas in this paper, we give graceful labelings to the lobsters in which not only the vertex x_{0} but also some (or all) $x_{i}, 1 \leq i \leq m$, may exhibit this property.

Keywords: graceful labeling, lobster, odd and even branches, inverse transformation, component moving transformation

2000 Mathematics Subject Classification: 05C78

1 Introduction

Definition 1.1. A graceful labeling of a tree T with q edges is a bijection $f: V(T) \rightarrow$ $\{0,1,2, \ldots, q\}$ such that $\{|f(u)-f(v)|$: $\{u, v\}$ is an edge of $T\}=\{1,2, \ldots, q\}$. A tree which has a graceful labeling is called a graceful tree.

Definition 1.2. A lobster is a tree having a path from which every vertex has distance at most two. It is easy to check that a lobster L of diameter at least five has a unique path $H=x_{0}, x_{1}, \ldots, x_{m}$ such that besides the adjacencies in H, each $x_{i}, 1 \leq i \leq m-1$, is at most adjacent to the centers of some stars $K_{1, s}, s \geq 0$, whereas the vertices x_{0} and x_{m} are adjacent to the center of at least one star $K_{1, s}$ with $s \geq 1$. This path H is called the central path of the lobster L. Throughout the paper we use H to denote the central path of a lobster with diameter at least five. For $x_{i} \in V(H)$, if x_{i} is adjacent to the center of $K_{1, s}, s \geq 0$, then we call $K_{1, s}$ an even branch if s is nonzero even, an odd branch if s is odd, and a pendant branch if $s=0$. Furthermore, whenever we say x_{i}, for some $0 \leq i \leq m$, is attached to an even number of branches we mean a "non zero" even number of branches unless otherwise stated.

In 1979, Bermond [1] conjectured that all lobsters are graceful. This conjecture is a special case of the famous and unsolved "the graceful tree conjecture" of Ringel and Kotzig (1964) [8], which states that all trees are graceful. Bermond's conjecture is also open and very few classes of lobsters are known to be graceful. Ng [7], Wang et al. [9], Chen et al. [2], Morgan [6] (see [3]), and Mishra and Panigrahi [5] have given graceful labeling to some classes of lobsters. With the lobsters in [9], the lobsters in [5] and those appear in this paper share a common feature that the degree of each $x_{i}, 0 \leq i \leq m-1$, is even. However, in the lobsters of this paper and those appear in [5], the degree of x_{m} may be odd or even and the branches incident on each $x_{i}, 0 \leq i \leq m$, need not be of the same type. The branches incident on x_{0} may be of same type, or any two types, or all three types. In the lobsters of [5], the branches incident on $x_{i}, 1 \leq i \leq m$, may be of the same type (odd or even), or any two types in which each type is odd in number, whereas in the lobsters of this paper, the branches incident on $x_{i}, 1 \leq i \leq m$, may be of the same type (odd or even), any two types, or all three types. In gross the lobsters to which we give graceful labelings in this paper have one of the following features.
(I) For some $t_{1}, 1 \leq t_{1} \leq m$, each $x_{i}, 0 \leq i \leq t_{1}$, is attached to a combination of odd and pendant branches. If $t_{1}<m$ then we have either (1) or (2).
(1) For some $t_{2}, t_{1}+1 \leq t_{2} \leq m$, each $x_{i}, t_{1}+1 \leq$ $i \leq t_{2}$, is attached to a combination of all three types of branches. If $t_{2}<m$ then we have either (a) or (b).
(a) For some $t_{3}, t_{2}+1 \leq t_{3} \leq m$, each $x_{i}, t_{2}+1 \leq$ $i \leq t_{3}$, is attached to a combination of two types of branches and each of the rest of the $x_{i} \mathrm{~s}$ (if any) is attached to the odd (or even) branches.
(b) Each $x_{i}, t_{2}+1 \leq i \leq m$, is attached to odd (or even) branches.
(2) For some $t_{2}, t_{1}+1 \leq t_{2} \leq m$, each $x_{i}, t_{1}+1 \leq$ $i \leq t_{2}$, is attached to a combination of two types of branches. If $t_{2}<m$ then for some $t_{3}, t_{2}+1 \leq$ $t_{3} \leq m$, each $x_{i}, t_{2}+1 \leq i \leq t_{3}$, is attached to a combination of two types of branches and each of the rest of the x_{i} s (if any) is attached
to odd (or even) branches.
(II) x_{0} is attached to a combination of all three types of branches (respectively, odd and even branches or even and pendant branches) and satisfy the condition (1) (respectively, (2)) in (I) by setting $t_{1}=0$.

In this paper, as in [5], for a given lobster L we first form a diameter four tree $T(L)$ by identifying all the vertices on the central path of L and give a graceful labeling to $T(L)$ by using the technique of [4]. Let A be the set of all the branches incident on the center of $T(L)$. In [5], the authors applied component moving transformation on A to get a graceful labeling of L, whereas here we partition A in an appropriate manner before applying component moving transformation on it.

In order to prove the results of this paper we need some definitions, terminologies and existing results which are described in this section.

Lemma 1.3. [9], [4] If f is a graceful labeling of a tree T with n edges then the inverse transformation of f, defined as $f_{n}(v)=n-f(v)$, for all $v \in V(T)$, is also a graceful labeling of T.

Definition 1.4. For an edge $e=\{u, v\}$ of a tree T, we define $u(T)$ as that connected component of $T-e$ which contains the vertex u. Here we say $u(T)$ is a component incident on the vertex v. If a and b are vertices of a tree $T, u(T)$ is a component incident on a, and $b \notin u(T)$, then deleting the edge $\{a, u\}$ from T and making b and u adjacent is called the component moving transformation. Here we say the component $u(T)$ has been moved from a to b. Throughout the paper we write "the component u " instead of writing "the component $u(T)$ "; whenever, we wish to refer to u as a vertex, we write "the vertex u ". By the label of the component " $u(T)$ " we mean the label of the vertex u. Moreover, we shall not distinguish between a vertex and its label.

Lemma 1.5. [4] Let f be a graceful labeling of a tree T; let a and b be two vertices of T; and let $u(T)$ and $v(T)$ be two components incident on a, where $b \notin u(T) \cup v(T)$. Then the following hold:
(i) if $f(u)+f(v)=f(a)+f(b)$ then the tree T^{*} obtained from T by moving the components $u(T)$ and $v(T)$ from a to b is also graceful.
(ii) if $2 f(u)=f(a)+f(b)$ then the tree $T^{* *}$ obtained from T by moving the component $u(T)$ from a to b is also graceful.

Lemma 1.6. [4] Let T be a diameter four tree with q edges. If a_{0} is the center vertex and the degree of a_{0} is $2 k+1$ then there exists a graceful labeling f of T such that
(a) $f\left(a_{0}\right)=0$ and the labelings of the neighbours of a_{0} are $1,2, \ldots, k, q, q-1, \ldots, q-k$.
(b) if n_{1}, n_{2}, and n_{3} are the number of odd, even, and pendant branches incident on a_{0}, then from the sequence $S=(q, 1, q-1,2, q-2,3, \ldots, q-k+1, k, q-$ k) of vertex labels, n_{1} terms from the beginning are the labels of the centers of the odd branches, the next n_{2} terms are the labels of the centers of the even branches, and the rest n_{3} terms are the labels of the centers of the pendant branches.
(c) for any $i=1,2,3$, the n_{i} labels of S which are the labels of the centers of the same type of branches may be assigned in any order. However, different arrangements of branches of the same type may give different graceful labelings of the same diameter four tree without disturbing (a) and (b).

Remark 1.7. In the graceful labeling f of the diameter four tree T in Lemma 1.6, the labelings of the pendant vertices adjacent to the centers of the odd and even branches can be given by using the technique of [4].

Lemma 1.8. [5] Let $S=\left(t_{1}, t_{2}, \ldots, t_{2 p}\right)$ be a finite sequence of natural numbers in which the sums of consecutive terms are alternately $l+$ 1 and l, beginning (and ending) with the sum $l+1$. Then the sums of consecutive terms in the sequence $S_{1}=\left(\phi_{l+1}\left(t_{2 k+2}\right), \phi_{l+1}\left(t_{2 k+3}\right), \ldots\right.$, $\left.\phi_{l+1}\left(t_{2 p-2 k_{1}-1}\right)\right)$, where $\phi_{n}(x)=n-x, 0 \leq k, k_{1} \leq$ $p-2$, and $0 \leq k+k_{1} \leq p-2$, are alternately $l+2$ and $l+1$, beginning (and ending) with $l+2$.

2 Results

Construction 2.1. Let T be a graceful tree with q edges. Let a_{0} be a non pendant vertex of T with degree $2 k+1$ such that there exists a graceful labeling f of T in which a_{0} gets the label 0 and the labels of the neighbours of a_{0} are $1,2, \ldots, k, q, q-$ $1, q-2, \ldots, q-k$ (see Figure 1). Consider the sequence $S=(q, 1, q-1,2, \ldots, k, q-k)$ of vertices adjacent to a_{0} (recall that we do not distinguish between a vertex and its label). For any integer $n, n \geq 2$, if possible, we partition this sequence into n parts $A_{1}, A_{2}, \ldots, A_{n}$ (see Figure 1), where $A_{1}=$ $\left(q, 1, q-1,2, \ldots, r_{1}, q-r_{1}\right)$ and $\quad A_{j}=\left(r_{j-1}+\right.$ $\left.1, q-r_{j-1}-1, r_{j-1}+2, q-r_{j-1}-2, \ldots, r_{j}, q-r_{j}\right)$, $2 \leq j \leq n$ and $0<r_{1}<r_{2}<\ldots<r_{n}=k$.

Figure 1: The tree T with vertex a_{0} and its neighbours. The circles around the neighbouring vertices of a_{0} represent the respective components incident on them.

We construct a tree T_{1} (see Figure 2) from T by identifying the vertex y_{0} of a path $H^{\prime}=$ $y_{0}, y_{1}, \ldots, y_{m}$, with a_{0} and distributing the components (incident on the vertex a_{0}) in $A_{j}, j=$ $1,2, \ldots, n$, to $y_{i}, i=1,2, \ldots, s_{j}$, where $0 \leq s_{j} \leq$ m, in the following manner.
(1) For $0 \leq i \leq s_{2}$ we keep $2 l_{i}^{(2)}$ components of A_{2} at y_{i}, where $l_{i}^{(2)}>0$. In particular, we retain
$2 p_{i}+1,0 \leq p_{i}, 2 p_{i}+1<l_{i}^{(2)}$, components whose labels appear consecutively from the beginning of $A_{2}^{(i)}$, and $2 l_{i}^{(2)}-2 p_{i}-1$ components whose labels appear consecutively from the end of $A_{2}^{(i)}$, where $A_{2}^{(0)}=A_{2}$ and for $1 \leq i \leq s_{2}, A_{2}^{(i)}$ is obtained from $A_{2}^{(i-1)}$ by deleting the component which are kept at y_{i-1}.
(2) The components of $A_{j}, 1 \leq j \leq n, j \neq 2$, are distributed to the vertices $y_{1}, y_{2} \ldots, y_{s_{j}}$, in the following way:
(i) At y_{0} we retain $2 l_{0}^{(1)}+1, l_{0}^{(1)} \geq 0$ (respectively, $\left.2 l_{0}^{(j)}, l_{0}^{(j)} \geq 1,3 \leq j \leq n\right)$, components of A_{1} (respectively, A_{j}). Among these components $2 l_{0}^{(1)}$ (respectively, $2 l_{0}^{(j)}-1$) components get labels consecutively from the beginning of A_{1} (respectively, A_{j}) and the remaining component gets the last label of A_{1} (respectively, A_{j}). If $s_{j}>0$ then we delete these terms from A_{j} which are kept at y_{0} and name the remaining sequence as $A_{j}^{(1)}$.
(ii) For $1 \leq j \leq n, j \neq 2$ if $s_{j}>0$, we move $2 l_{i}^{(j)}, l_{i}^{(j)} \geq 1$, components from A_{j} to y_{i}, where $1 \leq i \leq s_{j}$. In particular, we move $2 l_{i}^{(j)}-1$ components whose labels appear consecutively from the beginning of $A_{j}^{(i)}$ and one component whose label is the last term of $A_{j}^{(i)}$, where, for $i>1, A_{j}^{(i)}$ is obtained from $A_{j}^{(i-1)}$ by deleting the components which are moved to y_{i-1}.

For $j=1,2, \ldots, n$, the numbers $l_{i}^{(j)}, i=$ $0,1,2, \ldots, s_{j}$, are chosen in such a way that $\sum_{i=0}^{s_{j}} l_{i}^{(j)}=r_{j}-r_{j-1}$, where $r_{0}=0$.

In the following theorem, for a graceful tree R with n edges and a graceful labeling g we use the notation " $g(R)$ " to denote the tree R with the graceful labeling g. Also, for any sequence $F=\left(a_{1}, a_{2}, \ldots, a_{r}\right), g_{n}(F)$ is the sequence $(n-$ $\left.a_{1}, n-a_{2}, \ldots, n-a_{r}\right)$.

Theorem 2.2. The tree T_{1} in Construction 2.1 is graceful.

Figure 2: The tree T_{1} obtained from T. Here we take $s_{1}=s_{2}=\ldots=s_{n}=m$.
Proof: We identify the vertices $a_{0} \in V(T)$ and $y_{0} \in V\left(H^{\prime}\right)$ and give the label $q+1$ to y_{1}. Clearly the subtree $T \cup\left\{y_{0}, y_{1}\right\}$ admits a graceful labeling $f^{(1)}$, where $f^{(1)}(x)=f(x)$ if $x \in V(T)$, and $f^{(1)}\left(y_{1}\right)=q+1$. Since $A_{j}^{(1)}, j=1,2, \ldots, n$, can be partitioned into pairs of labels whose sum is $q+1$ (consecutive terms), by Lemma 1.5(i) the tree $T^{(1)}$ obtained by moving the components in $A_{j}^{(1)}, 1 \leq j \leq n$ (for which $s_{j} \geq 1$), to y_{1} admits the same graceful labeling $f^{(1)}$. By Lemma 1.3, $f_{q+1}^{(1)}$ is a graceful labeling of $T^{(1)}$ and the label of y_{1} in $f_{q+1}^{(1)}\left(T^{(1)}\right)$ is 0 . Next we give the label $q+2$ to y_{2}. Obviously $f^{(2)}$ is a graceful labeling of $T^{(1)} \cup\left\{y_{1}, y_{2}\right\}$, where $f^{(2)}(x)=f_{q+1}^{(1)}(x)$ if $x \in$ $V\left(T^{(1)}\right)$, and $f^{(2)}\left(y_{2}\right)=q+2$. We observe that the sums of consecutive terms in $A_{j}^{(1)}, j=1,2, \ldots, n$, are alternately $q+1$ and q, beginning and ending with the sum $q+1$; so by Lemma 1.8 the sums of consecutive terms in $f_{q+1}^{(1)}\left(A_{j}^{(2)}\right)$, are alternately $q+2$ and $q+1$, beginning and ending with the sum $q+2$. Therefore, $f_{q+1}^{(1)}\left(A_{j}^{(2)}\right)$ can be partitioned into pairs of labels whose sum is $q+2$. By Lemma $1.5(\mathrm{i})$, the tree $T^{(2)}$ obtained by moving the components in $f_{q+1}^{(1)}\left(A_{j}^{(2)}\right), 1 \leq j \leq n$, to y_{2}, is graceful.

Let $s^{\star}=\max \left\{s_{1}, s_{2}, \ldots s_{n}\right\}$. On repeating the
above procedure for s^{\star} times we get the graceful tree $T^{\left(s^{\star}\right)}$ with vertex set $V(T) \cup\left\{y_{1}, \ldots, y_{s^{\star}}\right\}$ in which the vertex $y_{s^{\star}}$ gets the label $q+s^{\star}$. If $s^{\star}=m$, then we stop otherwise, we proceed as follows.

We apply inverse transformation to the graceful tree $T^{\left(s^{\star}\right)}$ so that the vertex $y_{s^{\star}}$ gets the label 0 . Then we make the vertex $y_{s^{\star}+1}$ adjacent to $y_{s^{\star}}$ and give the label $q+s^{\star}+1$ to $y_{s^{\star}+1}$. If $s^{\star}+1=m$ then we stop otherwise, we repeat this procedure until the vertex y_{m} gets a label. The graceful tree that is obtained on the vertex set $V(T) \cup V\left(H^{\prime}\right)$ is easily seen to be the tree T_{1}.
Given a lobster L of the type to which we give a graceful labeling in this paper, we construct a diameter four tree, say $T(L)$, from L by successively identifying the vertices $x_{i}, i=1,2, \ldots, m$, with x_{0}. The vertex x_{0} is the center of $T(L)$ and its degree is odd, say $2 k+1$. By Lemma 1.6, $T(L)$ has a graceful labeling in which x_{0} gets the label 0 and the neighbours of x_{0} get labels in the sequence S of Construction 2.1. However, we note that the manner in which we partition the sequence S and the order in which the centers of the branches incident on x_{0} in $T(L)$ get labels from the sequence S plays an important role. To get back L and a graceful labeling of it we have to follow an appropriate partition and ordering, which will be clear from the proof of Theorem 2.3. Next we apply Theorem 2.2 to $T(L)$ and to the central path $H=x_{0}, x_{1}, \ldots, x_{m}$, so as to get a graceful labeling of L. We get graceful labelings of lobsters that appear in Theorem 2.3 by taking $n=2$ in Construction 2.1.

Theorem 2.3. The lobsters in Tables 3.1, 3.2 and 3.3 below are graceful.

Descriptions of Tables: In the column headings, the triple (x, y, z) represents the number of odd, even, and pendant branches, respectively, where e means any even number of branches (nonzero, unless otherwise stated), o means any odd number of branches, and 0 means no branch. For example, ($e, 0, o$) means an even number of odd branches, no even branch, and an odd number of pendant branches. If in a triple e or o appear more than once then it does not mean that the corresponding branches are equal in number. For example, (e, e, o) does not mean that the number of odd branches is
equal to the number of even branches. The symbol o^{*} means that $o \geq 3$.

1st column: 0 means that x_{0} is attached to any one of the mentioned combinations of branches. The notation $0(r), r=1,2$, means that x_{0} is attached to the combination of branches mentioned in the column heading in which r is the superscript.

Other columns: $i \rightarrow j$ (respectively, $i \rightarrow$ $j(r), r=1,2)$ means that each $x_{l}, i \leq l \leq j$, is attached to the mentioned combination or any one of the combinations of branches (respectively, the branches mentioned in the triple with superscript r).

Further, when some vertex x_{i} on the central path is attached to two combinations $(x, y, 0)$ and $(0,0, e)$, we mean that x_{i} is attached to the combination (x, y, e). For example, in Table 3.1(d), $x_{t_{2}+1}$ is attached to the combinations $(e, 0,0)$ and $(0,0, e)$, which means that $x_{t_{2}+1}$ is attached to the combination $(e, 0, e)$.

Table 2.1

Lob- sters \downarrow	$\begin{aligned} & (e, \\ & 0, \\ & o) \end{aligned}$	$\begin{aligned} & \left(o^{*},\right. \\ & 0, \\ & o) \end{aligned}$	$\begin{aligned} & (e, \\ & o, \\ & o) \end{aligned}$	$\begin{aligned} & \hline(0, \\ & o, \\ & o) \end{aligned}$	$\begin{aligned} & \left(o^{*},\right. \\ & o, \\ & 0) \end{aligned}$	$\begin{aligned} & (e, \\ & e, \\ & 0) \end{aligned}$	$\begin{aligned} & \hline(e, \\ & 0, \\ & 0)^{1} \\ & \text { or } \\ & (0, \\ & e, \\ & 0)^{2} \end{aligned}$	$\begin{aligned} & (0, \\ & 0, \\ & e) \end{aligned}$
a	0	$\begin{aligned} & \hline 1 \rightarrow \\ & t_{1}, t \\ & < \\ & m- \\ & 1 \end{aligned}$	$\begin{aligned} & t_{1}+ \\ & 1 \rightarrow \\ & t_{2}, \\ & t_{2}< \\ & m \end{aligned}$	$\begin{aligned} & t_{2}+ \\ & 1 \rightarrow \\ & t^{\star}, \\ & t^{\star} \leq \\ & m \end{aligned}$			$\begin{aligned} & t^{\star}+ \\ & 1 \rightarrow \\ & m(2 \\ & \text { if } \\ & t^{\star}< \\ & m \end{aligned}$	
b	0	$\begin{aligned} & 1 \rightarrow \\ & t_{1}, t \\ & < \\ & m- \\ & 1 \end{aligned}$	$\begin{aligned} & t_{1}+ \\ & 1 \rightarrow \\ & t_{2}, \\ & t_{2}< \\ & m \end{aligned}$			$\begin{aligned} & t_{2}+ \\ & 1 \rightarrow \\ & t^{\prime}, \\ & t^{\prime} \leq \\ & m \end{aligned}$	$\begin{aligned} & t^{\prime}+ \\ & 1 \rightarrow \\ & m \\ & \text { if } \\ & t^{\prime}< \\ & m \\ & \hline \end{aligned}$	
c	0	$\begin{aligned} & 1 \rightarrow \\ & t_{1}, t \\ & < \\ & m- \\ & 1 \end{aligned}$	$\begin{aligned} & t_{1}+ \\ & 1 \rightarrow \\ & t_{2}, \\ & t_{2}< \\ & m \end{aligned}$				$\begin{aligned} & \hline t_{2}+ \\ & 1 \rightarrow \\ & m(1) \end{aligned}$	$\begin{aligned} & t_{2}+ \\ & 1 \rightarrow \\ & s, \\ & s \leq \\ & m \end{aligned}$

| d | 0 | $1 \rightarrow$ | - | - | $t_{1}+$ | $t_{2}+$ | $t^{\prime}+$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $1 \rightarrow$ | | | | | | | |

Table 2.2

Lobs ters \downarrow	$\begin{aligned} & (o, o, \\ & o) \end{aligned}$	$\begin{aligned} & (e, o, \\ & o) \end{aligned}$	$\begin{aligned} & (0, o, \\ & o) \end{aligned}$	$\begin{aligned} & (e, e, \\ & 0) \end{aligned}$	$(e, 0,0)^{I I}$ or $(0, e, 0)^{2}$	$\begin{aligned} & (0,0, \\ & e) \end{aligned}$
a	0	$\begin{aligned} & \hline 1 \rightarrow \\ & t, t \\ & m \end{aligned}$	$\begin{aligned} & \hline t \quad+ \\ & 1 \rightarrow \\ & t^{\star}, t^{\star} \\ & \leq m \end{aligned}$		$\begin{array}{ll\|} \hline t^{\star} & + \\ 1 & \rightarrow \\ m & (2) \\ \text { if } t^{\star} & < \\ m & \end{array}$	-
b	0	$\begin{aligned} & 1 \rightarrow \\ & t, t \\ & m \end{aligned}$	\square	$\begin{aligned} & t+ \\ & 1 \rightarrow \\ & t^{\prime}, t^{\prime} \\ & \leq \\ & m \end{aligned}$	$\begin{array}{lr} \hline t^{\prime} & + \\ 1 & \rightarrow \\ m & \text { if } \\ t^{\prime}<m \end{array}$	
C	0	$\begin{aligned} & 1 \rightarrow \\ & t, t \\ & m \end{aligned}$	-	-	$\begin{aligned} & t+1 \rightarrow \\ & m(1) \end{aligned}$	$\begin{aligned} & t+ \\ & 1 \rightarrow \\ & s, s \\ & \leq \\ & m \end{aligned}$
d	0	$\begin{aligned} & 1 \rightarrow \\ & t, t \\ & m \end{aligned}$	-		$\begin{aligned} & \hline t+2 \rightarrow \\ & m(1), \\ & \text { if } t< \\ & m-1 \end{aligned}$	$t+1$
e	0	$1 \rightarrow$ $1, t$ m	$\begin{array}{cc} \hline t \quad+ \\ 1 \quad \rightarrow \\ m-1 \end{array}$	-	$m(2)$	m

Table 2.3

Lob- sters \downarrow	$\begin{aligned} & (e, o, \\ & 0)^{(1)} \\ & \text { or } \\ & (0, e, \\ & o)^{(2)} \end{aligned}$	$\begin{aligned} & (o, 0, \\ & 0)^{(1)} \text { or } \\ & (0, o, \\ & 0)^{(2)} \text { or } \\ & (o, e, \\ & 0)^{(3)} \end{aligned}$	$\begin{aligned} & \hline\left(o^{*}, o,\right. \\ & 0)^{(1)} \text { or } \\ & \left(0, o^{*}\right. \\ & o)^{(2)} \end{aligned}$	$\begin{aligned} & (e, e, \\ & 0) \end{aligned}$	$\begin{aligned} & \hline(e, 0, \\ & 0)^{(1)} \text { or } \\ & (0, e, \\ & 0)^{(2)} \end{aligned}$	$\begin{aligned} & (0,0, \\ & e) \end{aligned}$
a	0 (2)	-	$\begin{aligned} & 1 \quad \rightarrow \\ & t, t< \\ & m(2) \end{aligned}$		$\begin{array}{lr} \hline t & + \\ 1 & \rightarrow \\ m & (2) \end{array}$	$\begin{aligned} & \hline t+ \\ & 1 \rightarrow \\ & s, s \\ & \leq \\ & m \end{aligned}$
b	0 (1)	\square	$\begin{aligned} & 1 \quad \rightarrow \\ & t, \quad t< \\ & m(1) \end{aligned}$	$\begin{aligned} & t+ \\ & 1 \rightarrow \\ & t^{\prime}, t^{\prime} \\ & \leq \\ & m \end{aligned}$	$\begin{array}{lr} \hline t^{\prime} & + \\ 1 & \rightarrow \\ m & \text { if } \\ t^{\prime} & <m \end{array}$	
c		0 (1)	-		$\begin{aligned} & 1 \quad \rightarrow \\ & m(1) \end{aligned}$	$\begin{aligned} & 0 \rightarrow \\ & s, s \\ & \leq \\ & m \end{aligned}$
d	-	0 (2)	-	-	$\begin{aligned} & 1 \quad \rightarrow \\ & m(2) \end{aligned}$	$\begin{aligned} & 0 \rightarrow \\ & s, s \\ & \leq \\ & m \end{aligned}$
e	-	0 (3)	-	$\begin{aligned} & 1 \rightarrow \\ & t^{\prime}, t^{\prime} \\ & \leq \\ & m \end{aligned}$	$\begin{array}{lr} \hline t^{\prime} & + \\ 1 & \rightarrow \\ m & \text { if } \\ t^{\prime} & <m \end{array}$	

Proof: For every lobster L of this theorem we first construct the diameter four tree $T(L)$ corresponding to L. Let $|E(T(L))|=q$ and $\operatorname{deg}\left(x_{0}\right)=2 k+1$. We give the label 0 to x_{0}. We partition the sequence S in Construction 2.1 into two parts, i.e. we take $n=2$ in Construction 2.1.

Let L be a lobster of type (a) in Table 2.1. We follow the two steps given below.

1. We determine r_{1} and hence A_{1} and A_{2} in the following manner:

Let the number of odd branches incident on x_{0} be $2 l_{0}$, that incident on each $x_{i}, i=1,2, \ldots, t_{1}$, be $2 l_{i}+1$, and that incident on each $x_{i}, i=t_{1}+$ $1, \ldots, t_{2}$, be $2 l_{i}$, where for $i=0,1, \ldots, t_{2}, l_{i} \geq 1$.

Let $\beta_{0}, 0 \leq \beta_{0}<l_{0}$, and $\beta_{i}, 1 \leq \beta_{i} \leq l_{i}, 1 \leq$ $i \leq t_{1}$, be arbitrarily chosen integers. We will give a labeling to $T(L)$ in such a way that among the odd branches incident on x_{0} (respectively, $x_{i}, i=$ $1,2, \ldots, t_{1}$), the centers of $2 \beta_{0}+1$ (respectively, $2 \beta_{i}$) branches get labels from the sequence A_{1} and the centers of the rest of these branches get labels from A_{2}, whereas the the centers of all the odd branches incident on $x_{i}, i=t_{1}+1, \ldots, t_{2}$, get labels from A_{1} only. Therefore, A_{1} contains the centers of $2 \beta_{0}+1+\sum_{i=1}^{t_{1}} 2 \beta_{i}+\sum_{i=t_{1}+1}^{t_{2}} 2 l_{i}$ odd branches. We choose A_{1} in such a way that it does not contain the center of any other branch. Therefore, $\left|A_{1}\right|=2 r_{1}+1=2 \beta_{0}+1+\sum_{i=1}^{t_{1}} 2 \beta_{i}+\sum_{i=t_{1}+1}^{t_{2}} 2 l_{i}$.
2. We give labelings to the branches incident on the center of $T(L)$ in the following manner:
(i) The centers of $2 l_{0}$ odd branches incident on x_{0} in L get $2 \beta_{0}$ labels from the beginning and the last label of A_{1}, and $2\left(l_{0}-\beta_{0}\right)-1$ labels from the beginning of A_{2}.
(ii) For $i=1,2, \ldots, t_{1}$, the centers of $2 l_{i}+1$ odd branches incident on x_{i} in L get $2 \beta_{i}-1$ labels from the beginning and the last label of $A_{1}^{(i)}$, and $2\left(l_{i}-\beta_{i}\right)+1$ labels from the beginning of the sequence $A_{2}^{(i)}$.
(iii) For $i=t_{1}+1, t_{1}+2, \ldots, t_{2}$, the centers of $2 l_{i}$ odd branches incident on x_{i} in L get $2 l_{i}-1$ labels from the beginning and the last label of $A_{1}^{(i)}$.
(iv) For $i=t_{1}+1, t_{1}+2, \ldots, t^{\star}$, the centers of the even branches incident on x_{i} in L get labels from the beginning of $A_{2}^{(i)}$.
(v) For $i=0,1,2, \ldots, t^{\star}$, the centers of the pendant branches incident on x_{i} in L get labels from the end of the sequence $A_{2}^{(i)}, A_{2}^{(0)}=A_{2}$.

If $t^{\star}<m$ then we do the following additional step.
(vi) For $i=t^{\star}+1, t^{\star}+2, \ldots, m$, among the even branches incident on x_{i}, the centers of any odd number of branches get labels from the beginning of $A_{2}^{(i)}$ and the centers of the rest of these branches get labels from the end of $A_{2}^{(i)}$.

We notice that the labeling of the centers of the
branches incident on the center x_{0} of $T(L)$ given in step 2 follows part (b) of Lemma 1.6. Therefore, by Lemma 1.6 there exists a graceful labeling of $T(L)$ with the above labels of the center x_{0} and the centers of the branches incident on x_{0}. Finally, we apply Theorem 2.2 , for $n=2$, on $T(L)$ and the path $H=x_{0}, x_{1}, \ldots, x_{m}$, so as to get a graceful labeling of L (see example below). This approach will be the same for all the remaining cases of this theorem and hence we will just indicate the modification we make in steps 1 and 2.

Example: Figure 3 represents a lobster of type (a) in Table 2.1. We construct the graceful diameter four tree $T(L)$ shown in Figure 4. Here $|E(T(L))|=$ $q=84$ and $\operatorname{deg}\left(x_{0}\right)=2 k+1=35$. Therefore, the sequence $S=(84,1,83,2, \ldots, 17,67)$. Here $m=6, t_{1}=1, t_{2}=3, t^{\star}=5, l_{0}=$ 2, $l_{1}=1, l_{2}=1, l_{3}=1$. We take $\beta_{0}=$ 1, $\beta_{1}=1$. Therefore, $\left|A_{1}\right|=2 r_{1}+1=9$, i.e. $A_{1}=(84,1,83,2,82,3,81,4,81)$ and $A_{2}=$ $(5,79,6, \ldots, 17,67)$. Using step 2 and subsequently the technique of [4] we obtain a graceful labeling of $T(L)$ given in Figure 4. Then in Figure 5 we make x_{1} adjacent to x_{0}, give label 85 to x_{1}, and move all the components in $A_{j}^{(1)}, j=1,2,3$, to x_{1}. Next we obtain the lobster in Figure 6 by applying inverse transformation to the lobster found in Figure 5, making x_{2} adjacent to x_{1}, giving label 86 to x_{2}, and moving all the components in $f_{85}^{(1)}\left(A_{j}^{(2)}\right), j=1,2,3$, to x_{2}. Continuing in this manner we finally get the graceful labeling of L presented in Figure 7.

Figure 3: A lobster L of type (a) in Table 2.1. Here $m=6, t_{1}=1, t_{2}=3$, and $t^{\star}=5$.

Figure 4: The tree $T(L)$ corresponding to the lobster L in Figure 3.

Figure 5: The graceful lobster obtained by making x_{1} adjacent to x_{0}, giving label 85 to x_{1}, and moving all the branches in $A_{j}^{(1)}, j=1,2$, to x_{1}.

Figure 6: The graceful lobster obtained by applying inverse transformation to the lobster in Figure, making x_{2} adjacent to x_{1}, giving label 86 to x_{2}, and moving all the branches in $f_{85}^{(1)}\left(A_{j}^{(2)}\right), j=1,2$, to x_{2}.

Figure 7:The lobster L with a graceful labeling.

For all lobsters of type $(x), x=b, c, d, e$, in Table 2.1, the proof follows if we proceed as the proof involving the lobsters of type (a) in Table 2.1 by modifying steps 1 and 2 . For lobsters of type (b) we first define an integer p, as $p=m$ if either $t^{\prime}=m$ or $t^{\prime}<m$ with each $x_{i}, i=t^{\prime}+1, \ldots, m$, is attached to an even number of odd branches and $p=t^{\prime}$ if $t^{\prime}<m$ with each $x_{i}, i=t^{\prime}+1, \ldots, m$, is attached to an even number of even branches; and this definition of p will hold henceforth in the text. Next, we set $t_{2}=p$ in step 1 , repeat steps $2(\mathrm{i})$ and 2 (ii), set $t_{2}=p$ in step 2(iii), set $t^{\star}=t_{2}$ in steps $2(\mathrm{iv})$ and $2(\mathrm{v})$, and set $t^{\star}=t_{2}$ and $m=m+t^{\prime}-p$, in step 2(vi). For lobsters of type (c): set $t_{2}=m$ in step 1 , repeat steps 2(i) and 2(ii), set $t_{2}=m$ in step 2(iii), set $t^{\star}=t_{2}$ in steps 2(iv) and 2(v), and set $t^{\star}=t_{2}, m=s$ and substitute even branches with pendant branches in step 2(vi). For lobsters of type (d): set $t_{1}=t_{2}$ and $t_{2}=p$ in step 1 , repeat step 2(i), set $t_{1}=t_{2}$ in step 2(ii), set $t_{1}=t_{2}$ and $t_{2}=p$ in step 2(iii), replace step 2(iv) with "for $i=t_{1}+1, t_{1}+2, \ldots, t_{2}$, the centers of the even branches incident on x_{i} in L get labels from the end of $A_{2}^{(i)}$ ", set $t^{\star}=t_{1}$ in step 2(v), and set $t^{\star}=t_{2}$ and $m=m+t^{\prime}-p$ in step 2(vi). For lobsters of type (e): set $t_{2}=m$ in step 1, repeat steps 2(i) and 2(ii), set $t_{2}=m$ in step 2(iii), set $t^{\star}=t_{2}+1$ in steps 2(iv) and 2(v).
For lobsters L of type (a) in Table 2.2, the proof follows if we proceed as the proof involving the lobsters of type (a) in Table 2.1 by modifying steps 1 and 2 in the following manner.

1. The terms of A_{1} will be the labels given to the centers of the odd branches incident on $x_{i}, i=$ $0,1, \ldots, t$. Therefore, $\left|A_{1}\right|=2 r_{1}+1$ is the number
of odd branches of L.
2. (i) For $i=0,1,2, \ldots, t$, among the odd branches incident on x_{i} in L, the center of one branch gets the last label of $A_{1}^{(i)}$ and the centers of rest of these branches get labels from the beginning of $A_{1}^{(i)}$, where $A_{1}^{(0)}=A_{1}$.
(ii) For $i=0,1,2, \ldots, t^{\star}$, the centers of the even (respectively, pendant) branches incident on x_{i} in L get labels from the beginning (respectively, end) of $A_{2}^{(i)}$, where $A_{2}^{(0)}=A_{2}$.

If $t^{\star}<m$ then we do the following additional step.
(iii) Repeat step 2(vi).

For lobsters of type $(x), x=b, \ldots, e$, in Table 2.2, the proof follows if we proceed as the proof involving the lobsters of type (a) in Table 2.2 by modifying steps 1 and 2. For lobsters of type (b): set $t=p$ in steps 1 and $2(\mathrm{i})$, set $t^{\star}=t$ in step 2(ii), and set $t^{\star}=t$ and $m=m+t^{\prime}-p$ in step 2(iii). For lobsters of type (c) : set $t=m$ in steps 1 and 2(i), set $t^{\star}=t$ in step 2(ii), and set $t^{\star}=t, m=s$, and replace even branches with pendant branches in step 2(iii). For lobsters of type (d) : set $t=m$ in steps 1 and 2(i), and set $t^{\star}=t+1$ in step 2(ii). For lobsters of type (e): repeat steps 1 and $2(\mathrm{i})$, and set $t^{\star}=m$ in step 2(ii).
For lobsters of type (a) (respectively, (b)) in Table 2.3 , the proof follows by proceeding as the proof involving the lobsters of type (a) in Table 2.1 if we replace odd branches with even branches, set $t_{1}=t$ and $t_{2}=m$ in step 1 , repeat step 2(i), set $t_{1}=t$ in step 2(ii), set $t_{1}=t$ and $t_{2}=m$ in step 2(iii), set $t^{\star}=t$ in step $2(\mathrm{v})$, and set $t^{\star}=t, m=s$, and replace even branches with pendant branches in step 2(vi) (respectively, if we set $t_{1}=t$ and $t_{2}=p$ in step 1 , repeat step 2(i), set $t_{1}=t$ in step 2(ii), set $t_{1}=t$ and $t_{2}=p$ in step 2(iii), set $t^{\star}=t$ in step 2(v), and set $t^{\star}=t, m=m+t^{\prime}-p$ in step $2(\mathrm{vi})$).
For lobsters of type (c) (respectively, (d)) in Table 2.3 , the proof follows if we proceed as the proof involving the lobsters of type (i) in Table 2.2 if we do the following changes in steps 1 and 2.

1. Repeat steps 1 and 2(i) (respectively, steps 1 and

2(i) by replacing odd branches with even branches).
2. For $i=0,1,2, \ldots, s$, among the pendant branches incident on x_{i} in L, the centers of any odd number of branches get labels from the beginning of $A_{2}^{(i)}$, and the centers of the rest of these branches get labels from the end of $A_{2}^{(i)}$, where $A_{2}^{(0)}=A_{2}$.
For lobsters of type (e) we replace pendant branches with even branches and set $m=p$ and $s=m+t^{\prime}-p$ in steps 1 and 2 in the proof involving the lobsters of type (c) in Table 2.3.

Theorem 2.4. The lobsters in Tables 2.4, 2.5, and 2.6 below are graceful.

Description of Tables: Same as the tables in Theorem 2.3.

Table 2.4

$\begin{aligned} & \hline \mathrm{Lo} \\ & \mathrm{bs} \\ & \mathrm{te} \\ & \mathrm{rs} \\ & \downarrow \end{aligned}$	$\begin{aligned} & (\mathrm{e}, \\ & 0, \\ & \left.\mathrm{o}^{*}\right) \end{aligned}$	$\begin{aligned} & \hline\left(\mathrm{o}^{*},\right. \\ & 0, \\ & \left.\mathrm{o}^{*}\right) \end{aligned}$	$\begin{aligned} & \hline(\mathrm{e}, \\ & \mathrm{o}, \\ & \left.\mathrm{o}^{*}\right) \end{aligned}$	$\begin{aligned} & (0, \\ & \mathrm{o}^{2} \\ & \left.\mathrm{o}^{*}\right) \end{aligned}$	$\begin{aligned} & \hline\left(\mathrm{o}^{*},\right. \\ & \mathrm{o}, \\ & 0) \end{aligned}$	$\begin{aligned} & \hline(\mathrm{e}, \\ & \mathrm{e}, \\ & 0) \end{aligned}$	$\begin{aligned} & (\mathrm{e}, 0, \\ & 0)^{1} \\ & \text { or } \\ & (0, \mathrm{e}, \\ & 0)^{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { (0, } \\ & 0, \\ & \text { e) } \end{aligned}$
a	0	$\begin{aligned} & 1 \rightarrow \\ & t_{1}, t_{1} \\ & < \\ & m- \\ & 2 \end{aligned}$	$\begin{aligned} & t_{1}+ \\ & 1 \rightarrow \\ & t_{2}, \\ & t_{2}< \\ & m- \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & t_{2}+ \\ & 1 \rightarrow \\ & t_{3} \\ & t_{3}< \\ & m \end{aligned}$			$\begin{array}{ll} \hline t_{3} & + \\ 1 & \rightarrow \\ m(2) \end{array}$	$\begin{aligned} & t_{3}+ \\ & 1 \rightarrow \\ & s, s \\ & \leq \\ & m \end{aligned}$
b	0	$\begin{aligned} & \hline 1 \rightarrow \\ & t_{1}, t_{1} \\ & < \\ & m- \\ & 1 \end{aligned}$	$\begin{aligned} & \hline t_{1}+ \\ & 1 \rightarrow \\ & t_{2}, \\ & t_{2}< \\ & m \end{aligned}$			$\begin{aligned} & t_{2}+ \\ & 1 \rightarrow \\ & t^{\prime}, \\ & t^{\prime} \leq \\ & m \end{aligned}$	$\begin{array}{ll} \hline t^{\prime} & + \\ 1 & \rightarrow \\ m & \text { if } \\ t^{\prime} & < \\ m & \end{array}$	$\begin{aligned} & \hline t_{2}+ \\ & 1 \rightarrow \\ & s, s \\ & \leq \\ & m \end{aligned}$
c	0	$\begin{aligned} & \hline 1 \rightarrow \\ & t_{1}, t_{n} \\ & < \\ & m- \\ & 1 \end{aligned}$			$\begin{aligned} & t_{1}+ \\ & 1 \rightarrow \\ & t_{2}, \\ & t_{2}< \\ & m \end{aligned}$	$\begin{aligned} & t_{2}+ \\ & 1 \rightarrow \\ & t^{\prime}, \\ & t^{\prime} \leq \\ & m \end{aligned}$	$\begin{aligned} & t^{\prime}+ \\ & 1 \quad \rightarrow \\ & m, \text { if } \\ & t^{\prime}< \\ & m \end{aligned}$	$\begin{aligned} & t_{1}+ \\ & 1 \rightarrow \\ & s, \\ & s \leq \\ & m \end{aligned}$

Table 2.5

Lobs ters \downarrow	$(\mathrm{o}$,	$(\mathrm{e}$,	o,	$(0, \mathrm{o}$,	$(\mathrm{e}, \mathrm{e}$,	$(\mathrm{e}$, 0, $\left.\mathrm{o}^{*}\right)$	$(0,0$, $\left.\mathrm{o}^{*}\right)$
\downarrow							

a	0	$\begin{array}{\|cc} \hline 1 & \rightarrow \\ t_{1}, & t_{1} \\ < & \\ m & -1 \end{array}$	$\begin{aligned} & \hline t_{1}+ \\ & 1 \rightarrow \\ & t_{2}, t_{2} \\ & <m \end{aligned}$	\square	$\begin{array}{ll}t_{2} & + \\ 1 & \rightarrow \\ m(2)\end{array}$	$\begin{array}{ll} \hline t_{2} & + \\ 1 & \rightarrow \\ s, & s \leq \\ m & \end{array}$
b	0	$\begin{aligned} & 1 \quad \rightarrow \\ & t, t< \\ & m \end{aligned}$		$\begin{array}{cc} \hline t & + \\ 1 & \rightarrow \\ t^{\prime}, & t^{\prime} \\ \leq & m \end{array}$	$\begin{array}{ll} \hline t^{\prime} & + \\ 1 & \rightarrow \\ m & \text { if } \\ t^{\prime} & < \\ m & \end{array}$	$\begin{array}{ll\|} \hline t & + \\ 1 & \rightarrow \\ s, & s \leq \\ m & \end{array}$
c	0	$\begin{aligned} & 1 \quad \rightarrow \\ & t, t< \\ & m \end{aligned}$	-		$\begin{array}{ll}t & + \\ 1 & \rightarrow \\ m & (2)\end{array}$	$\begin{array}{ll} \hline t & + \\ 1 & \rightarrow \\ s, & s \leq \\ m & \end{array}$

Table 2.6

Lobs ters \downarrow	$\begin{aligned} & \hline(\mathrm{e}, \\ & \mathrm{o}, \\ & 0) \end{aligned}$	$\begin{aligned} & \text { (o, } \\ & \text { e, } \\ & 0 \text {) } \end{aligned}$	$\begin{aligned} & \left(\mathrm{o}^{*},\right. \\ & \mathrm{o}, 0) \end{aligned}$	$\begin{aligned} & \text { (e, e, } \\ & 0) \end{aligned}$	$\begin{array}{ll} \hline(\mathrm{e}, & 0, \\ 0)^{1} & \text { or } \\ (0, & \mathrm{e}, \\ 0)^{2} & \\ \hline \end{array}$	$\begin{aligned} & (0,0, \\ & \text { e) } \end{aligned}$
a	0		$\begin{aligned} & 1 \quad \rightarrow \\ & t, t< \\ & m \end{aligned}$	$\begin{array}{cc} t & + \\ 1 & \rightarrow \\ t^{\prime}, & t^{\prime} \\ \leq & m \end{array}$		$\begin{array}{ll} 0 & \rightarrow \\ s, & s \leq \\ m & \end{array}$
b		0		$\begin{aligned} & 1 \rightarrow \\ & t^{\prime}, t^{\prime} \\ & \leq m \end{aligned}$		$\begin{array}{ll} \hline 0 & \rightarrow \\ s, & s \leq \\ m & \end{array}$
c		0	-		1 m	$\begin{array}{ll} 0 & \rightarrow \\ s, & s \leq \\ m \end{array}$

proof: As in the proof of Theorem 2.3, for every lobster L of this theorem, we first construct the diameter four tree $T(L)$ corresponding to L. Let $|E(T(L))|=q$ and $\operatorname{deg}\left(x_{0}\right)=2 k+1$. We give the label 0 to x_{0}. Here we partition the sequence S in Construction 2.1 into three parts, i.e. we take $n=3$ in Construction 2.1.

Let L be a lobster of type in Table 2.4. We follow the steps given below:

1. We define an integer p^{\prime} as $p^{\prime}=t_{3}$ if L is of type $(a), p^{\prime}=t_{2}$ if L is of type (b), and $p^{\prime}=t_{1}$ if L is of type (c).
2. We determine r_{1} and r_{2} and hence the sequences $A_{i}, i=1,2,3$.
(i) The integer r_{1} and hence the sequence A_{1} is determined by repeating step 1 in the proof involving the lobsters of type $(a),(b)$, and (d), respectively, in Table 2.1.
(ii) Let the number of pendant branches incident on each $x_{i}, i=0,1, \ldots, p^{\prime}$, be $2 \alpha_{i}+1$, and that incident on each $x_{i}, i=p^{\prime}+1, p^{\prime}+2, \ldots, s$, be $2 \alpha_{i}$, where $\alpha_{i} \geq 1$. Let $\gamma_{i}, 0 \leq \gamma_{i}<l_{i}$, be arbitrarily chosen integers. For $i=0,1, \ldots, t_{3}$, among the pendant branches incident on x_{i}, the centers of $2 \gamma_{i}+1$ branches get labels from A_{2} and the centers of the rest of these branches get labels from A_{3}. For $i=p^{\prime}+1, \ldots, s$, the centers of all the pendant branches incident on x_{i} get labels from A_{3}. Let $2 r=\sum_{i=0}^{p^{\prime}} 2\left(\alpha_{i}-\gamma_{i}\right)+\sum_{i=p^{\prime}+1}^{s} 2 \alpha_{i}$. We choose A_{3} in such a way that it does not contain the center of any other branch. Therefore, $\left|A_{3}\right|=2 r$, and hence $\left|A_{2}\right|=2 r_{2}=(2 k+1)-\left(2 r_{1}+1\right)-2 r=2\left(k-r_{1}-r\right)$.
3. We give labelings to the branches incident on the center of $T(L)$ in the following manner.
(i) We repeat step 2 excluding step $2(\mathrm{v})$ in the proof involving the lobsters of type $(a),(b)$, and (d), respectively, in Table 2.1 . Furthermore, if L is of type (a), then we set $t^{\star}=t_{3}$ in step 2 in the proof for the lobsters of type (a) in Table 2.1 .
(ii) For $i=0,1,2, \ldots, p^{\prime}$, the centers of $2 \alpha_{i}+1$ pendant branches incident on x_{i} in L get $2 \gamma_{i}+1$ labels from the end of $A_{2}^{(i)}$ and $2\left(\alpha_{i}-\gamma_{i}\right)-1$ labels from the beginning and the last label of $A_{3}^{(i)}$, where $A_{2}^{(0)}=A_{2}$ and $A_{3}^{(0)}=A_{3}$.
(iii) For $i=p^{\prime}+1, p^{\prime}+2, \ldots, s$, the centers of $2 \alpha_{i}$ pendant branches incident on x_{i} in L get $2 \alpha_{i}-1$ labels from the beginning and the last label of $A_{3}^{(i)}$.

We notice that the labeling of the centers of the branches incident on the center x_{0} of $T(L)$ given in step 2 follows part (b) of Lemma 1.6. Therefore, by Lemma 1.6, there exists a graceful labeling of $T(L)$ with the above labels of the center x_{0} and the centers of the branches incident on x_{0}. Finally, we apply Theorem 2.2, for $n=3$, on $T(L)$ and the path $H=x_{0}, x_{1}, \ldots, x_{m}$, so as to get a graceful labeling of L.

For lobsters L in Table 2.5, the proof follows if we proceed as the proof involving the lobsters of type (a) in Table 2.4 by modifying steps 1 and 2 in the following manner.
1.(i) We determine A_{1} by setting $t=q^{\prime}$ in step 1 in the proof involving the lobsters of type (a) in Table 2.2 , where $q^{\prime}=t_{1}$ if L is of type $(a), q^{\prime}=p$ if L is of type (b), and $q^{\prime}=t$ if L is of type (c).
(ii) We determine A_{3} and hence A_{2} by setting $t_{3}=$ $q^{\prime \prime}$ in step 1 (ii), where $q^{\prime \prime}=t_{2}$ if L is of type (a) and $q^{\prime \prime}=t$ if L is of type (b) or (c).
2.(i) Set $t=q^{\prime}$ in step 2(i) in the proof involving the lobsters of type (a) in Table 2.2 .
(ii) For $i=0,1, \ldots, q^{\prime \prime}$, the centers of the even branches incident on x_{i} in L get labels from the beginning of $A_{2}^{(i)}$, where $A_{2}^{(0)}=A_{2}$.
(iii) Define an integer $q^{\prime \prime \prime}$, where $q^{\prime \prime \prime}=m$, if L is of type (a) or (c), and $q^{\prime \prime \prime}=m+t^{\prime}-p$, if L is of type (b). Set $t^{\star}=q^{\prime \prime}$ and $m=q^{\prime \prime \prime}$ in step 2(iii) in the proof for the lobsters of type (a) in Table 2.2 .
(iv) Set $t_{3}=q^{\prime \prime}$ in steps 2(ii) and 2(iii).

For lobsters L of type $(x), x=a, b$, and c in Table 2.6 , the proof follows if we proceed as the proof involving the lobsters of type (a) in Table 2.4 by modifying steps 1 and 2 in the following manner.

1. We determine A_{1} by repeating step 1 in the proof involving the lobsters of types (b), (c) and (d), respectively, in Table 2.3. We take the terms of A_{3} as the labels given to the centers of the pendant branches incident on the vertices $x_{i}, i=0,1, \ldots, s$, i.e. $\left|A_{3}\right|$ is the number of pendant branches incident on the central path of L. Therefore, $\left|A_{2}\right|=$ $2\left(k-r_{1}-\left|A_{3}\right|\right)=2 r_{2}$.
2.(i) Repeat step 2 in the proof involving the lobsters of $(b),(c)$, and (d), respectively, in Table 2.3.
(ii) For $i=0,1,2, \ldots, s$, among the pendant branches incident on x_{i} in L, the center of one branch gets the last label of $A_{3}^{(i)}$ and the centers of the rest of these branches get labels from the beginning of $A_{3}^{(i)}$, where $A_{3}^{(0)}=A_{3}$.

Remark 2.5. In all the lobsters to which we give graceful labelings in this paper, the vertex x_{m} gets the largest label and x_{m-1} gets the label 0 . There-
fore, we get some more graceful lobsters by attaching a caterpillar to the vertex x_{m} or by attaching a suitable caterpillar (any number of pendant branches or an odd (or even) branch or the combination of both) to the vertex x_{m-1} in any of the lobsters discussed in Theorems 2.3 and 2.4.

References

[1] J. C. Bermond, Radio antennae and French windmills, Graph Theory and Combinatorics, In Research Notes in Maths, (ed. R.J. Wilson), 34 (1979), 18-39.
[2] W. C. Chen, H. I. Lu, Y. N. Yeh, Operations of interlaced trees and graceful trees, Southeast Asian Bulletin of Mathematics 4 (1997), 337-348.
[3] J. A. Gallian, A dynamic survey of graph labeling, Electronic Journal of Combinatorics, DS6, Eleventh edition, February 29, 2008. url: http://www.combinatorics.org/Surveys/.
[4] P. Hrn č iar, A. Havier, All trees of diameter five are graceful, Discrete Mathematics 233 (2001), 133-150.
[5] D. Mishra, P. Panigrahi, Graceful lobsters obtained by component moving of diameter four trees, Ars Combinatoria (81) (October, 2006), 129-147.
[6] D. Morgan, All lobsters with perfect matchings are graceful, Technical Report, University of Alberta, TR05-01, Jan 2005. url: http://www.cs.ualberta.ca/research /techreports/2005.php.
[7] H. K. Ng, Gracefulness of a class of lobsters, Notices AMS, 7(1986), abstract no. 825-05-294.
[8] G. Ringel, Problem 25 in theory of graphs and applications, Proceedings of Symposium Smolenice 1963, Prague Publishing House of Czechoslovak Academy of Science (1964), 162.
[9] J. G. Wang, D. J. Jin, X. G. Lu, D. Zhang, The gracefulness of a class of lobster trees, Mathematical and Computer Modelling 20(9) (1994), 105-110.

