Cocycles and Bilenear Forms

A.A.I Perera¹ and D.G.T.K. Samarasiri²

Department of Mathematics, University of Peradeniya, Sri Lanka

Abstract— A (two dimensional) cocycle ψ is a mapping $\psi: G \times G \to C$ such that

$$\psi(g,h)\psi(gh,k) = \psi(g,hk)\psi(h,k)$$

$$\forall g,h,k \in G$$

where G is a finite group and C is a finite abelian group.

Additive form of the cocycle equation is

$$\psi(g,h) + \psi(g+h,k) = \psi(g,h+k) + \psi(h,k)$$

A cocycle naturally displays as a matrix, $M = [\psi(g,h)]_{g,h\in G}$ and this matrix is the Hadamard product of Inflation, Transgression and Coboundary matrices. In our work, we prove that the bilinear form is a cocycle and the converse is not true by giving a counter example.

Keywords: Cocycle matrix, bilinear forms.

I INTRODUCTION

In mathematics, a *bilinear form* on a vector space *V* is a bilinear mapping $V \times V \rightarrow F$, where *F* is the field of scalars. That is, a bilinear form is a function $\alpha : V \times V \rightarrow F$ which is linear in each argument separately:

(i).
$$\alpha(u+u',v) = \alpha(u,v) + \alpha(u',v),$$

(ii).
$$\alpha(u, v + v') = \alpha(u, v) + \alpha(u, v')$$
,

(iii)
$$\alpha(\lambda u, v) = \alpha(u, \lambda v) = \lambda \alpha(u, v)$$

Any bilinear form on F^n can be expressed as

$$\alpha(x, y) = x^T A y = \sum_{i,j=1}^n a_{ij} x_i y_j$$
, where A is an

 $n \times n$ matrix.

If G is a finite group and C is a finite abelian group, a 2-cocycle is a mapping $\varphi(g,h)\varphi(gh,k) = \varphi(g,hk)\varphi(h,k) \quad \forall g,h \in G$ This implies $\varphi(g,1) = \varphi(1,h) = \varphi(1,1) \quad \forall g,h \in G$

A cocycle φ is naturally displayed as a cocycle matrix; that is, a square matrix whose rows and columns are indexed by the element of G under some fixed ordering and whose entry in position (g,h) is $\varphi(g,h)$. The matrix $M_{\varphi} = [\varphi(g,h)]_{g,h\in G}$ is called a G-cocycle $\forall g, hat is G er C$. Some authors call this matrix a pure cocycle matrix.¹

In our work, we have proved the following lemma.

Lemma: Every bilinear form is an additive cocycle. But the converse is not true, in general.

II. METHODOLOGY

A Cocycle matrix over *G* is a Hadamard product of Inflation, Transgression and Coboundary matrices.^{1,2} Coboundary matrix of *G* over *C* can be obtained by normalizing the multiplication table of the group *G* and the construction of Inflation and Transgression matrices are given by

K.J. Horadom and W. De. Launey $^{2}\,$.

III RESULTS

It can be easily shown that every bilinear form is an additive cocycle.

Let
$$\alpha : G \times G \to C$$
 be a 2-cocycle, then
 $\alpha(x, y)\alpha(xy, z) = \alpha(x, yz)\alpha(y, z)$
In additive form
 $\alpha(x, y) + \alpha(x + y, z) = \alpha(x, y + z) + \alpha(y, z)$

If
$$\alpha$$
 is bilinear
 $\alpha(x, y+z) = \alpha(x, y) + \alpha(x, z)$ and $\alpha(x+y, z)$
 $= \alpha(x, z) + \alpha(y, z) \quad \forall x, y, z \in G.$

$$\therefore \alpha(x, y) + \alpha(x + y, z) = \alpha(x, y) + \alpha(x, z) + \alpha(y, z) = \alpha(x, y + z) + \alpha(y, z) \forall x, y, z \in G.$$

So, α satisfy a cocycle equation and hence it is a 2-cocycle.

We have proved that the converse of this Lemma is not true, in general, by giving the following example.

Consider the finite group Z_2^3 which is a Z_2 module. Therefore it is a vector space over Z_2 . Define a mapping $\alpha : Z_2^3 \times Z_2^3 \to Z_2$ such that $\alpha(x, y)\alpha(xy, z) = \alpha(y, z)\alpha(x, yz)$ for all

x, y, z in \mathbb{Z}_2^3 .

If α is bilinear it should satisfy the following: $\alpha(x, y + z) = \alpha(x, y) + \alpha(x, z)$; and $\alpha(x + y, z) = \alpha(x, z) + \alpha(y, z)$ for all x, y, z in \mathbb{Z}_2^3 .

First we will compute the cocycle matrix for Z_2^3 .

Inflation matrix for Z_2^3 is:

(1	1	1	1	1	1	1	1)		
1	Α	1	Α	1	Α	1	A		
1	1	В	В	1	1	В	В		
1	Α	В	AB	1	Α	В	AB		
1	1	1	1	С	С	С	C		
1	Α	1	Α	С	AC	С	AC		
1	1	В	В	С	С	BC	BC		
(1	Α	В	AB	С	AC	BC	ABC)		
where $A^2 = B^2 = C^2 = 1$.									

<u>Transgression matrix for</u> Z_2^3 is:

(1	1	1	1	1	1	1	1)
1	1	1	1	1	1	1	1
1	K	1	K	1	K	1	K
1	K	1	K	1	K	1	K
1	L	М	LM	1	L	М	LM
1	L	М	LM	1	L	М	LM
1	KL	М	KLM	1	KL	М	KLM
(1	KL	М	KLM	1	KL	М	KLM)

where $K^2 = L^2 = M^2 = 1$.

<u>Coboundary matrix for</u> Z_2^3 is:

1	1	1	1	1	1	1	1)	
1	1	Р	Р	Q	Q	R	R	
1	Р	1	Р	S	QRS	S	QRS	
1	Р	Р	1	PRS	PQS	PQS	PRS	
1	Q	S	PRS	1	Q	S	PRS	
1	Q	QRS	PQS	\mathcal{Q}	1	PQS	QRS	
1	R	S	PQS	S	PQS	1	R	
1	R	QRS	PRS	PRS	QRS	R	1)	

(1	1	1	1	1	1	1	1)
1	Α	Р	AP	Q	AQ	R	AR
1	KP	В	BKP	S	KQRS	BS	BKQRS
1	AKP	BP	ABK	PRS	AKPQS	BPQS	ABKPRS
1	LQ	MS	LMPRS	С	CLQ	CMS	CLMPRS
1	ALQ	MQRS	ALMPQS	CQ	ACL	CMPQS	ACLMQRS
1	KLR	BMS	BKLMPQS	CS	CKLPQS	BCM	BCKLMR
(1	AKLR	BMQRS	ABKMPRS	CPRS	ACKLQRS	BCMR	ABCKLM)

Transforming to additive entries over $Z_2 =, \{0,1\}$, one can obtain the following cocycle matrix.

International Journal of Mathematics Trends and Technology- Volume2 Issue2-2011

(0	0	0	0	0	0	0	0)
	0	A	Р	$A\!\!+\!\!P$	\mathcal{Q}	A+Q	R	A+R
	0	K+P	В	<i>B</i> + <i>K</i> + <i>P</i>	S	K+Q+R+S	B+S	B+K+Q+R+S
	0	A+K+P	B+P	A + B + K	P+R+S	A+K+P+Q+S	B+P+Q+S	A+B+K+P+R+S
	0	L+Q	M+S	L+M+P+R+S	С	C+L+Q	С+М+S	<i>C+L+M+P+R+S</i>
	0	A+L+Q	M+Q+R+S	A+L+M+P+Q+S	C+Q	A+C+L	C+M+P+Q+S	A+C+L+M+Q+R+S
	0	<i>K</i> + <i>L</i> + <i>R</i>	<i>B</i> + <i>M</i> + <i>S</i>	B+K+L+M+P+Q+S	C+S	C+K+L+P+Q+S	B+C+M	B+C+K+L+M+R
	0	A+K+L+R	<i>B</i> + <i>M</i> + <i>Q</i> + <i>R</i> + <i>S</i>	<i>A</i> + <i>B</i> + <i>K</i> + <i>L</i> + <i>M</i> + <i>P</i> + <i>R</i> + <i>S</i>	C+P+R+S	A+C+K+L+Q+R+S	<i>B</i> + <i>C</i> + <i>M</i> + <i>R</i>	A+B+C+K+L+M

Consider $Z_2^3 = \{000, 100, 010, 110, 001, 101, 011, 111\}$. Then, we can obtain its multiplication table under the addition as follows:

$$e = 000, a = 100, b = 010, a + b = 110, d = 001, a + d = 101, b + d = 011, a + b + d = 111.$$

+	е	а	b	a+b	d	a+d	b+d	a+b+d
е	000	100	010	110	001	101	011	111
а	100	000	110	010	101	001	111	011
b	010	110	000	100	011	111	001	101
a+b	110	010	100	000	111	011	101	001
d	001	101	011	111	000	100	010	110
a+d	101	001	111	011	100	000	110	010
b+d	011	111	001	101	010	110	000	100
a+b+d	111	011	101	001	110	010	100	000

Now, $\alpha(a, b, +d) = \alpha(100, 011) = R$ $\alpha(a, b) = \alpha(100, 010) = P$ $\alpha(a, d) = \alpha(100, 001) = Q$ In general $R \neq P + Q$. Therefore, $\alpha(a, b + d) \neq \alpha(a, b) + \alpha(a, d)$.

Therefore, α is not bilinear.

IV CONCLUSION

We have proved that a bilinear form is an additive cocycle. Further, proved that the converse is not true by giving a counter example.

REFERENCES

- K.J. Horadom & W. De Launey, Cocyclic Development of Designs, *Journal of Algebraic Combinatorics* 2: 267-290, 1993.
- [2]. D.L. Flannery, Calculation of Cocyclic Matrices, Journal of Pure & Applied. Algebra: 181-190.,1996.
- [3]. K.J. Horadam & A.A.I. Perera, Codes from Cocycles, *Lecture notes in Computer Science, Applied Algebra, Algebraic Algorithms and Error Correcting Codes* **1255**:151-163,1997.