Cocycles and Bilenear Forms

A.A.I Perera ${ }^{1}$ and D.G.T.K. Samarasiri ${ }^{2}$
Department of Mathematics, University of Peradeniya, Sri Lanka

Abstract- A (two dimensional) cocycle ψ is a mapping $\psi: G \times G \rightarrow C$ such that

$$
\begin{aligned}
& \psi(g, h) \psi(g h, k)=\psi(g, h k) \psi(h, k) \\
& \forall g, h, k \in G
\end{aligned}
$$

where G is a finite group and C is a finite abelian group.

Additive form of the cocycle equation is $\psi(g, h)+\psi(g+h, k)=\psi(g, h+k)+\psi(h, k)$

A cocycle naturally displays as a matrix, $M=[\psi(g, h)]_{g, h \in G}$ and this matrix is the Hadamard product of Inflation, Transgression and Coboundary matrices. In our work, we prove that the bilinear form is a cocycle and the converse is not true by giving a counter example.

Keywords: Cocycle matrix, bilinear forms.

I INTRODUCTION

In mathematics, a bilinear form on a vector space V is a bilinear mapping $V \times V \rightarrow F$, where F is the field of scalars. That is, a bilinear form is a function $\alpha: V \times V \rightarrow F$ which is linear in each argument separately:
(i). $\alpha\left(u+u^{\prime}, v\right)=\alpha(u, v)+\alpha\left(u^{\prime}, v\right)$,
(ii). $\alpha\left(u, v+v^{\prime}\right)=\alpha(u, v)+\alpha\left(u, v^{\prime}\right)$,
(iii) $\alpha(\lambda u, v)=\alpha(u, \lambda v)=\lambda \alpha(u, v)$.

Any bilinear form on F^{n} can be expressed as
$\alpha(x, y)=x^{T} A y=\sum_{i, j=1}^{n} a_{i j} x_{i} y_{j}$, where A is an $n \times n$ matrix.

If G is a finite group and C is a finite abelian group, a 2-cocycle is a mapping
$\varphi(g, h) \varphi(g h, k)=\varphi(g, h k) \varphi(h, k) \quad \forall g, h \in G$

This implies

$$
\varphi(g, 1)=\varphi(1, h)=\varphi(1,1) \quad \forall g, h \in G
$$

A cocycle φ is naturally displayed as a cocycle matrix; that is, a square matrix whose rows and columns are indexed by the element of G under some fixed ordering and whose entry in position (g, h) is $\varphi(g, h)$. The matrix $M_{\varphi}=[\varphi(g, h)]_{g, h \in G}$ is called a G-cocycle $\forall g, \downarrow$,htie đyer C. Some authors call this matrix a pure cocycle matrix. ${ }^{1}$

In our work, we have proved the following lemma.
Lemma: Every bilinear form is an additive cocycle. But the converse is not true, in general.

II. METHODOLOGY

A Cocycle matrix over G is a Hadamard product of Inflation, Transgression and Coboundary matrices. ${ }^{1,2}$ Coboundary matrix of G over C can be obtained by normalizing the multiplication table of the group G and the construction of Inflation and Transgression matrices are given by K.J. Horadom and W. De. Launey ${ }^{2}$.

III RESULTS

It can be easily shown that every bilinear form is an additive cocycle.
Let $\alpha: G \times G \rightarrow C$ be a 2-cocycle, then $\alpha(x, y) \alpha(x y, z)=\alpha(x, y z) \alpha(y, z)$
In additive form

$$
\alpha(x, y)+\alpha(x+y, z)=\alpha(x, y+z)+\alpha(y, z)
$$

If α is bilinear

$$
\begin{array}{r}
\alpha(x, y+z)=\alpha(x, y)+\alpha(x, z) \text { and } \alpha(x+y, z) \\
=\alpha(x, z)+\alpha(y, z) \quad \forall x, y, z \in G \\
\therefore \alpha(x, y)+\alpha(x+y, z)=\alpha(x, y)+\alpha(x, z)+ \\
\alpha(y, z)=\alpha(x, y+z)+\alpha(y, z) \forall x, y, z \in G
\end{array}
$$

So, α satisfy a cocycle equation and hence it is a 2-cocycle.

We have proved that the converse of this Lemma is not true, in general, by giving the following example.
Consider the finite group Z_{2}^{3} which is a Z_{2} module. Therefore it is a vector space over Z_{2}.
Define a mapping $\alpha: \mathrm{Z}_{2}^{3} \times \mathrm{Z}_{2}^{3} \rightarrow \mathrm{Z}_{2}$ such that $\alpha(x, y) \alpha(x y, z)=\alpha(y, z) \alpha(x, y z)$ for all x, y, z in Z_{2}^{3}.

If α is bilinear it should satisfy the following:
$\alpha(x, y+z)=\alpha(x, y)+\alpha(x, z)$; and
$\alpha(x+y, z)=\alpha(x, z)+\alpha(y, z)$ for all
x, y, z in Z_{2}^{3}.
First we will compute the cocycle matrix for Z_{2}^{3}.
Inflation matrix for Z_{2}^{3} is:
$\left(\begin{array}{cccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & A & 1 & A & 1 & A & 1 & A \\ 1 & 1 & B & B & 1 & 1 & B & B \\ 1 & A & B & A B & 1 & A & B & A B \\ 1 & 1 & 1 & 1 & C & C & C & C \\ 1 & A & 1 & A & C & A C & C & A C \\ 1 & 1 & B & B & C & C & B C & B C \\ 1 & A & B & A B & C & A C & B C & A B C\end{array}\right)$
where $A^{2}=B^{2}=C^{2}=1$.
The cocycle matrix for Z_{2}^{3} is:
$\left(\begin{array}{cccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & A & P & A P & Q & A Q & R & A R \\ 1 & K P & B & B K P & S & K Q R S & B S & B K Q R S \\ 1 & A K P & B P & A B K & P R S & A K P Q S & B P Q S & A B K P R S \\ 1 & L Q & M S & L M P R S & C & C L Q & C M S & C L M P R S \\ 1 & A L Q & M Q R S & A L M P Q S & C Q & A C L & C M P Q S & A C L M Q R S \\ 1 & K L R & B M S & B K L M P Q S & C S & C K L P Q S & B C M & B C K L M R \\ 1 & A K L R & B M Q R S & A B K M P R S & C P R S & A C K L Q R S & B C M R & A B C K L M\end{array}\right)$

Transforming to additive entries over $Z_{2}=,\{0,1\}$, one can obtain the following cocycle matrix.
$\left(\begin{array}{cccccccc}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & A & P & A+P & Q & A+Q & R & A+R \\ 0 & K+P & B & B+K+P & S & K+Q+R+S & B+S & B+K+Q+R+S \\ 0 & A+K+P & B+P & A+B+K & P+R+S & A+K+P+Q+S & B+P+Q+S & A+B+K+P+R+S \\ 0 & L+Q & M+S & L+M+P+R+S & C & C+L+Q & C+M+S & C+L+M+P+R+S \\ 0 & A+L+Q & M+Q+R+S & A+L+M+P+Q+S & C+Q & A+C+L & C+M+P+Q+S & A+C+L+M+Q+R+S \\ 0 & K+L+R & B+M+S & B+K+L+M+P+Q+S & C+S & C+K+L+P+Q+S & B+C+M & B+C+K+L+M+R \\ 0 & A+K+L+R & B+M+Q+R+S & A+B+K+L+M+P+R+S & C+P+R+S & A+C+K+L+Q+R+S & B+C+M+R & A+B+C+K+L+M\end{array}\right)$

Consider $Z_{2}^{3}=\{000,100,010,110,001,101,011,111\}$. Then, we can obtain its multiplication table under the addition as follows:
$e=000, a=100, b=010, a+b=110, d=001, a+d=101, b+d=011, a+b+d=111$.

+	e	a	b	$a+b$	d	$a+d$	$b+d$	$a+b+d$
e	000	100	010	110	001	101	011	111
a	100	000	110	010	101	001	111	011
b	010	110	000	100	011	111	001	101
a+b	110	010	100	000	111	011	101	001
d	001	101	011	111	000	100	010	110
a+d	101	001	111	011	100	000	110	010
b+d	011	111	001	101	010	110	000	100
a+b+d	111	011	101	001	110	010	100	000

Now, $\alpha(a, b,+d)=\alpha(100,011)=R$
$\alpha(a, b)=\alpha(100,010)=P$
$\alpha(a, d)=\alpha(100,001)=Q$
In general $R \neq P+Q$.
Therefore, $\alpha(a, b+d) \neq \alpha(a, b)+\alpha(a, d)$.
Therefore, α is not bilinear.

IV CONCLUSION

We have proved that a bilinear form is an additive cocycle. Further, proved that the converse is not true by giving a counter example.

REFERENCES

[1]. K.J. Horadom \& W. De Launey, Cocyclic Development of Designs, Journal of Algebraic Combinatorics 2: 267-290, 1993.
[2]. D.L. Flannery, Calculation of Cocyclic Matrices, Journal of Pure \&Applied. Algebra: 181-190.,1996.
[3]. K.J. Horadam \& A.A.I. Perera, Codes from Cocycles, Lecture notes in Computer Science, Applied Algebra, Algebraic Algorithms and Error Correcting Codes 1255:151-163,1997.

