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Abstract-This paper is to study a mathematical model of 

the spread of infectious disease in a Predator-Prey 

Ecosystem. We discuss in detail the stability of the 

disease free and the endemic equilibrium by using the 

Routh-Hurwitz conditions to linearise the non-linear 

systems. We identify the threshold parameter R0 (basic 

reproduction number) and that the disease free 

equilibrium always exists. Numerical Simulations are 

carried out .Implications of our analytical and 

numerical findings are discussed critically. 
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                  I. INTRODUCTION 

When species interact, the population dynamics of 

each species is affected. In general there is a whole 

web of interacting species, called a trophic web, 

which makes for structurally complex communities. 

We consider here, systems involving two or more 

species, concentrating particularly on two species 

systems. There are three main types of interaction.(i) 

If the growth rate of one population is decreased and 

the other increased the populations are in a predator-

prey situation.(ii) If the growth rate of each 

population is decreased, then it is competition.(iii) If 

each population’s growth rate  is enhanced, then it is 

called mutualism or symbiosis[8].Some mathematical 

models have been developed in this area. In 1926, 

Volterra [13] first proposed a simple model for the 

predation of one species by another to explain the 

oscillatory levels of certain fish catches in the 

Adriatic. This model was based on four assumptions. 

Firstly, the prey grows unboundedly in a Malthusian 

way in the absence of any predation. Secondly, the 

effect of the predation is to reduce the prey’s per 

capita growth rate by a term proportional to the prey 

and the predator populations. Thirdly, in the absence 

of any prey for sustenance the predator’s death rate 

results in exponential decay. Fourthly, the prey’s 

contribution to the predator’s growth is proportional 

to the available prey as well as the size of the 

predator population. The model is 

)( bpaN
dt
dN

  and )( dcNP
dt
dP

  where 

N is the prey population and P is the predator 
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population. This model also called Lokta-Volterra 

model was analyzed. Murray [8] modified the Lokta-

Volterra model by changing of the assumptions made 

made by Volterra .In the model he obtained: 
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 Where 

r1,k1,r2,k2,b12,b21 are all positive constants. This 

model was analyzed and the conditions for stability 

established. Bedington et al [2] presented some 

results on the dynamic complexity of coupled 

predator-prey systems. Dunbar [3,4] studied in detail 

a modified Lokta-Volterra system with logistic 

growth of the prey and with both predator and prey 

dispersing by diffusion.”Predator-Prey model are 

arguably the building blocks of the bio and 

ecosystems as biomasses are grown out of their 

resources to sustain their struggle for their very 

existence. Depending on their specific settings of 

applications, they can take the forms of resource-

consumer, plant-herbivore, parasitic-host, tumor cells 

(virus)-immune system, susceptible-infectious 

interactions, etc. They deal with the general loss-win 

interactions and hence may have applications outside 

of ecosystems. When seemingly competitive 

interactions are carefully examined, they are often in 

fact some facts of predator-prey interaction in 

disguise”[5]. 

Another approach to modeling the interaction 

between prey and predators was developed to account 

as well for organisms (such as bacteria) taking up 

nutrients and this is called Jacob-Mond Model. This 

model was discovered independently in the several 

diverse applications. It is akin to the Haldane-Briggs 

Model and Michaelis-Menten Model in Biochemistry 

the Jacob-Mond Model in microbial ecology and the 

Beaverton-Holt model in fisheries. It serves as one of 

the important building blocks in studies of complex 

biochemical reactions and in ecology [12]. B.Dubey 

and R.K Upadhay, in their paper, a mathematical 

model is proposed and analyzed to study the 

dynamics of one-prey two-predator system with 

ratio-dependent predators’ growth rate. Criteria for 

local stability, instability and global stability of the 

nonnegative equilibria are obtained. The permanent 

co-existence of the three species is also discussed. 

Finally, computer simulations are performed to 

investigate the dynamics of the system. S.Pathak et al 

in his work, we discovered that over the past hundred 

years, mathematics has been used to understand and 

predict the spread of disease, relating important 

public-health questions to basic transmission 

parameters. From prehistory to the present day, 

diseases have been a source of fear and superstition. 

A comprehensive picture of disease dynamics 

requires a variety of mathematical tools, from model 

creation to solving differential equations to statistical 

analysis. Although mathematics has been so far done 

quite well in dealing with epidemiology but there is 

no denying that there are certain factors which still 

lack proper mathematization. 

Almost all mathematical models of disease start from 

the base premise: that the population can be 

subdivided into a set of distinct classes dependent 

upon their experience with respect to the disease. One 

line of investigation classifies individuals as one 

susceptible, infectious or recovered. Such a model is 

termed as an SIR model. Disease transmission is a 

dynamical process driven by the interaction between 

the susceptible and the infective. Many models of 

epidemiology are based on the so called “mass 

action” assumption for transmission. In this work, we 
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have considered the case of the mathematical 

modeling of the spread of disease (infection) in 

Predator-Prey ecosystems. This paper is organized as 

follows. In the next section, we present the model 

assumptions. In the third section, we present the 

model equations and described various parameters 

and terms in the model. In the fourth section, we 

carry out the qualitative analysis of the model. 

Stability criteria’s for the disease free equilibrium 

and the endemic equilibrium are derived. Basic 

reproductive number and Bifurcation theory were 

also discussed. The fifth section presents an 

illustrative example for the model. In the sixth 

section, we present different computer simulations of 

the system. In the last section, the biological 

significance of our analytical and numerical findings 

are discussed. 

 

       II. THE MODEL ASSUMPTIONS   

The following examines the evolution of a predator-

prey system, after an infectious disease has been 

introduced into the colony. We assume the following: 

(a) The disease is benign to the prey; that is, the prey 

are carriers. The relative birth rate for Infected prey 

remains the same as that of the healthy susceptible 

prey. 

(b) The disease is debilitating and ultimately fatal for 

the predators. Once a predator is       Infected, it can 

be assumed to be dead. We will therefore consider 

only one population of predators, those that are 

susceptible. 

(c) The disease is spread among the prey by contact, 

and the rate of infection is  proportional to the 

infected and the susceptible population. 

(d) The predators make no distinction between 

susceptible and infected members of the Prey 

population. 

(e) The predator contract the disease by consuming 

the prey. The rate of predator infection is 

proportional to the product of infected prey and 

susceptible predators. 

 

       III. THE MODEL EQUATIONS 

The model we analyzed in this paper is considered 

under the framework of the following nonlinear 

ordinary differential equations:  

= -푎 푅 + 푏 푅 푅 , − 푐 푅 푅 ,                                                            

 

= 푎 푅 , − 푏 푅 푅 , − 푐 푅 , 푅 , + 푑 푅 ,                     

  

= 푎 푅 , − 푏 푅 푅 , + 푐 푅 , 푅 , − 푑 푅 ,                                                      

(3.1) 

  

  At this points we will observe a qualitative change 

when a smooth small change is made to the 

parameter values(bifurcation parameters). 

 
TABLE 1 

Description of variables for transmission model 

    Variables                              Descriptions              

R1i Number of Infected Prey at 

time t 

 

R1,s   Number of Susceptible 

Prey at time t 

 

R2 Number of healthy 

Susceptible Predators at 

time t 

 

                                                                           

                                       
TABLE 2 

Description of constants for transmission model 
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   Constant                                  Descriptions 

a1      natural death of the Healthy 

Susceptible Predator 

a2              per capita birth rate of 

Susceptible Prey (per time) 

and Infected Prey 

 

b1   number of contact between 

Healthy Susceptible Prey 

and Healthy Predator.                                        

 

b2 number of contact between 

Healthy Susceptible Prey 

and  Healthy Predator for 

preying.  

                                                   

c1 number of contact between 

Healthy Susceptible 

Predator and Infected Prey 

 

d1 rate at which infected Prey 

(carriers) are removed. 

  

 

IV MODEL ANALYSIS 

 

= -푎 푅 + 푏 푅 푅 , − 푐 푅 푅 ,                                                            

 

= 푎 푅 , − 푏 푅 푅 , − 푐 푅 , 푅 , + 푑 푅 ,                     

  

= 푎 푅 , − 푏 푅 푅 , + 푐 푅 , 푅 , − 푑 푅 ,                      

                                                                                          

From          (3.1) 

The equilibrium are obtained by setting the right-

hand side of system (3.1) equal to zero, giving the 

following: 

Solution 

-푎 푅 + 푏 푅 푅 , − 푐 푅 푅 , = 0                                                               

푎 푅 , − 푏 푅 푅 , − 푐 푅 , 푅 , + 푑 푅 , =0                                               

푎 푅 , − 푏 푅 푅 , + 푐 푅 , 푅 , − 푑 푅 , = 0                                             

(4.1) 

The system in (3.1) has two equilibrium solutions  

   

A disease-free equilibrium at (0, 0, 0) = 

(푅∗,푅 ,
∗  ,푅 ,

∗ ) 

An endemic equilibrium at ( , , )= 

(푅∗,푅 ,
∗  ,푅 ,

∗ ) 

 

We determine the stability of the equilibrium points 

by computing the Jacobian Matrix of the system (3.1) 

at each equilibrium point 

J(푅 ,푅 ,  ,푅 , ) =
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At the equilibrium point   푅∗ ,푅 ,
∗  ,푅 ,

∗ = (0, 0, 0) 

the Jacobian is given by  
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Trace  J = −푎 − 푑  

Since 푎  푎푛푑 푑  푎푟푒 푝표푠푖푡푖푣푒 푞푢푎푛푡푖푡푖푒푠 푇푟푎푐푒 퐽 <

0 

Det ( J) = 푎 푎 푑 − 푎 푎  

Theorem 1.The nature of the equilibrium point 

(DFE): 
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Then the equilibrium point (DFE) (0,0,0) is 

(i) Asymptotically stable if −푎 − 푑 <0 and 

푎 푎 푑 − 푎 푎 >0(ii) stable, but not asymptotically 

stable if  −푎 − 푑 = 0 and  푎 푎 푑 − 푎 푎 > 0 (iii)  

−푎 − 푑 > 0 or 푎 푎 푑 − 푎 푎  <0.  (iv)stable node 

if  

−푎 < 0, 푎 < 0 푎푛푑 푎 − 푑 <

0 (푣)푢푛푠푡푎푏푙푒 푛표푑푒  푖푓 − 푎 > 0, 푎 >

0 푎푛푑 푎 − 푑 > 0 (vi) saddle point if −푎 <

0, 푎 < 0 표푟 푎 − 푑 > 0 , −푎 > 0, 푎 >

0 푎푛푑 푎 − 푑 < 0, −푎 > 0,푎 < 0 푎푛푑 푎 − 푑 >

0.(vii) stable focus if −푎 ,푎 표푟 푎 − 푑  are complex 

conjugate, not pure imaginary, and have negative real 

parts.(viii) unstable focus if −푎 ,푎 표푟 푎 − 푑  are 

complex conjugate, not pure imaginary, and have 

positive real parts. 

At the Endemic Equilibrium point (EDE) the non 

zero equilibrium point ( , , ) 

 

J , ,   = Therefore Trace (J) =
1

2121
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Theorem 2. The nature of the equilibrium point 

(EDE): 

Then the equilibrium point (EDE) ( , , ) 

is 

asymptotically stable if 
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□                             
 A. The Basic Reproduction Number in a Nutshell 

The Basic Reproduction number R0 is defined as the 

expected number of secondary case produced by a 

single (typical) infection in a completely susceptible 

population. R0 is a dimensionless number and not a 

rate. It has units of time-1.In this work, we define our 

Basic reproduction number as follows 

*
2

2
0

1
Sd

cR 
 

If R0 < 1,the infection(disease) dies out, on the other 

hand, If R0 >1,the infection (disease) spreads in the 

population. 

Theorem 3. From the system (3.1) it follows that 

(i) If R0 < 1,then there is no positive equilibrium(i.e. 

the disease or infection dies out) 
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(ii) If R0 > 1, then there is a unique positive 

equilibrium (R*
2, R*

1,s, R*
1,i) of the system (3.1) 

 21

2121*
,1

2

2*
,1

2

2*
2 ,,

cc
dbcaR

c
dR

b
aR is




                                                                     
□ 

B.  Bifurcation Theory 

Bifurcation generally refers to something splitting 

apart. With regard to differential equations or 

systems involving a parameter. It refers to abrupt 

changes in the character of the solutions as the 

parameter is changed continuously. It is the 

mathematical study of changes in the qualitative or 

topological structure of a given family, such as the 

integral curves of a family of vector fields, and the 

solutions of a family of differential equations. Most 

commonly applied to the mathematical study of 

dynamical systems, a bifurcation occurs when a small 

smooth change made to the parameter values (the 

bifurcation parameters) of a system causes a sudden 

qualitative or topological change in its behavior. 

Bifurcation occurs in both continuous systems 

(described by ODEs, DDEs, and PDEs) and discrete 

systems. In this work, the bifurcation parameter 

values are 
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IV. ILLUSTRATIVE EXAMPLE 

Assuming that the variables R2 ,R1,s,R1,i have been 

scaled so that one unit of population represents a 

large number of Individuals. Given the following 

values for the constants. a1 = 1,     a2=1,  b1=1, b2=1,  

c1=1,  c2=1/2 , d2 = 1 . 

We have the following system of equations 

is rrrrr
dt
dr

,12,122
2                                                                                               

i
is

ss
s r

rr
rrr

dt
dr

,1
,1,1

,12,1
,1

2
                                                                         

2
,1,1

,12
,1 is

i
i rr

rr
dt

dr
                                                                                           

(5.1) 

is rrrrr ,12,122  =0                                                                                    

(5.2) 
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(5.3) 
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,12
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rr
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(5.4) 

The system (1.2) has two equilibrium solutions 

(a)A disease free equilibrium at (0,0,0) =

 *
,1

*
,1

*
2 ,, is rrr  

(b) An endemic equilibrium at (1,2,1) =  

 *
,1

*
,1

*
2 ,, is rrr  

We determine the stability of the equilibrium points 

by computing the Jacobian matrix of the system (3.1) 

at each equilibrium point. 

The nature of the equilibrium points: 

At the equilibrium point  *
,1

*
,1

*
2 ,, is rrr = (0, 0, 0) the 

Jacobian matrix is given by 
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Trace (J) = 0 

Det (J) =0 

Hence since Trace (J) = 0 and Det (J) = 0.We say that 

the equilibrium points (DFE) (0, 0, 0) is stable but 

not asymptotically stable. 

At the EDE (the non-zero equilibrium point 
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 (1, 2, 1) 
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Trace (J) = 1/2< 0   and Det (J) = 3/2  > 0 

Hence, since Trace (J) < 0 and Det (J)>0 , we say that 

the equilibrium point (EDE) (1,2,1) is asymptotically 

stable. 

 

    VI. NUMERICAL SIMULATION 

In this section we present computer simulation of 

some solutions of the system (5.1).From practical 

point of view, numerical solutions are very important 

beside analytical study. 

We take parameters of the system as r2(0)= 0.9, 

r1,s(0)= 1.90,r1,i(0)=0.80 at time t = 0,over the time 

interval [0,20]. 

 
 

 
Figure 6a.We observed that the population of infected prey 

undergoes a decay or rather extinction. 

 
Fig 6b represents The population of the Susceptible predator as 

time goes on

 
 Fig 6c represents the population of the Susceptible Prey as time 

goes on. 

 Fig 6d Shows the population of the Infected Prey as time goes on. 

 

                  VII. CONCLUSION
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A mathematical model of the spread of an infectious 

disease in a Prey-Predator ecosystem is designed and 

rigorously analyzed. The study which takes into 

cognizance the evolution of a Predator-Prey 

Ecosystem after an infectious disease has been 

introduced into the colony. We discuss in detail the 

stability of the disease free and endemic equilibrium 

by using the Routh-Hurwitz conditions to linearized 

the non-linear systems. We also try to identify the 

epidemiological thresholds parameter R0 (The Basic 

reproduction number) and that the disease free 

equilibrium always exists. We discovered that as the 

population grows, the number of infected prey 

increases which makes the population of healthy 

susceptible predators to die out in the system over the 

time interval.There is possibility of the extinction of 

the population of healthy susceptible predator. Since 

the infected prey are carriers  the population of the 

healthy susceptible and infected prey would increase 

as they interact in the ecosystem and thereby create 

adequate contact with the  population of healthy 

susceptible predators. In the long run the whole 

population of the healthy susceptible predators may 

be wiped out. We believed that if vaccination or 

necessary campaign can be made to fight against the 

disease there could be hope for the survival of the 

population of healthy susceptible predators.                     
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