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discussed.
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1 Introduction

The stability problem of functional equations is originated from a question of Ulam [19] concerning
the stability of group homomorphisms. Hyers [9] gave a first affirmative partial answer to the question
of Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki [2] for additive mappings and by
Th.M. Rassias [13] for linear mappings by considering an unbounded Cauchy difference. A generaliza-
tion of all the above stability results was obtained by Gavruta [8] by replacing the unbounded Cauchy
difference by a general control function in the spirit of Th.M. Rassias’ approach. Kim [11] solved the gen-
eral solutions and proved the Hyers-Ulam-Rassias stability for the mixed type of quartic and quadratic
functional equation:

f@+ty+a)+flety—2)+fl@—y+2)+ fl@—y—2) +4f(z) +4f(y) +4f(2)

=2f(z+y)+2f(x—y)+2f(z+2)+2f(x—2)+2f(y+2)+2f(y—=2). (1.1)

Eshaghi Gordiji et al.[6] introduced another mixed type of quartic and quadratic functional equation:
fnz +y) + fnz —y) = n’fz +y) +n’fl@ —y) +20° (0" - D f(2) 20" - Df(y)  (1.2)
for all fixed integer n with n # 0, £1. They established the general solutions and proved the Hyer-Ulam-
Rassias stability of this equation in quasi-Banach spaces. Also, for the case n = 2, they established the

general solution and investigated generalized Hyers - Ulam stability for the following equation:

fQx+y)+ fQx—y)=4f(z+y) +4f(z —y) +2f(2z) — 8f(z) — 6f(y) (1.3)

with f(0) = 0in RN-spaces(see [7]).
Arunkumar and Agilan [14] introduced and investigated the generalized Hyers - Ulam stability for the
following mixed type of quadratic and additive functional equation via fixed point method:
fle+2y+32)+ f(x — 2y + 32)+f(z + 2y — 32) + f(z — 2y — 32)
=4f(x) +8[f(y) + f(—y)] + 18[f (2) + f(—2)]
Balamurugan et al.[4](see also [3])introduced and investigated the generalized Hyers-Ulam stability
for the following mixed additive-cubic functional equation:
fBx+2y+2)+ fBx+2y—2)+ fBx —2y+2)+ f(3z — 2y — 2)
=24[f(z+y)+ f(z —y)| +6[f(z + 2) + f(z — 2)] + 16f (2z) — 80f(z)
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Zhou Xu et al. [22] achieved the general solution and proved the stability of the following quintic
functional equation

flx+3y) = 5f(x+2y) +10f(x +y) — 10f(x) +5f(x —y) — f(x — 2y) = 120f(y)

and the sextic functional equation

Jflz+3y) —6f(x+2y) +15f(x +y) —20f(x) + 15f(x —y) — 6f(z — 2y) + f(z — 3y) = 720f(y)

in the quasi——normed spaces via fixed point method. The stability of several functional equations have
been extensively investigated by a number of authors and there are many interesting results concerning

this problem (see [1], [5], [10], [12], [15], [18], [20])
In this paper, we prove the generalized Hyers-Ulam stability for the following mixed quadratic-quartic
functional equation:

FBx+2y+2)+ fBx+2y—2)+ fBx —2y+2)+ f(Bz — 2y — 2z) + 240f (x) + 160f(y) + 48f(2)
=712f(z+y) + f@ -y +18[f(z + 2) + f(x — 2)] + 8[f(y + 2) + f(y — 2)] + 24/ (2) +4f(2(14)4)

It is easy to see that the mapping f(z) = ax® + bz* is a solution of the functional equation (1.4).

2 Preliminary results on quasi—/5—normed spaces

In this section, we present some preliminary results concerning to quasi-/3-normed spaces.

We fix a real number 8 with 0 < 8 < 1 and let K denote either R or C.
Definition 2.1. Let X be a linear space over K . A quasi-G-norm || - || is a real-valued function on X
satisfying the following:

(i) ||z|>0forallz € X and | = ||=0if and only if z = 0.

Gi) |Ixx|| =|AP.||z|foral\eKandallz € X.
(i5t1) Thereisaconstant K > 1suchthat |z +y <K K (x| + vl
forall z,y € X.
The pair (X, || - ||) is called quasi-3-normed space if || - || is a quasi-3-norm on X. The smallest

possible K is called the modulus of concavity of || - ||.
Definition 2.2. A quasi-3-Banach space is a complete quasi-/3-normed space.
Definition 2.3. A quasi-g-norm || - || is called a (3, p)-norm (0 < p < 1) if
la+y P<l eI+l y I
for all x,y € X. In this case, a quasi-8-Banach space is called a (3, p)-Banach space.

More details, one can refer [16, 17, 21, 22] for the concepts of quasi-normed spaces and p-Banach
space.
Now, we present the following theorem due to Margolis and Diaz [23] for fixed point Theory.

Theorem 2.1. [23] Suppose that for a complete generalized metric space (£, d) and a strictly contractive
mapping T : Q — Q with Lipschitz constant L. Then, for each given x € Q) , either

d(T"z, T"M'z) =00 ¥V n>0,

or there exists a natural number no such that

() d(T™2, T" " x) < oo foralln > no ;

(i) The sequence (T"x) is convergent to a fixed point y* of T';

(iii) y* is the unique fixed point of T in the set A = {y € Q : d(T™°z,y) < co};
(iv) d(y*,y) < = d(y, Ty) for all y € A.

Throughout this paper, unless otherwise explicitly stated, we will assume that X is a linear space,
and Y is a (3, p)—Banach space space with (3,p) norm ||.||y. Let K be the modulus of concavity of
|l.|ly- For notational convenience, given a mapping f : X — Y, we define the difference operator

Df(z,y,2) = fBx+2y+2) + fBx+2y — 2) + f(Bz — 2y + 2) + f(3z — 2y — 2)
= 2[f(z+y) + flx—y] - 18[f(x+2)+ f(z — 2)] = 8[f(y + 2) + f(y — 2)]
—24f(2z) — 4f(2y) + 240f(z) + 160 (y) + 48f(z)

forall z,y, z € X.
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3 Stability of Eq. (1.4): Quadratic case

we will use the following lemma in this paper.
Lemma 3.1. [2Z] Let j € {1, 1} be fixed, s,a € N witha > 2 and+ : X — [0,00) a function such that
there exists an L < 1 with y(a’z) < a?*P Lyy(z) forallz € X. Let f : X — Y be a mapping satisfying

1f(az) = a” f(2)]ly < ¥(x) (3.1)

for all x € X. Then there exists a uniquely determined mapping F : X — Y such that F(az) = o’ F(z)

and
1

_ < - - .
1) = F@)ly £ v @) (3:2)
forallx € X.
Proof. Consider the set
Q={glg: X—>Y} (3.3)

and introduce the generalized metric on (,

d(g,h) = inf{p > 0| |lg(x) — h(@)|ly < pp(x) Vre X} (3.4)
It is easy to show that (€2, d) is a complete generalized metric space (see [24, 25, 26]). Define a function

J:Q = Qby Jg(z) = a ¥°g(a’z) for all z € X. Let g,h € Q be given such that d(g,h) < e, by the
definition,
lg(z) — h(z)lly < et(x), VzeX. (3.5)
Hence
17g(x) = Jh(z) |y = a™"*"|lg(a’z) — h(a’x)|ly < a ’ep(a’) < Leg() (3.6)
forall z € X. By definition, d(Jg, Jh) < Le. Therefore,

d(Jg, Jh) < Ld(g,h), Vg,h € Q. (3.7)

This means that J is a strictly contractive self-mapping of  with Lipschitz constant L. It follows from

(3.1) that .
— (), ifj=T,
a(f,Jf) < { az? v, 1 (3.8)

Y(x), =1,

for all x € X. Therefore, by Theorem 1.3 of [25], J has a unique fixed point F : X — Y in the set
A ={g€Q:d(g, f) < oo}. This implies that F(ax) = a° F(z) and

ash

F(z) = lim J"f(z) = lim a 7™ f(a’"x) (3.9)

n—o0 n—o0

for all z € X. Moreover,
1 1
< —— <
AW F) S 77 AT S
This implies that the inequality (3.2) holds.
To prove the uniqueness of the mapping I, assume that there exists another mapping G : X — Y
which satisfies (3.2) and G(az) = a°G(z) for all z € X. Fix z € X. Clearly, F(a’"z) = ¢’°" F(x) and
G(a’"x) = a’*"G(z) for all n € N. Thus

(3.10)

|F(z) — G(z)|| < K HF(aMx)  f@a)

ajsn ajsn

¥().

(3.11)
Since, for every = € X, limp—oo( (2KL™)/(a®® | 1 = L7 | ) )b(x) = 0, we get G = F. This completes
the proof. O

< KHG(aj”a:) B flaimx)
Y

ajsn ajsn

2K L™
T af|1-L7 |

Theorem 3.2. Letj € {—1,1} be fixed, and let 1, : X3 — [0,00) be a mapping such that there exists
an L < 1 with ¢y (47z,47y, 47 2) < 167° Lapy(x,y, 2)for all z,y, = € X. Let a mapping f : X — Y with
f(0) = 0 satisfies the inequality

HDf(m7y7Z)”Y wa ($,y72) (312)

forall x,y,z € X. Then there exists a unique quadratic mapping B : X — Y such that

1 ~

17(22) = 16/(2) = B@)lly < g7 —79(@) (3.13)
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for all x € X, where

B
() =K [My(z, 2z, x) + K My (z, z, ) + (%) K?My(z,0,z)

B B
+ 20° K3 My (x,0,0) + K* (%) My(0,z,0) + K* (%) My(0,0,z)] forallz € X.

Proof. Replacing (z,y, z) by (z, 2z, z), (z, z, z), (x, 0, x), (z,0,0), (0, z,0) and (0,0, z) in (3.12), respec-
tively, we get the following inequalities

If(8x) + f(6x) — 4f(4x) — 80f(3z) + 118 (2x) + 280f (x) — 72f(—z) + f(—2z)]|y

< ¢y (z,27,2), VaeX. (3.14)

1£(62) + f(4x) — 125f(2x) + 448f (x)||y < vo (v, 7,2), Va € X. (3.15)
12f (4z) — 40f(2z) + 136f () — 8F (—)|ly < v (x,0,2), Va € X. (3.16)
[4f(3z) — 24f(2x) + 60f(x)|ly < s (2,0,0), Va € X. (3.17)
|—2f(2x) + 72f(z) — 72f (~) + 2f(—22) ||y < 5 (0,2,0), Vz € X. (3.18)
|24f (z) — 24f(—2)|ly < 5 (0,0,2), Va € X. (3.19)

Let g, v (z) : X — Y be mappings defined by g(z) = f(2z) — 16f(z) for all z € X and

B
oy (x) =K [My(z, 2z, z) + K My (z, z, ) + <E> K?M,(z,0, )

2
+20° K My(,0,0) + K* (%) ® My (0,2,0) + K* (%) ? My(0,0,2) (3.20)
for all z € X. It follows from (3.14) — (3.20) that
| f(8z) — 16 f(4x) — 16 f(2x) + 256 f (z)|ly < &(z), Ve X. (3.21)
Therefore (3.21) means
lg(4z) — dg(@)lly < () (3.22)

for all x € X. By Lemma 3.1, there exists a unique mapping B : X — Y such that B(4z) = 16B(x) and

1 ~

I1f(2z) — 16f(z) — B(z)|ly < mwb(fﬂ) (3.23)

for all z € X. It remains to show that B is a quadratic map. By (3.12), we have

H 161”j Df(4njx,4”jy,4”jz)HY < 16%1[16(4"%3, 4™y 4™ 7)
< 16}”3 (167 L) Yo (x,y, 2) = L™ (2, y, 2) (3.24)
for all z,y, z € X and all positive integers n. so
IDB(x,y,2)|ly =0 (3.25)
for all z,y, z € X. Thus the mapping B : X — Y is quadratic, as desired O

Throughout this paper, we will assume that X is a quasi—a—normed space with quasi—a—norm
||l x in all the corollaries. The following corollaries are immediate consequence of Theorem 3.2.
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Corollary 3.3. Letv > 0 andr, s,t which are all > 0 be real numbers such that r, s andt are all # %.
Suppose that a mapping f : X — Y with f(0) = 0 satisfies the inequality

1/7
vz, r>0,s=0,t=0;

IDf(z,y, 2)lly < 9§ vyl r=0,s>0,t=0; (3.26)
11||z|\f,<7 r=0,s=0,t>0;

villelkx +llylx +1zlk}, r>0,s>0,t>0;
forall z,y, z € X. Then there exists a unique quadratic mapping B : X — Y such that

ab,

Bo ()

[If(2z) —16f(z) — B(x)lly < § w(x), 7=0,8>0,t=0; (3.27)
S(z), 7=0,5=0,t>0;
G(z), 7>0,8s>0,t>0;

, 7>0,s=0,t=0,

forallz € X, where

L+ K+ () K24 20°K° 4 [(3)7 + (3)°] &
|167 — 1] '

+0p(z) forallz € X.

or\ [1+ K+ (%) K?+20°K?
fola) =Kv (7 ()" el
16 67 — 27| X
goe [2o0 + K+ (1) K* .
0(z) =K (w){ =i Il
490\ 1+ K+ () K2+ (1) K*
51,( =Kv (165){ ‘16’8 4at| 2 ||ZC||3( and
)

Co(w) =Bp(z) + (=

Corollary 3.4. Letv > 0 and r, s,t which are all > 0 be real numbers such that A\ = r + s+t # %.
Suppose that a mapping f : X — Y with f(0) = 0 satisfies the inequality

v {llallx Iyl =l )
Df(x,y,2)lly < s (3.28)
1D5 (@ 9, 2)lly {v{nmnxnynxuz\&+\|w\|é<+uy||§(+||z|\§(}

forall x,y,z € X. Then there exists a unique quadratic mapping B : X — Y such that

1£(22) — 16f(x) - B(@)]ly < { po(2), (3.29)

Tb(x)

for all x € X, where

4O¢A gas +K N
=Kv | — |4 ———+ and
pb(m) v <165) {|16g74a)\|}“'r“X

(4M> { 2427 427 44K +2(2) K24 200K + (1) + ()] K }

A
|166740"\| quX

forallz € X.
A counter example to illustrate the non stability in Condition (v) of Corollary 3.3.

Example 3.5. Leta : R — R be a function defined by

s
o pat, if|z] <1
al@) = { 7 otherwise

where p > 0 is a constant, and define a function f, : R — R by

e}

fox) = f(22) = 16f(x Z

n

16"

forall zeR.
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Then f, satisfies the functional inequality

676 - 16°
IDfo(w,y, )| < =z w(l2l” + 1yl + |2) (3.30)
forall z,y, z € R. Then there do not exist a quadratic mapping B : R — R and a constant ¢ > 0 such that
|fo(z) — B(z)| < |z forall = eR. (3.31)

Proof. Now
|a(4"z)|
[ fol@)] < Z |16n Z 16m 15

Therefore we see that f, is bounded. We are going to prove that f, satisfies (3.30)).
If 2% + |y[* + |2|* = 0 or [z* + |y|* + [2]* > 15 then

676 - 16 160 - 162
15 ~ 15

[Dfo(z,y,2)| < (el + lyl* + [=]). (3.32)

1 . L
Now suppose that 0 < |z|* + |y|® + |2|* < 6 Then there exists a non-negative integer & such that

1 1
Torrz <l P+ 12 < e (3.33)

so that 4%z < i, 4y < i, 4Fz < i and consequently 4*1 (32 4 2y + 2), 4" "1 (z + y),
4N £ 2), 451 (22), 47 (2), 45 (1), 4571 (2), 47 (2), 47 (), 47 (2) € (=1,1).
Therefore foreachn =0,1,...,k — 1, we have
4"(Br £ 2y £ 2),4"(z £ y), 4" (v £ 2),4"(2x), 4" (x),4" (v),4" (z) € (-1,1)

and Dfy(4™x,4™y,4"z) = 0. From the definition of f and (3.33), we obtain that

a(d" Bz +2y+2)) + a(4" Bz + 2y — 2)) + a(4" (3 — 2y + 2))

|
n=0

+a(d" Bz -2y — 2)) — T2[a(4"(z + y)) + a(4"(z — y))] — 18a(4" (z + 2))
— 18a(4"(x — 2)) — 8[a(4™(y + 2)) + (4" (y — 2))] — 24a(4" (2))

—4a(4™(2y)) + 240a(4™ (z)) + 160a(4™ (y)) + 48 (4™ (2))

<X i
+a(d"(3z — 2y — 2)) — 72[a(4"(z +y)) + a(4"(z — y))] — 18a(4" (z + 2))
—18a(4"(z — 2)) — 8[a(4" (y + 2)) + a(4"(y — 2))] — 24a(4" (27))

— 4a(4™(2y)) + 240a(4™ (z)) + 160a(4™(y)) + 48a(4”(z))’

(
)

a(4"(Bz +2y + 2)) + a(4" Bz + 2y — 2)) + a(4" (3x — 2y + 2))

=1 16 676 - 163
< Zﬁ(mu:mwx TR AT w (| + [y + [2]%) .
n=k

Thus f, satisfies (3.30) for all z,y,z € Rwith 0 < |z|® + |y|® + |2|* < 1—16

We claim that the functional equation (1.4) is not stable for r = s = ¢ = 2 in condition (v) Corollary
3.3 (e« = 8 = p = 1). Suppose on the contrary that there exist a quadratic mapping B : R — R and a
constant n > 0 satisfying (3.31). Since f, is bounded and continuous for all z € R, B is bounded on any
open interval containing the origin and continuous at the origin. In view of Theorem 3.2, B must have the
form B(x) = ca? for any x in R. Thus we obtain that

|fo(@)| < (n+e]) |2]*. (3.34)

But we can choose a positive integer m with mu > n + |¢|.
lfz € (0, 77=) ,then 4"z € (0,1) foralln = 0,1,...,m — 1. For this z, we get

n

_2 16" "‘Z

n=0

’rL

= mpua® > (n+|c]) «*

which contradicts (3.34). O
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4 Stability of Eq. (1.4): Quartic Case

Theorem 4.1. Letj € {—1,1} be fixed, and let ¢4 : X* — [0,00) be a mapping such that there exists
an L < 1 with g(4x, 47y, 47 2) < 2567° Lapa(x, y, z)for all z,y,z € X. Let a mapping f : X — Y with
f(0) = 0 satisfies the inequality

”Df(w?va)HY Swd (ZL‘,y,Z) (41)

forall z,y, z € X. Then there exists a unique quartic mapping D : X — Y such that

1 ~

1 f(22) — 4f(z) — D(z)|ly < md’d(w) (4.2)

for all x € X, where

B
'Lﬂd(az) =K[¢4q(z,2z,x) + Kpa(z,z,2) + <%) K2¢d($707 z)

B B
+ 20° K394(x,0,0) + (%) K*4(0,z,0) + (g) K*4(0,0,2)] forallz e X

Proof. Similar to the proof of Theorem 3.2, we have
|1/ (82) — 4f (4z) — 256 f (22) + 1024 ()| < Pa(x) (4.3)

for all x € X, where

8
Ya(z) =K [pa(z, 22, 2) + Kepa(z, z,x) + (%) K*q(2,0,)

B B
+ 20° K394(x,0,0) + (%) K*a(0, z,0) + <§> K*4(0,0,z)] forallz e X

Let h : X — Y be a mapping defined by h(z) = f(2x) — 4f(z), then (4.3) means
|h(4z) — 256h(z)|, < a(z) (4.4)
for all z € X. By Lemma 3.1, there exists a unique mapping D : X — Y such that
D(4zx) = 256 D(x) (4.5)

and
1

1f(22) — 4f(z) — D(z)[y < mﬁb(w) (4.6)

for all z € X. It remains to show that D is a quartic map. By (4.1), we have

H 25énj Df(4"ja:,4"jy,4"jz)HY < 256%%(4”%,4”@, 4™ )
< 25(;3'6 (2567 L) a(x,y, 2) = L™ a(z, y, 2) (4.7)
for all z,y, z € X and all positive integers n. so
IDD(z,y,z)[ly =0 (4.8)
for all z,y, 2z € X. Thus the mapping D : X — Y is quartic, as desired O

The following corollaries are immediate consequence of Theorem 4.1.

Corollary 4.2. Letv > 0 andr, s,t which are all > 0 be real numbers such that r, s andt are all # %.
Suppose that a mapping f : X — Y with f(0) = 0 satisfies the inequality (3.26) for all x,y,z € X. Then
there exists a unique quartic mapping D : X — Y such that

od,
Ba(z), r>0,5s=0,t=0;
| f(2z) —4f(x) — D(x)|ly < ~va(z), r=0,5>0,t=0; (4.9)

)
da(z), r=0,s=0,t>0;
Ca(z), 7r>0,5>0,¢t>0;,
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forallx € X, where

{1+K+ (3)" K +20°K° +[(3)" + (3)] K4}
ag =Kv

)

2568 — 1]

47\ [1+ K+ (1) K2+ 20°K® .
ﬂd(m) =Kv (256’8) { |2565 _4047‘| HmHXa
g8 2as+K+(%)5K4 .
o) =K (i) { Fa5r e ( Ielx
4ot 1+ K+ (3 K2+ (2) K* \
dd(x) =Kv (2565) { 2567 — 4°7] lz|ly and
Ca(z) =Ba(z) + va(x) + da(x) forall x € X.
Corollary 4.3. Letv > 0 and r, s,t which are all > 0 be real numbers such that A\ = r + s+t # %.

Suppose that a mapping f : X — Y with f(0) = 0 satisfies the inequality (3.28) for all x,y,z € X. Then
there exists a unique quartic mapping D : X — Y such that

120 - 45(e) = D)l < { 218 (@.10)

for all x € X, where

404)\ 2o¢s+K N
pa(z) =Kv (2565) {|256ﬁ740/\‘}”x”X and

g [2H2e 2t ak 12 (1) K2 207K 4 (D)7 + (3] K1)
T4(z) =Kv (2565) 12567 — 4] llz]l%
forallz € X.
A counter example to illustrate the non stability in Condition (v) of Corollary 4.2.
Example 4.4. Let o : R — R be a function defined by
4
_ pa®, if|z| <1
a@) = { 7 otherwise
where 1 > 0 is a constant, and define a function f4 : R* — R by
falz) = 7;) 042(§6:") forall z€R.
Then fq satisfies the functional inequality
676 - 256°
IDfa(z,y,2)| < 955 M (lz[* + yI" +12I") (4.11)

for all z,y, z,w € R. Then there do not exist a quartic mapping D : R — R and a constant ¢ > 0 such
that
|fa(z) — D(z)| < c|z|* forall = eR. (4.12)

Proof. Now

= a4 z)] ! 256
< = =— pu
[fa(@)] < ; 12567 ; 9567 255 1
Therefore we see that f; is bounded. We are going to prove that f, satisfies (4.11)).
If [2* + y|* + [2]* = 0 or [z]* + [y|* + [2]* > 5L then

676 - 256 < 160 - 2562

D <
| fd(x,y,z)| = 255 > 63

(l* + lyl* + 121 (4.13)
1 . -
Now suppose that 0 < |z|* + |y|* + |2|* < 556" Then there exists a non-negative integer k such that

1
srarrs Szl "+ 12l <

SEgFTE < (4.14)

1
256k+17
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1 1 1
so that 4%|z| < T 4yl < T 42| < 7 and consequently 4F 183 £ 2y + 2), 4"z £ y),

457N (@ £ 2), 4771 (22), 457 (2),4° 71 (), 4771 (2),47 (), 47 (), 47 (2) € (-1,1).
Therefore foreachn =0,1,...,k — 1, we have
4" (3z £ 2y % 2),4"(z £ y), 4" (¢ + 2),4"(22),4"(2), 4" (), 4" (2) € (~1,1)

and Df4(4"x, 4™y, 4" z) = 0. From the definition of f; and (4.14), we obtain that

oo

”Dfd(xf:% Z)H < Z

+ a4 Bz — 2y — 2)) — 2[a(4™ (z + y)) + (4" (z — y))] — 18a(4"™ (z + 2))
—18a(4" (z — 2)) — 8[a(4" (y + 2)) + (4" (y — 2))] — 24a (4" (27))

—4a(4™(2y)) + 240a(4™ (x)) + 160a(4" (y)) + 48a(4" (2))

356 a(4" Bz +2y + 2)) + a(4"(Bx + 2y — 2)) + a (4" (3z — 2y + 2))

- 1 n n n
< E a(d"(Br +2y+2)) + (4" Bz + 2y — 2)) + a(4" (3 — 2y + 2))
2 256"

+a(4" Bz — 2y — 2)) — 2[a(4"(z + y)) + a(4"(z — y))] — 18a(4"(z + 2))
—18a(4"(z — 2)) — 8[a(4" (y + 2)) + a(4"(y — 2))] — 24a(4"(27))
— 4a(4™(2y)) + 240a(4™ (x)) + 160a(4" (y)) + 4804(4"(,2))'

p(lzl* + lyl* +121%)

=1 16 676 - 256°
< = =
= nzzk 956n OO = 676 p X 57k 255

Thus f, satisfies (4.11) for all z,y, z € R with 0 < |z|* + [y|* + |2|* < i.

We claim that the functional equation (1.4) is not stable for r = s = ¢ = 4 in condition (v) Corollary
42 (o« = 8 = p = 1). Suppose on the contrary that there exist a quartic mapping D : R — R and a
constant n > 0 satisfying (4.12). Since f4 is bounded and continuous for all z € R, D is bounded on any
open interval containing the origin and continuous at the origin. In view of Theorem 4.1, D must have the
form D(z) = cz* for any z in R. Thus we obtain that

|fa(@)] < (n+ |c]) |a|*. (4.15)

But we can choose a positive integer m with mu > n + |c|.
lfz € (0, 77=7) . then 4"z € (0,1) foralln = 0,1,...,m — 1. For this z, we get

which contradicts (4.15). O

5 Stability of Eq. (1.4): Mixed Case

Theorem 5.1. Letj € {—1,1} be fixed, and lety : X 3_% [0, 00) be a mapping such that there exists an
L < 1withy(#z,47y,4°2) < 16°P Lyp(x,y, z) and (47 z, 4y, 472) < 2567° Lap(x,y, 2) forall z,y, z € X.
Let a mapping f : X — Y with f(0) = 0 satisfies the inequality

IDf(z,y,2)lly <¢(z,y,2) (5.1)

forall z,y,z € X. Then there exists a quadratic mapping B : X — Y and a quartic mapping D : X — Y
such that X

If(z) = B(z) — D(x)

for all = € X, where ), (x) and 1a(z) are defined as in Theorems 3.2 and 4.1 respectively.
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Proof. Since (47 z,47y,42) < 16°° Ly (z,y, z) and ¢(47z, 47y, 47 2) < 2567° Lyp(z,y, z) for all z,y,z €
X, by Theorems 3.2 and 4.1, there exist a quadratic mapping By : X — Y and a quartic mapping
Dy : X — Y such that

1 -
_ _ < - -
14(22) = 16f(2) = Bo@ly < qg5rg =7 %e(@)  and
1 ~
— — < - -
1£(22) = 4f(2) = Do(@)lly < gz =7 90()
for all z € X. Therefore the result follows from the last two inequalities. O

Theorem 5.2. Letj € {—1,1} be fixed, and let+ : X® — [0, 00) be a mapping such that there exists an
L < 1withydz,47y,472) < 167 Lap(x,y, 2) and (& x,47y,472) < 25698 Lap(x,y, 2) for all z,y, z €
X. Letamapping f : X — Y with f(0) = 0 satisfies the inequality (5.1) for all z,y,z € X. Then there
exists a quadratic mapping B : X — Y and a quartic mapping D : X — Y such that

K
< :
ly = 122567 | 1 — L |

If(z) — B(z) — D(x) 16740 () + Ya(z)] (5.3)

for all = € X, where 4, (x) and 1a(z) are defined as in Theorems 3.2 and 4.1 respectively.

Proof. Since ¢(4°x, 47y, 472) < 167° Lap(x,y, z) and (4 z, 47y, 47 2) < 256 7P Lyp(z,y, z) for all z,y, z €
X, by Theorems 3.2 and 4.1, there exist a quadratic mapping By : X — Y and a quartic mapping
Do : X — Y such that

1 ~
- — < —
1£(22) = 16f(2) = Bo@lly < qg5r =7 e(@)  and
1 ~
_ — < - - 0
1£(22) = 4£(2) = Do(@)lly < oy = 90(@)
for all x € X. Therefore the result follows from the last two inequalities. O
Corollary 5.3. Letv > 0 andr, s,t which are all > 0 be real numbers such thatr, s andt are all # % and

%. Suppose that a mapping f : X — Y with f(0) = 0 satisfies the inequality (3.26) for all z,y,z € X.

Then there exist a quadratic mapping B : X — Y and a quartic mapping D : X — Y such that

ap + aud,
K Bv(z) + Ba(z), r>0,s=0,t=0;
| f(x) — B(x) — D(z)|y < T Y (z) +va(z), r=0,5>0,t=0;

z), r=0,s=0,t>0;
), r>0,5>0,t>0;,

forallz € X, where ay,aaq, Bs(), Ba(x), v (x),va(x), 0s(2), da(z), (o (x) and (q(z) are defined as in
Corollaries 3.3 and 4.2

Corollary 5.4. Letv > 0 andr, s,t which are all > 0 be real numbers such that \ =r + s+t # % and
%. Suppose that a mapping f : X — Y with f(0) = 0 satisfies the inequality (3.28) for all z,y,z € X.
[0

Then there exist a quadratic mapping B : X — Y and a quartic mapping D : X — Y such that

@) - Ba) -~ D@l < 75 { 220+ P (5.4)

for all x € X, where py(z), pa(x), 7o (x), 7a(x) are defined as in Corollaries 3.4 and 4.3

Example 5.5. Leta : R — R be a function defined by

@+ at), iffe] <1
a(@) *{ 7 otherwise

where p > 0 is a constant, and define a function f : R — R by

flz) = i a(;l:m) forall zeR.

n=0
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Then f satisfies the functional inequality

1352 - 163

for all z,y,z,w € R. Then there do not exist a quadratic mapping B : R — R and a quartic mapping
D : R — R and a constantn > 0 such that

|f(x) — B(z) — D(z)| < nl|z| forall zeR. (5.6)

w(Jz® + |y + |21%) (5.5)

6 Stability of Eq. (1.4) using various substitutions

In this section, the generalized Hyers-Ulam stability of (1.4) using various substitutions is investigated.
The proofs of the following theorems and corollaries are similar to that of the Theorems 3.2, 4.1,and 5.1
and the corollaries 3.3, 3.4, 4.2, 4.3,5.3 and 5.4. Hence the details of the proofs are omitted.

Theorem 6.1. Letj € {—1,1} be fixed, and let 1, : X* — [0,00) be a mapping such that there exists
an L < 1 with (37x,37y,372) < 9% Lapy(z,y, 2)for all z,y,z € X. Let a mapping f : X — Y with
f(0) = 0 satisfies the inequality (3.12) for all z,y,z € X. Then there exists a unique quadratic mapping

B : X — Y such that 1 )
1722) =16 (2) = BE@)ly < gy 5790 6.1)

for all x € X, where

B
Up(z) =K[My(z, 2, ) + K (%) My (x,0,x) + K24° My (z,0,0) + K (é) My(0,0, )]

forallz € X.

2B

Corollary 6.2. Letv > 0 andr, s,t which are all > 0 be real numbers such thatr,s andt are all # —.

[0}
Suppose that a mapping f : X — Y with f(0) = 0 satisfies the inequality (3.26) for all x,y,z € X. Then
there exists a unique quadratic mapping B : X — Y such that

Bo(z), r>0,5s=0,t=0;

I f(22) —16f(z) — B(z)lly < w(x), r=0,s>0,t=0;
op(z), r=0,5s=0,t>0;
(), 7>0,5>0,t>0;

forallx € X, where

1+ (1) K+ K2 [+ (1)°] }

1\B8 2
|98 — 3ar| X

i
o) { g el
i

1+ (3)7 K+ (3)" K :
197 — 31| ||l and

G () =Bo(x) + yo(x) + dp(z) forallz € X.

Corollary 6.3. Letv > 0 and r, s,t which are all > 0 be real numbers such that A\ = r + s+t # %.

[0}
Suppose that a mapping f : X — Y with f(0) = 0 satisfies the inequality (3.28) for all x,y,z € X. Then
there exists a unique quadratic mapping B : X — Y such that

| f(2z) — 16f(z) — B(z)|ly < { po(),

To()

for all x € X, where

@ =kv (V2 Vi and
poit) = 95 ) 9% — x| J MIx

B 2 (4B 1\8
oy [4+2(D) K+ R[4+ ()
To(z) =Kv (97> { 97 — 3o l=]l% forallx € X.
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Theorem 6.4. Letj ¢ {—1,1} be fixed, and let ¢4 : X* — [0,00) be a mapping such that there exists
an L < 1 with ¢q(3%z,37y,372) < 8198 Lapy(x,y, z)for all z,y,z € X. Let a mapping f : X — Y with
f(0) = 0 satisfies the inequality (4.1) for all x,y,z € X. Then there exists a unique quartic mapping

D : X — Y such that 1

[f(22) —4f(z) — D(z)|ly < mwd@?) (6.2)

for all x € X, where
. 1\* 1\”?
Ya(x) =K[My(z,z, ) + <5> My(z,0,2)K + My(z,0,0)K? + (6) M4(0,0,z)K?)

forallz € X.

4

Corollary 6.5. Letv > 0 andr, s,t which are all > 0 be real numbers such that r, s and ¢ are all # -

Suppose that a mapping f : X — Y with f(0) = 0 satisfies the inequality (3.26) for all x,y,z € X. Then
there exists a unique quartic mapping D : X — Y such that

Qgq,
Ba(z), r>0,s=0,t=0;
[f(2x) —4f(x) = D(zx)|ly < va(z), 7=0,5>0,t=0; (6.3)
da(z), r=0,s=0,t>0;
Ca(x), r>0,8s>0,t>0;

forallz € X, where

ag =Kv

{ ()’ [1+(é)]K2}7
“(
-+ (3
(5

817 — 1]

) K + K? .
|81ﬁ SQTl HxHXv

)\
){mﬁgm}mm
e

+(5)" K
‘W 3o }||a;||tx and

N

N
S

=Kv

81
Ca(z) =Ba(z) + va(x) + da(z) forallz € X.

Corollary 6.6. Letv > 0 andr,s andt which are all > 0 be real numbers such that \ =r + s+t # ﬁ.

(0%
Suppose that a mapping f : X — Y with f(0) = 0 satisfies the inequality (3.28) for all x,y,z € X. Then
there exists a unique quartic mapping D : X — Y such that

nﬂ%w4ﬂm—mmms{P*“ (6.4)

Ta(T)

for all z € X, where

aX

pale) = (355 ) { g o1y amnd
Ta(z) =Kv (£> {4+2( ) K+ K [1+ (&) ]}|x|;\( forallz € X.

817 [816 — 32|

OOOJ

Theorem 6.7. Letj € {—1,1} be fixed, and let+ : X* — [0, 00) be a mapping such that there exists an
L < 1 withy(3z,37y,32) < 9P Lip(x,y, z) and ¢(37x, 3y, 372) < 819PLap(x,y,2) forall z,y,z € X.
Leta mapping f : X — Y with f(0) = 0 satisfies the inequality (5.1) for all x,y, z € X. Then there exists
a quadratic mapping B : X — Y and a quartic mapping D : X — Y such that

1£@) = B@) = D@l < gp =79 Po@) + (o) (6.5)

for all z € X, where () and 14(x:) are defined as in Theorems 6.1 and 6.4 respectively.
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Theorem 6.8. Letj € {—1,1} be fixed, and let+) : X® — [0, 00) be a mapping such that there exists an
L < 1 with (3 x,37y,372) < 9P Ly(x,y, z) and (37, 37y,372) < 817°Lip(x,y, 2) forall z,y, z € X.
Let amapping f : X — Y with f(0) = 0 satisfies the inequality (5.1) for all x,y, = € X. Then there exists
a quadratic mapping B : X — Y and a quartic mapping D : X — Y such that

If(x) - B(z) - D(x) K

ly < m[gﬁqﬁb(l‘) + Ya(@)] (6.6)

for all = € X, where () and 1a(z) are defined as in Theorems 6.1 and 6.4 respectively.
28

(%

%. Suppose that a mapping f : X — Y with f(0) = 0 satisfies the inequality (3.26) for all z,y,z € X.
Then there exists a quadratic mapping B : X — Y and a quartic mapping D : X — Y such that

Corollary 6.9. Letv > 0 andr, s,t which are all > 0 be real numbers such thatr, s andt are all # and

K Bo(x) + Ba(z), r>0,s=0,t=0;

If() = B(x) = D(@)lly < 35 w(@) +7alz), r=0,s>0¢=0;
5b(1')+5d a:), r:0’3:O7t>0;
(z) ), 7r>0,5>0,t>0;

forallz € X, where ap,aq, Bo(x), Ba(x),vs(x),va(x), db(x), da(x), ((x) and (a(xz) are defined as in
Corollaries 6.2 and 6.5

28

(%

Corollary 6.10. Letv > 0 andr, s,t which are all > 0 be real numbers such that\ = r+ s+t # and

%. Suppose that a mapping f : X — Y with f(0) = 0 satisfies the inequality (3.28) for all z,y,z € X.

Then there exists a quadratic mapping B : X — Y and a quartic mapping D : X — Y such that

1) = B) ~ D@y < 15 { 2 T2 67

for all z € X, where py(z), pa(x), 7(x), 7a(x) are defined as in Corollaries 6.3 and 6.6

Theorem 6.11. Letj ¢ {—1,1} be fixed, and let ¢y, : X* — [0, 00) be a mapping such that there exists
an L < 1 with ¢y (272,27y,272) < 47° Lapy(z,y, 2)for all z,y,z € X. Leta mapping f : X — Y with
f(0) = 0 satisfies the inequality (3.12) for all z,y,z € X. Then there exists a unique quadratic mapping

B : X — Y such that { )
[f(2z) — 16f(2) — B(z)|ly < mwb(m) (6.8)

for all x € X, where

B B
oy (z) =K[My(z, 2, z) + (%) K My(22,0,0) + 3° K> My (,0,2) + K> M(0,0,z)] forallz € X.

26

Corollary 6.12. Letv > 0 andr, s,t which are all > 0 be real numbers such thatr, s andt are all # P

Suppose that a mapping f : X — Y with f(0) = 0 satisfies the inequality (3.26) for all x,y,z € X. Then
there exists a unique quadratic mapping B : X — Y such that

Bo(x), r>0,5=0,t=0;

If(2z) —16f(x) — B(x)|ly << mw(x), 7=0,5s>0,t=0,
op(z), 7=0,5s=0,t>0;,
), 7>0,5>0,t>0;

forallz € X, where

1+(%)62arK+3ﬁK2 .
|45_2QT| HmHXa

|
) { e el
)

1+ 3°K? 4+ K2 .
—5 ar— ( lzllx

and
|48 — 201]

4
G () =Bo(x) + Yo(z) + 0p(z) forallz e X.
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Corollary 6.13. Letv > 0 and r, s,t which are all > 0 be real numbers such that \ = r + s+t # %.

(0%
Suppose that a mapping f : X — Y with f(0) = 0 satisfies the inequality (3.28) for all x,y,z € X. Then
there exists a unique quadratic mapping B : X — Y such that

|f(2z) — 16f(z) — B(z)|, < { po(),

76()

for all x € X, where

@ =Ko (VL Vi and
peit) = 48 ) 4P — 20| [ Tlx

2(“) {4+2M(i)’3K+2.35K2+K2}” B
Tl x

Tp(z) =Kv (47 PESETRY

forallz € X.

Theorem 6.14. Let j € {—1,1} be fixed, and let q : X 3 5 [0,00) be a mapping such that there exists
an L < 1 with 1q(2°x,27y,272) < 169° Lapy(x, y, z)for all z,y,z € X. Let a mapping f : X — Y with
f(0) = 0 satisfies the inequality (4.1) for all x,y,z € X. Then there exists a unique quartic mapping
D : X — Y such that 1
_ _ < -
1£22) = 4f(2) = D@y < 577 =7 ¥al®) (6.9)

for all x € X, where
- B
Ya(x) =K [My(z, 2z, ) + (i) K My(2x,0,0) 4+ 3° K* My(x,0,z) + K>*M4(0,0,z)] forallz e X.

4

Corollary 6.15. Letv > 0 andr, s,t which are all > 0 be real numbers such thatr,s andt are all # —.

(0%
Suppose that a mapping f : X — Y with f(0) = 0 satisfies the inequality (3.26) for all x,y,z € X. Then
there exists a unique quartic mapping D : X — Y such that

Qqd,
Ba(z), 7>0,s=0,t=0;
||f(2$)74f($)*D(.’L’)||Y < /Vd(x , 1=0,8>0,t=0; (610)

)
dq(z), r=0,s=0,t>0;
(), r>0,5>0,t>0;,

forallx € X, where

1+ ()7 K +3°K2 + K?)
1167 — 1| ’

1—5—2‘”(%)51{—1—361{2—4—](2) .
|16ﬁ*2a7‘| Hm||X7

CANR D SR S
68 ) 165 — 20s] J x>

1+3°K? 4+ K?
{W 12|l and

Ca(z) =Ba(z) + va(z) + da(z) forallz € X.

46

Corollary 6.16. Letv > 0 and r, s,t which are all > 0 be real numbers such that \ = r +s+t # —.

(e}
Suppose that a mapping f : X — Y with f(0) = 0 satisfies the inequality (3.28) for all x,y,z € X. Then
there exists a unique quartic mapping D : X — Y such that

17(22) — 4f(z) — D)y < { ) (6.11)

Td(:C

for all x € X, where

204)\ 1 N
pa(z) =Kv (W) {m} =[x and

e (2 4420 (D) K +2.3°K? + K?
Tal@) =Kv | 355 167 — 203]

} |z||% forallz e X.
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Theorem 6.17. Letj € {—1,1} be fixed, and let : X3 — [0, 00) be a mapping such that there exists
anL < 1 with(2z,27y,272) < 48 Lip(x,y, z) and (2 x, 27y, 27 2) < 167 Lap(x, y, 2) forall z,y, z € X.
Let amapping f : X — Y with f(0) = 0 satisfies the inequality (5.1) for all x,y, = € X. Then there exists
a quadratic mapping B : X — Y and a quartic mapping D : X — Y such that

1f(x) = B(z) — D(x) (4743 (2) + Pa(@)] (6.12)

P —
ly = 57765 [1—-Li]|
for all z € X, where () and 1q(x) are defined as in Theorems 6.11 and 6.14 respectively.

Theorem 6.18. Letj € {—1,1} be fixed, and let v : X* — [0, 00) be a mapping such that there exists an
L < 1withy(2x,27y,202) < 4P Ly(x,y,2) and (27x,27y,272) < 8 9P Lyp(x,y, 2) forall z,y,z € X.
Letamapping f : X — Y with f(0) = 0 satisfies the inequality (5.1) for all z,y, z € X. Then there exists
a quadratic mapping B : X — Y and a quartic mapping D : X — Y such that

K

lly < m[‘lﬁl&b(l’) + ta(z)] (6.13)

1f(x) = B(z) — D(x)

for all z € X, where () and 14 (x) are defined as in Theorems 6.11 and 6.14 respectively.

Corollary 6.19. Let v > 0 and r,s,t which are all > 0 be real numbers such that r,s and t are all
#* % and %. Suppose that a mapping f : X — Y with f(0) = 0 satisfies the inequality (3.26) for all

x,y,z € X. Then there exists a quadratic mapping B : X — Y and a quartic mapping D : X — 'Y such
that

ap + o,
K Bo(x) + Ba(x), r>0,s=0,t=0,
Hf(x)_B(x)_D(x)HY < ﬁ ’Yb(i')‘F’Yd(f), r=0,s>0,t=0;
5b(x)+5d(m), r=0,s=0,t>0,
G(x) + Ca(x), r>0,5>0,t>0;,

forallz € X, where ap,aq, Bv(x), Ba(x),vs(x),va(x), db(x), da(x), (s (x) and (q(z) are defined as in
Corollaries 6.12 and 6.15

Corollary 6.20. Letv > 0 andr, s,t which are all > 0 be real numbers such that\ = r+ s+t # % and

%. Suppose that a mapping f : X — Y with f(0) = 0 satisfies the inequality (3.28) for all z,y,z € X.

Then there exists a unique quartic mapping B : X — Y satisfying

@) - Ba) -~ D@l < 75 { 20 F o) (6.14)

for all z € X, where py(z), pa(x), (), 7a(x) are defined as in Corollaries 6.13 and 6.16
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