Some Properties of θ -sgp-Neighbourhoods

Md. Hanif PAGE¹, V.T.Hosamath²

¹Asst. Professor, Department of Mathematics, B.V.B. College of Engg. and Technology, Hubli-580031, Karnataka, India. ²Asst. Professor, Department of Mathematics, K.L.E. Institute of Technology, Hubli-580030, Karnataka, India.

Abstract— A new generalized closed set called θ -sgp-closed set is introduced in[8]. In this paper, we continue the study of θ -sgp-closed set. Using this set we define the concepts of θ -sgp-neighbourhoods, θ -sgp-limit points, θ -sgp-derived sets, θ -sgp-Ro and θ -sgp-R₁ spaces in topological spaces. We also introduce and study the concept of θ -sgp-closure, θ -sgp-interior and θ -sgp-kernel in topological spaces by using the notion of θ -sgp-closed sets and investigate some of their properties.

Keywords— θ-sgp-closed set, θ-sgp-open set, θ-sgp-nbd, θ-sgpd(A), θ-sgpCl(A), θ-sgpInt(A), θ-sgp-Ro, θ-sgp-R₁.

1. INTRODUCTION

The concept of generalized closed sets introduced by Levine [4] plays a significant role in general topology. This notion has been studied extensively in recent years by many topologists. In 2003, Caldas and Jafari defined θ -semigeneralized closed set [1] using semi- θ -closure operator. Recently in [7] the notion of θ gs-closed was introduced. In [8] the notion of θ -semigeneralized pre closed set is introduced utilizing pre- θ -closure operator. In this paper we define θ -sgp-neighbouhoods, θ -sgp-interior, θ -sgp-closure and characterise their properties. We also introduce θ -sgp-R₀ and θ -sgp-R₁ spaces. In addition we define θ -sgp-kernel of a subset A of X to study the behaviours of θ -sgp-R₀ and θ -sgp-R₁ spaces.

2. PRELIMINARIES

Throughout this paper (X, τ) and (Y, σ) (or simply X and Y) denote topological spaces on which no separation axioms are assumed unless explicitly stated. If A is any subset of space X, then Cl(A) and Int(A) denote the closure of A and the interior of A in X respectively.

The following definitions are useful in the sequel.

Definition 2.1: A subset A of space X is called

(i) a semi-open set [5] if $A \subseteq Cl(Int(A))$.

(ii) a semi-closed set [2] if $Int(Cl(A)) \subseteq A$.

- (iii) a pre-open set[6] if $A \subseteq Int(Cl(A))$.
- (iv) a pre-closed set[6] if $Cl(Int(A)) \subseteq A$.

Definition 2.2:[3] The pre-closure of a subset A of X is the intersection of all pre-closed sets that contain A and is denoted by pCl(A).

Definition 2.3: A point $x \in X$ is called a pre- θ -cluster point of A[9] if pCl(U) $\cap A \neq \emptyset$, for each pre-open set U containing x.

Definition 2.4:[9] The pre- θ -closure denoted by pCl_{θ}(A), is the set of all pre- θ -cluster points of A. A subset A is called pre- θ -closed set if A = pCl_{θ}(A). The complement of pre- θ -closed set is pre- θ -open set.

Definition 2.5:[8] A subset A of a topological space X is called θ -Semigeneralized pre closed set (briefly, θ -sgp-closed) if pCl_{θ}(A) \subset U whenever A \subset U and U is semi-open in X. The complement of θ -Semigeneralized pre closed set is called θ -Semigeneralized pre open (briefly, θ -sgp-open).

3. 0-SGP-NEIGHBOURHOODS

In this section we define the notions of θ -sgp-neighbourhoods, θ -sgp-limit points and θ -sgp-derived sets in topological spaces by using the notion of θ -sgp-open sets and obtained some of their properties.

Definition 3.1: A subset A of a topological space X is called θ -semigeneralized pre-neighbourhood (briefly θ -sgp-nbd) of a point x of X if there exists a θ -sgp-open set U such that $x \in U \subseteq A$.

Definition 3.2: Let X be a topological space and A be a subset of X. A subset N of X is said to be θ -sgpneighbourhood of A if there exists a θ -sgp-open set G such that $A \subseteq G \subseteq N$.

Theorem 3.3: Let A be a subset of a topological space X. Then A is θ -sgp-open if and only if A contains a θ -sgp-nbd of each of its points.

Proof: Let A be a θ -sgp-open set in X. Let $x \in A$, which implies $x \in A \subseteq A$. Thus A is θ -sgp-nbd of x. Hence A contains a θ -sgp-nbd of each of its points.

Conversely, A contains a θ -sgp-nbd of each of its points. For every $x \in A$ there exists a neighbourhood N_x of x such that $x \in N_x \subseteq A$. By the definition of θ -sgp-nbd of x, there exists a θ -sgp-open set G_x such that $x \in G_x \subseteq N_x \subseteq A$. Now we shall prove that $A = \bigcup \{G_x : x \in A\}$. Let $x \in A$. Then there exist θ -sgp-open set G_x such that $x \in G_x$. Therefore, $x \in \bigcup \{G_x : x \in A\}$ which implies $A \subseteq \bigcup \{G_x : x \in A\}$. Now let $y \in \{G_x : x \in A\}$ so that $y \in$ some G_x for some $x \in A$ and hence $y \in A$. Therefore, $\bigcup \{G_x : x \in A\} \subseteq A$. Hence $A = \bigcup \{G_x : x \in A\}$. Also each G_x is a θ -sgp-open set. And hence A is a θ -sgp-open set.

Theorem 3.4: If A is a θ -sgp-closed subset of X and $x \in X - A$, then there exists a θ -sgp-nbd N of x such that $N \cap A = \emptyset$.

Proof: If A is a θ -sgp-closed set in X, then X – A is a θ -sgp-open set. By the Theorem 3.3, X – A contains a θ -sgp-nbd of each of its points. Which implies that, there exist a θ -sgp-nbd N of x such that N \subseteq X-A. That is, no point of N belongs to A and hence N \cap A = \emptyset .

Theorem 3.5: Let X be a topological space. If A is a θ -sgp-closed subset of X and $x \in X - A$ then there exists a θ -sgp-neighbourhood N of x such that $A \cap N \neq \emptyset$.

Proof: Since A is θ -sgp-closed, X – A is θ -sgp-open set in X. By the Theorem 3.3, X – A contains a θ -sgp-neighbourhood of each of its points. Hence there exists a θ -sgp-neighbourhood of N of x such that N \subseteq X - A. Thus N \cap A $\neq \emptyset$.

Definition 3.6: Let X be a topological space and A be a subset of X. Then a point $x \in X$ is called a θ -semi generalized pre-limit point of A if and only if every θ -sgp-nbd of x contains a point of A distinct from x. That is $[N - \{x\}] \cap A \neq \emptyset$, for every θ -sgp-nbd N of x. Also equivalently if and only if every θ -sgp-open set G containing x contains a point of A other than x.

The set of all θ -sgp-limit points of A is called θ -sgp-derived set of A and is denoted by θ -sgpd(A).

Theorem 3.7: Let A and B be subsets of X and $A \subseteq B$ implies θ -sgpd(A) $\subseteq \theta$ -sgpd(B).

Proof: Let $x \in \theta$ -sgpd(A) implies x is a θ -sgp-limit point of A that is every θ -sgp-nbd of x contains a point of A other than x. Since $A \subseteq B$, every θ -sgp-nbd of x contains a point of B other than x. Consequently x is a θ -sgp-limit point of B. That is $x \in \theta$ -sgpd(B). Therefore θ -sgpd(A) $\subseteq \theta$ -sgpd(B).

Theorem 3.8: Let X be a topological space and A be a subset of X. Then A is θ -sgp-closed if and only if θ -sgpd(A) \subseteq A.

Proof: If A is θ -sgp-closed set. That is X - A is θ -sgp-open set. Now we prove that θ -sgpd(A) \subseteq A. Let $x \in \theta$ -sgpd(A) implies x is a θ -sgp-limit point of A, that is every θ -sgp-nbd of x contains a point of A different from x. Now suppose $x \notin A$ so that $x \in X$ - A, which is θ -sgp-open and by definition of θ -sgp-open sets, there exists a θ -sgp-nbd N of x such that $N \subseteq X$ - A. From this we conclude that N contains no point of A, which is a contradiction. Therefore $x \in A$ and hence θ -sgpd(A) $\subseteq A$.

Conversely assume that θ -sgpd(A) \subseteq A and we will prove that A is a θ -sgp-closed set in X or X - A is θ -sgp-open set. Let $x \in X$ - A. Let x be an arbitrary point of X - A, so that $x \notin A$ which implies that $x \notin \theta$ -sgpd(A). That is there exists a θ -sgp-nbd N of x which consists of only points of X - A. This means that X - A is θ -sgp-open. And hence A is θ -sgp-closed set in X.

Theorem 3.9: Let X topological space, every θ -sgp-derived set in X is θ -sgp-closed set.

Proof: Let A be a subset of X and θ -sgpd(A) is θ -sgp-derived set of A. By Theorem 3.8, A is θ -sgp-closed if and only of θ -sgpd(A) \subset A. Hence θ -sgpd(A) is θ -sgp-closed if and only if θ -sgpd(θ -sgpd(A)) $\subseteq \theta$ -sgpd(A). That is every θ -sgp-limit point of θ -sgpd(A) belongs to θ -sgpd(A).

Now let x be a θ -sgp-limit point of θ -sgpd(A). That is $x \in \theta$ -sgpd(θ -sgpd(A)). So that there exist a θ -sgp-open set G containing x such that $\{G - \{x\}\} \cap \theta$ -sgpd(A) $\neq \emptyset$ which implies $\{G - \{x\}\} \cap A \neq \emptyset$, because every θ -sgp-nbd of an element of θ -sgpd(A) has at least one point of A. Hence x is a θ -sgp-limit point of A. That is x belongs to θ -sgpd(A). Thus $x \in \theta$ -sgpd(θ -sgpd(A)) implies $x \in \theta$ -sgpd(A). Therefore θ -sgpd(A) is θ -sgp-closed set in (X, τ).

4. θ-SGP-CLOSURE AND θ-SGP-INTERIOR

Let us introduce the notion of θ -sgp-closure, θ -sgp-interior in topological spaces by using the notion of θ -sgp-closed sets and investigate some of their basic properties.

Definition 4.1: For a subset A of X, θ -semigeneralized pre-closure of A, denoted by θ -sgpCl(A) and is defined as θ -sgpCl(A) = $\cap \{G : A \subseteq G, G \text{ is } \theta$ -sgp-closed in X}.

Theorem 4.2: For any $x \in X$, $x \in \theta$ -sgpCl(A) if and only if $A \cap V \neq \emptyset$ for every θ -sgp-open set V containing x.

Proof: Let $x \in \theta$ -sgpCl(A). Suppose there exists a θ -sgp-open set V containing x such that $V \cap A = \emptyset$. Then $A \subseteq X-V$. Since X–V is θ -sgp-closed, α Cl(A) \subseteq X–V. This implies $x \notin \theta$ -sgpCl(A) which is a contradiction. Hence $V \cap A \neq \emptyset$ for every θ -sgp-open set V containing x.

Conversely, let $A \cap V \neq \emptyset$ for every θ -sgp-open set V containing x. To prove that $x \in \theta$ -sgpCl(A). Suppose $x \notin \theta$ -sgpCl(A). Then there exists a θ -sgp-closed set G containing A such that $x \notin G$. Then $x \in X - G$ and X - G is θ -sgp-open. Also $(X-G) \cap A = \emptyset$ which is a contradiction to the hypothesis. Hence $x \in \theta$ -sgpCl(A).

*Theorem 4.3***:** Let E and F be subsets of X.

- a) θ -sgpCl(Ø) = Ø.
- b) θ -sgpCl(X) = X.
- c) θ -sgpCl(E) is θ -sgp-closed set in X.
- d) If $E \subseteq F$, then θ -sgpCl(E) $\subseteq \theta$ -sgpCl(F).
- e) θ -sgpCl(E \cup F) = θ -sgpCl(E) \cup θ -sgpCl(F).

f) θ -sgpCl [θ -sgpCl(E)] = θ -sgpCl(E).

Proof: The proof of a), b), c) and d) follow from the Definition 4.1.

e) To prove that θ -sgpCl(E) $\cup \theta$ -sgpCl(F) $\subseteq \theta$ -sgpCl(E \cup F)

We have θ -sgpCl(E) $\subseteq \theta$ -sgpCl(E \cup F) and θ -sgpCl(F) $\subseteq \theta$ -sgpCl(E \cup F). Therefore θ -sgpCl(E) $\cup \theta$ -sgpCl(F) $\subseteq \theta$ -sgpCl(E \cup F) ------ (1).

Let x be any point such that $x \notin \theta$ -sgpCl(E) $\cup \theta$ -sgpCl(F), then there exists θ -sgp-closed sets A and B such that $E \subseteq A$ and $F \subseteq B$, $x \notin A$ and $x \notin B$. Then $x \notin A \cup B$, $E \cup F \subseteq A \cup B$ and $A \cup B$ is θ -sgp-closed set. Thus $x \notin \theta$ -sgpCl(E \cup F). Therefore we have θ -sgpCl(E \cup F) $\subseteq \theta$ -sgpCl(E) $\cup \theta$ -sgpCl(F) $\cup \theta$ -sgpCl(F) $\cup \theta$ -sgpCl(F) $\cup \theta$ -sgpCl(E) $\cup \theta$ -sgpCl(E) $\cup \theta$ -sgpCl(E) $\cup \theta$ -sgpCl(F).

f). Let A be θ -sgp-closed set containing E. Then by Definition, θ -sgpCl(E) \subseteq A. Since A is θ -sgp-closed set and contains θ -sgpCl(E) and is contained in every θ -sgp-closed set containing E, it follows that θ -sgpCl[θ -sgpCl(E)] $\subseteq \theta$ -sgpCl(E). Therefore θ -sgpCl[θ -sgpCl(E)] = θ -sgpCl(E).

Theorem 4.4: A set $A \subset X$ is θ -sgp-closed if and only if θ -sgpCl(A) = A.

Proof: Let A be θ -sgp-closed set in X. Since A \subseteq A and A is θ -sgp-closed set, A \in {G: A \subseteq G, G is θ -sgp-closed set} which implies that \cap {G: A \subseteq G, G is θ -sgp-closed set} \subset A. That is θ -sgpCl(A) \subset A. Note that A $\subset \theta$ -sgpCl(A) is always true. Hence A = θ -sgpCl(A).

Conversely, suppose θ -sgpCl(A) = A. Since A \subseteq A and A is θ -sgp-closed set. Therefore A must be a closed set. Hence A is θ -sgp-closed.

Now we introduce the following.

Definition 4.5: For a subset A of X θ -semigeneralized pre-interior of A, denoted by θ -sgpInt(A) and is defined as θ -sgpInt(A) = \bigcup {G : G \subseteq A and G is θ -sgp-open in X}. That is θ -sgpInt(A) is the union of all θ -sgp-open sets contained in A.

Theorem 4.6: Let A be a subset of X, then θ -sgpInt(A) is the largest θ -sgp-open subset of X contained in A if A is θ -sgp-open.

Proof: Let $A \subseteq X$ be θ -sgp-open. Then θ -sgpInt(A) = $\cup \{G : G \subseteq A \text{ and } G \text{ is } \theta$ -sgp-open in $X\}$. Since $A \subseteq A$ and A is θ -sgp-open, $A = \theta$ -sgpInt(A) is the largest θ -sgp-open subset of X contained in A.

The converse of the above theorem need not be true as seen from the following example.

Example 4.7: Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{c\}, \{a, c\}, \{b, c\}\}$. Let $A = \{a, b\}, \theta$ -sgpInt(A) = $\{a\}$ is θ -sgp-open in X. But A is not θ -sgp-open set in X.

Theorem 4.8: If $A \subseteq B$, then θ -sgpInt(A) $\subseteq \theta$ -sgpInt(B).

Proof: Suppose $A \subseteq B$, we know that θ -sgpInt(A) \subseteq A. Also we have $A \subseteq B$. which implies θ -sgpInt(A) \subseteq B, θ -sgpInt(A) is an open set which is contained in B. But θ -sgpInt(B) is the largest open set contained in B. Therefore θ -sgpInt(B) is larger that θ -sgpInt(A). That is θ -sgpInt(A) $\subseteq \theta$ -sgpInt(B).

Remark 4.9: θ -sgpInt(A) = θ -sgpInt(B) does not imply that A = B. This shown by the following example.

Example 4.10: Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{c\}, \{a, c\}, \{b, c\}\}$. Then X be a topological space. Here θ -sgp-open sets are X, ϕ , $\{a\}$, $\{c\}$, $\{a, c\}$, $\{b, c\}$. Let $A = \{a\}$ and $B = \{a, b\}$, then θ -sgpInt(A) = θ -sgpInt(B) but $A \neq B$.

Theorem 4.11: For any subset A of X, following holds:

- 1) θ -sgpInt(Ø) = Ø
- 2) θ -sgpInt(X) = X
- 3) If $A \subseteq B$ then θ -sgpInt(A) $\subseteq \theta$ -sgpInt(B)
- 4) θ -sgpInt(A) is the largest θ -sgp-open set contained in A
- 5) θ -sgpInt(A \cap B) = θ -sgpInt(A) \cap θ -sgpInt(B)
- 6) θ -sgpInt(A \cup B) $\supseteq \theta$ -sgpInt(A) $\cup \theta$ -sgpInt(B)
- 7) θ -sgpInt[θ -sgpInt(A)] = θ -sgpInt(A)

Proof : Proof follows from the Definition 4.5.

Theorem 4.12: A set $A \subset X$ is θ -sgp-open if and only if θ -sgpInt(A) = A.

Theorem 4.13: For any $A \subseteq X$, $[X - \theta$ -sgpInt $(A)] = \theta$ -sgpCl(X - A).

Proof: Let $x \in X - \theta$ -sgpInt(A). Then $x \notin \theta$ -sgpInt(A). That is every θ -sgp-open set G containing x is such that $G \not\subset A$. This implies, every θ -sgp-open set G containing x intersects X–A. That is, $G \cap (X-A) \neq \phi$. Then by Theorem 4.2, $x \in \theta$ -sgpCl(X–A) and therefore $[X-\theta$ -sgpInt(A)] $\subseteq \theta$ -sgpCl(X – A).

Conversely, let $x \in \theta$ -sgpCl(X–A). Then every θ -sgp-open set G containing x intersects X–A. That is, G \cap (X-A) $\neq \phi$. That is, every θ -sgp-open set G containing x is such that G $\not\subset$ A. Then by Definition 4.5, x $\notin \theta$ -sgpInt(A). That is, $x \in [X - \theta$ -sgpInt(A)], and so $[\theta$ -sgpCl(X-A)] $\subseteq [X - \theta$ -sgpInt(A)]. Thus $[X - \theta$ -sgpInt(A)] = $[\theta$ -sgpCl(X - A)].

Remark 4.14: For any $A \subseteq X$. We have

(i) $(X - \theta \operatorname{-sgpCl}(X - A)) = (\theta \operatorname{-sgpInt}(A)).$

(ii) $(X - \theta \text{-sgpInt}(X - A)) = (\theta \text{-sgpCl}(A)).$

Taking complement in the above Theorem 4.13 and by replacing A by X - A in Theorem 4.13, the above results follows.

5. θ -SGP-R₀ and θ -SGP-R₁ SPACES

Definition 5.1: Let A be a subset of a topological space X. The θ -sgp-kernel of A, denoted by θ -sgp-ker(A) is defined to be the set θ -sgp-ker(A) = $\cap \{ U : A \subseteq U \text{ and } U \text{ is } \theta$ -sgp-open in X}.

Definition 5.2: Let x be a point of a topological space X. The θ -sgp-kernel of x, denoted by θ -sgp-ker({x}) is defined to be the set θ -sgp-ker({x}) = \cap {U : x \in U and U is θ -sgp-open in X}.

Lemma 5.3: Let X be a topological space and $x \in X$. Then θ -sgp-ker(A) = { $x \in X$: θ -sgpCl ({x}) $\cap A \neq \emptyset$ }. *Proof*: Let $x \in \theta$ -sgp-ker(A) and suppose θ -sgpCl({x}) $\cap A = \emptyset$. Hence $x \notin X - \theta$ -sgpCl({x}) which is a θ -sgp-open set containing A. This is absurd, since $x \in \theta$ -sgp-ker(A). Hence θ -sgpCl ({x}) $\cap A \neq \emptyset$.

Conversely, let θ -sgpCl({x}) $\cap A \neq \emptyset$ and assume that $x \notin \theta$ -sgp-ker(A). Then there exists a θ -sgp-open set U containing A and $x \notin U$. Let $y \in \theta$ -sgpCl({x}) $\cap A$. Hence, U is a θ -sgp-nbd of y in which $x \notin U$. By this contradiction $x \in \theta$ -sgp-ker(A) and the claim.

Definition 5.4: A topological space X is said to be θ -semigeneralized pre-Ro (briefly θ -sgp-Ro) space if and only if for each θ -sgp-open set G and $x \in G$ implies θ -sgpCl({x}) $\subseteq G$.

Lemma 5.5: Let X be a topological space and $x \in X$. Then $y \in \theta$ -sgp-ker({x}) if and only if $x \in \theta$ -sgpCl({y}).

Proof: Suppose that $y \notin \theta$ -sgp-ker({x}). Then there exists a θ -sgp-open set V containing x such that $y \notin V$. Therefore we have $x \notin \theta$ -sgpCl({y}). The proof of converse can be done similarly.

Lemma 5.6: The following statements are equivalent for any points x and y in a topological space X: (i). θ -sgp-ker({x}) $\neq \theta$ -sgp-ker({y}).

(ii). θ -sgpCl({x}) $\neq \theta$ -sgpCl({y}).

Proof: (i) → (ii): Suppose that θ -sgp-ker({x}) $\neq \theta$ -sgp-ker({y}), then there exists a point z in X such that z $\in \theta$ -sgp-ker({x}) and z $\notin \theta$ -sgp-ker({y}). From z $\in \theta$ -sgp-ker({x}) it follows that {x} $\cap \theta$ -sgpCl({z}) $\neq \emptyset$ which implies x $\in \theta$ -sgpCl({z}). By z $\notin \theta$ -sgp-ker({y}), we have {y} $\cap \theta$ -sgpCl({z}) = \emptyset . Since x $\in \theta$ -sgpCl({z}), θ -sgpCl({x}) $\subset \theta$ -sgpCl({z}) and {y} $\cap \theta$ -sgpCl({x}) = \emptyset . Therefore it follows that θ -sgpCl({x}) $\neq \theta$ -sgpCl({y}).

(ii) \rightarrow (i): Suppose that θ -sgpCl({x}) $\neq \theta$ -sgpCl({y}). There exists a point z in X such that $z \in \theta$ -sgpCl({x}) and $z \notin \theta$ -sgpCl({y}). Then there exists a θ -sgp-open set containing z and therefore x but not y, namely, $y \notin \theta$ -sgp-ker({x}). Hence θ -sgp-ker({x}) $\neq \theta$ -sgp-ker({y}).

Theorem 5.7: A topological space X is θ -sgp-Ro space if and only if for any x, y in X, θ -sgpCl({x}) $\neq \theta$ -sgpCl({y}) implies θ -sgpCl({x}) $\cap \theta$ -sgpCl({y}) = Ø.

Proof: Suppose X is θ -sgp-Ro space and x, $y \in X$ such that θ -sgpCl($\{x\}$) $\neq \theta$ -sgpCl($\{y\}$). Then there exists a point $z \in \theta$ -sgp-ker($\{x\}$) such that $z \notin \theta$ -sgpCl($\{y\}$) (or $z \in \theta$ -sgp-ker($\{y\}$) such that $z \notin \theta$ -sgpCl($\{x\}$). There exist a θ -sgp-open set V such that $y \notin V$ and $z \in V$; hence $x \in V$. Therefore, we have $x \notin \theta$ -sgpCl($\{y\}$). Thus $x \in X$ - θ -sgpCl($\{y\}$) a θ -sgp-open set, which implies θ -sgpCl($\{x\}$) $\subseteq \theta$ -sgpCl($\{y\}$) and θ -sgpCl($\{x\}$) $\cap \theta$ -sgpCl($\{y\}$) = \emptyset .

Conversely, let V be a θ -sgp-open set in X and let $x \in V$. Now we have to prove that θ -sgpCl ({x}) $\subset V$. Let $y \notin V$ i.e. $y \in X - V$. Then $x \neq y$ and $x \notin \theta$ -sgpCl({y}). This implies, θ -sgpCl({x}) $\neq \theta$ -sgpCl({y}). By assumption, θ -sgpCl({x}) $\cap \theta$ -sgpCl({y}) = Ø. Hence $y \notin \theta$ -sgpCl({x}) and therefore θ -sgpCl({x}) $\subseteq V$.

Theorem 5.8: A topological space X is θ -sgp-Ro space if and only if for any x, y in X θ -sgp-ker({x}) $\neq \theta$ -sgp-ker({y}) implies θ -sgp-ker({x}) $\cap \theta$ -sgp-ker({y}) = Ø.

Proof: Suppose X is θ -sgp-Ro space. Thus by Lemma 5.6 for any points x, $y \in X$ if θ -sgp-ker($\{x\}$) $\neq \theta$ -sgp-ker($\{y\}$) then θ -sgpCl($\{x\}$) $\neq \theta$ -sgpCl($\{y\}$).

Now we prove that θ -sgp-ker({x}) $\cap \theta$ -sgp-ker({y}) = Ø.

Suppose that $z \in \theta$ -sgp-ker({x}) $\cap \theta$ -sgp-ker({y}). By Lemma 5.5 and $z \in \theta$ -sgp-ker({x}) implies $x \in \theta$ -sgp-ker({z}). Since $x \in \theta$ -sgpCl({x}), by Theorem 5.7, θ -sgpCl({x}) = θ -sgpCl({z}). Similarly, we have θ -sgpCl({y}) = θ -sgpCl({x}) a contradiction. Hence θ -sgp-ker({x}) $\cap \theta$ -sgp-ker({y}) = \emptyset .

Conversely, let X be a topological space such that for any points x and y in X, θ -sgp-ker({x}) $\neq \theta$ -sgp-ker({y}) implies θ -sgp-ker({x}) $\cap \theta$ -sgp-ker({y}) = Ø. If θ -sgpCl({x}) $\neq \theta$ -sgpCl({y}), then by Lemma 5.6, θ -sgp-ker({x}) $\neq \theta$ -sgp-ker({x}) $\cap \theta$ -sgp-ker({x}) $\cap \theta$ -sgp-ker({y}) = Ø implies θ -sgpCl({x}) $\cap \theta$ -sgpCl({y}) = Ø. Since $z \in \theta$ -sgpCl({x}) implies that $x \in \theta$ -sgp-ker({z}). Therefore θ -sgp-ker({x}) = θ -sgp-ker({z}). Then $z \in \theta$ -sgpCl({x}) $\cap \theta$ -sgpCl({y}) implies that θ -sgp-ker({x}) = θ -sgp-ker({z}). Then $z \in \theta$ -sgpCl({x}) $\cap \theta$ -sgpCl({y}) implies that θ -sgp-ker({x}) = θ -sgp-ker({z}). Therefore θ -sgp-ker({z}) = θ -sgp-ker({y}), a contradiction. Hence θ -sgpCl({x}) $\cap \theta$ -sgpCl({y}) = Ø. Therefore by Theorem 5.7, X is a θ -sgp-Ro space.

Theorem 5.9: For a topological space X, the following properties are equivalent:

(i). X is a θ -sgp-Ro space.

(ii). For any $A \neq \emptyset$ and G is θ -sgp-open in X such that $A \cap G \neq \emptyset$, there exists θ -sgp-closed F in X such that $A \cap F \neq \emptyset$ and $F \subset G$.

(iii). Any θ -sgp-open set G in X, G = U {F : F \subseteq G, F is θ -sgp-closed in X}.

(iv). θ -sgp-closed F in X, F = $\cap \{F : F \subseteq G, F \text{ is } \theta$ -sgp-open set in X}.

(v). For any $x \in X$, θ -sgpCl($\{x\}$) $\subseteq \theta$ -sgp-ker($\{x\}$).

Proof: (i) → (ii): Let A be a non-empty set of X and G be a θ-sgp-open set G in X, such that A ∩ G ≠ Ø. There exists $x \in A \cap G$. Since $x \in G$ where G is θ-sgp-open set in X, θ-sgpCl({x}) ⊆ G. Set F = θ-sgpCl({x}), then F is θ-sgp-closed ⊆ G and A ∩ F ≠ Ø.

(ii) \rightarrow (iii): Let G be a θ -sgp-open set G in X, then $G \supseteq \cup \{F : F \subseteq G, F \text{ is } \theta$ -sgp-closed in X }. Let x be any point of G then there exists a θ -sgp-closed F in X such that $x \in F$ and $F \subseteq G$. Therefore we have $x \in F \subseteq \cup \{F : F \subseteq G, F \text{ is } \theta$ -sgp-closed in X} and hence $G = \cup \{F : F \subseteq G, F \text{ is } \theta$ -sgp-closed in X}. (iii) \rightarrow (iv): Obvious.

(iv) → (v): Let x be any point of x and y $\notin \theta$ -sgp-ker({x}). Then there exists θ -sgp-open set U such that x \in U and y \notin U; hence θ -sgpCl({y}) \cap U = Ø. By (iv), (\cap {G: θ -sgpCl({y})) \subseteq G, G is θ -sgp-open set in X}) \cap U = Ø. There exists θ -sgp-open set G such that x \notin G and θ -sgpCl({y}) \subseteq G. Therefore θ -sgpCl({x}) \cap G = Ø and y $\notin \theta$ -sgpCl({x}). Consequently, we obtain θ -sgpCl({x}) $\subset \theta$ -sgp-ker({x}).

 $(v) \rightarrow (i)$: Let G be a θ -sgp-open set G in X and $x \in G$. Suppose $y \in \theta$ -sgp-ker({x}), then $x \in \theta$ -sgpCl({y}) and $y \in G$. This implies θ -sgpCl({y}) $\subset \theta$ -sgp-ker({x}). Therefore X is a θ -sgp-Ro space.

Corollary 5.10: For a topological space X the following properties are equivalent

(i) X is a θ -sgp-Ro space.

(ii) θ -sgpCl({x}) = θ -sgp-ker({x}) for all $x \in X$.

Proof: (i) → (ii): Suppose X is a θ-sgp-Ro space. By the Theorem 5.9, θ -sgpCl({x}) $\subseteq \theta$ -sgp-ker({x}) for each x \in X. Let y $\in \theta$ -sgp-ker({x}), then x $\in \theta$ -sgpCl({y}) and θ -sgpCl({x}) = θ -sgpCl({y}). Therefore y $\in \theta$ -sgpCl({x}) and hence θ -sgp-ker({x}) $\subseteq \theta$ -sgpCl({x}). This shows that θ -sgpCl({x}) = θ -sgp-ker({x}). (ii) → (i): This is obvious by Theorem 5.9.

Theorem 5.11: For a topological space X the following properties are equivalent:

(i) X is a θ -sgp-Ro space.

(ii) $x \in \theta$ -sgpCl({x}) if and only if $y \in \theta$ -sgpCl({x}) for any points x and y in X.

Proof: (i) \rightarrow (ii): Assume that X is a θ -sgp-Ro space. Let $x \in \theta$ -sgpCl($\{y\}$) and U be any θ -sgp-open set such that $y \in U$. Now by hypothesis $x \in U$. Therefore, every θ -sgp-open set containing y contains x. Hence $y \in \theta$ -sgpCl($\{x\}$).

(ii) \rightarrow (i): Let V be a θ -sgp-open set and $x \in V$. If $y \notin V$ then $x \notin \theta$ -sgpCl({x}) and hence $y \notin \theta$ -sgpCl({x}). This implies that θ -sgpCl({x}) \subseteq V. Hence X is a θ -sgp-Ro space.

Theorem 5.12: For a topological space X the following properties are equivalent:

(i) X is a θ -sgp-Ro space.

(ii) If A is a θ -sgp-closed, then $F = \theta$ -sgp-ker(A).

(iii) If A is a θ -sgp-closed and $x \in A$, then θ -sgp-ker({x}) $\subseteq A$.

(iv) If $x \in X$, then θ -sgp-ker({x}) $\subseteq \theta$ -sgpCl({x}).

Proof: (i) → (ii) : Let A be θ -sgp-closed and $x \notin A$. Thus X - A is a θ -sgp-open and $x \in X$ – A. Since X is a θ -sgp-Ro space, θ -sgpCl({x}) $\subseteq X - A$. Thus θ -sgpCl({x}) $\cap A = \emptyset$ and by the Lemma 5.3, $x \notin \theta$ -sgp-ker(A). Therefore θ -sgp-ker(A) = A.

(ii) \rightarrow (iii): In general U \subseteq V implies θ -sgp-ker(U) $\subseteq \theta$ -sgp-ker(V). Therefore θ -sgp-ker({x}) $\subseteq \theta$ -sgp-ker(A) = A by (ii).

(iii) \rightarrow (iv): Since $x \in \theta$ -sgpCl({x}) and θ -sgpCl({x}) is θ -sgp-closed by (iii) θ -sgp-ker({x}) $\subseteq \theta$ -sgpCl({x}).

(iv) \rightarrow (i): Let $x \in \theta$ -sgpCl({x}) then by the Lemma 5.5 $y \in \theta$ -sgp-ker({x}). Since $x \in \theta$ -sgpCl({x}) and θ -sgpCl({x}) is θ -sgp-closed, by (iv) we obtain $y \in \theta$ -sgp-ker({x}) $\subseteq \theta$ -sgpCl({x}). Therefore $x \in \theta$ -sgpCl({y}) implies $y \in \theta$ -sgpCl({x}). The converse is obvious and X is a θ -sgp-Ro space.

Definition 5.13: A topological space X is said to be θ -semigeneralized pre-R₁ (briefly θ -sgp-R₁) if for x, y in X with θ -sgpCl({x}) $\neq \theta$ -sgpCl({y}), there exist disjoint preopen sets U and V such that θ -sgpCl({x}) is a subset of U and θ -sgpCl({y}) is a subset of V.

Proposition 5.14: If (X, τ) is θ -sgp-R₁, then (X, τ) is θ -sgp-R₀.

Proof: Let U be preopen set and $x \in U$. If $y \notin U$, then since $x \notin \theta$ -sgpCl($\{y\}$), θ -sgpCl($\{x\}$) $\neq \theta$ -sgpCl($\{y\}$). Hence, there exists a preopen set V_y such that θ -sgpCl($\{y\}$) $\subset V_y$ and $x \notin V_y$ which implies $y \notin \theta$ -sgpCl($\{x\}$). Thus θ -sgpCl($\{x\}$) $\subset U$. Therefore (X, τ) is θ -sgp-R₀.

Theorem 5.15: A topological space X is said to be θ -sgp-R₁ if and only if for x, $y \in X$, θ -sgp-Ker({x}) $\neq \theta$ -sgp-Ker({y}), there exist disjoint preopen sets U and V such that θ -sgp-Ker({x}) \subset U and θ -sgp-Ker({y}) \subset V.

Proof : It follows from Lemma 5.6.

REFERENCES

- [1] Miguel Caldas and Saeid Jafari, On θ-semigeneralized closed sets in topology, Kyungpook Math J. 43(2003), 135-148.
- [2] S. G. Crossely and S. K. Hildbrand, On semi-closure, Texas J. Sci, 22(1971), 99-112.
- [3] N. El-Deeb, I. A. Hasanein, A. S. Mashhour and T. Noiri, *On p-regular spaces*, Bull. Math. Soc. Sci. Math. R.S. Roumanie, 22(75)(1983), 311-315.
- [4] N. Levine, Generalized closed sets in topology, Rend. Circ. Math. Paleomo 19(1970), 89-96.

[5] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.

- [6] H. Maki, J. Umehara and T. Noiri, Every topological space is pre-T_{1/2}, Mem. Fac. Sci. Kochi Univ. Ser. A, Math., 17(1996), 33-42.
- [7] G.B. Navalagi and Md. Hanif PAGE, On θgs -Neighbourhoods, Indian Journal of Mathematics and Mathematical Sciences, Vol. 4, No.1, (2008), pp 1-11.
- [8] Md. Hanif PAGE and V. T. Hosamath, On θ-Semigeneralized pre closed sets in topological spaces, Int. Journal of Scientific and Mathematical Research, Vol.3, (3)(2015), 74-80.
- [9] M.C. Pal and P. Bhattacharyya, Feeble and strong forms of pre-irresolute functions, Bull. Malaysian Math. Soc., 19(1996), 63-75.