Some Inequalities for the Polar Derivative of a Polynomial

K.K. Dewan ${ }^{\# 1}$, C.M. Upadhye ${ }^{* 2}$
\#Depaertmentof Mathematics, Faculty of Natural Science
Jamia Milia Islamia (Central University),
New Delhi-110025 (INDIA)
*Department of Mathematics,
Gargi College (University of Delhi),
Siri Fort Road, New Delhi-110049 (INDIA).

Abstract

In this paper we establish L^{p} inequalities for polar derivatives of polynomials not vanishing in $|z|<1$. Also we obtain inequalities for polar derivatives of polynomials satisfying $p(z)=z^{n} p \frac{1}{z}$. Our results generalize some well-known results in this direction.

Keywords- Inequalities, Polar Derivative, Polynomial.

I. Introduction

If $p(z)$ is a polynomial of degree at most n, then according to the famous result known as Bernstein's inequality,

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq n \max _{|z|=1}|p(z)| . \tag{1.1}
\end{equation*}
$$

Here equality holds for $p(z)=\lambda z^{n}, \lambda$ being a complex number.
For the class of polynomials not vanishing in $|z|<1$, (1.1) can be sharpened. In this connection we have the following inequality, which was conjectured by Erdös and later verified by Lax [9].

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{2} \max _{|z|=1}|p(z)| . \tag{1.2}
\end{equation*}
$$

Equality in (1.2) holds for $p(z)=\alpha+\beta z^{n}$, where $|\alpha|=|\beta|$.

The L^{p} analogue of (1.2) was obtained by de-Bruijn [4]. He proved that
Theorem A. If $p(z)$ is a polynomial of degree n, having no zeros in $|z|<1$, then for each $r \geq 1$,

$$
\begin{equation*}
\left(\int_{0}^{2 \pi}\left|p^{\prime}\left(e^{i \theta}\right)\right|^{r} d \theta\right)^{\frac{1}{r}} \leq n c_{r}\left(\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \theta\right)^{\frac{1}{r}} \tag{1.3}
\end{equation*}
$$

where $c_{r}=\left(\frac{2 \pi}{\int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{r} d \theta}\right)^{\frac{1}{r}}$.
This inequality is sharp and equality holds for $p(z)=\lambda+\mu z^{n}$ where $|\lambda|=|\mu|$.
Let $p(z)$ be a polynomial of degree n and α be any real or complex number. Then the polar derivative of $p(z)$, denoted by $D_{\alpha} p(z)$, is defined as

$$
D_{\alpha} p(z)=n p(z)+(\alpha-z) p^{\prime}(z)
$$

The polynomial $D_{\alpha} p(z)$ is of degree at most $n-1$ and it generalizes the ordinary derivative $p^{\prime}(z)$ of $p(z)$ in the sense that

$$
\lim _{\alpha \rightarrow \infty} \frac{D_{\alpha} p(z)}{\alpha}=p^{\prime}(z)
$$

The polynomial $D_{\alpha} p(z)$ is called by Laguerre [8] the "émanant" of $p(z)$, by Pólya and Szegö [11] the "derivative of $p(z)$ with respect to the point α " and by Marden [10] simply "the polar derivative of $p(z)$ ".

In this paper we firstly obtain integral inequalities for the polar derivative of a polynomial. In this direction, we prove the following generalizations of de-Bruijn's Theorem [4] to the polar derivative.

Theorem 1. If $p(z)$ is a polynomial of degree n, having no zeros in $|z|<1$, then for every real or complex number α with $|\alpha| \geq 1$ and for every given complex number β with $|\beta| \leq 1$, we have for $r \geq 1$,

$$
\begin{equation*}
\left(\int_{0}^{2 \pi}\left|D_{\alpha}\left\{p\left(e^{i \theta}\right)\right\}+\alpha n m \beta e^{i(n-1) \theta}\right|^{r} d \theta\right)^{\frac{1}{r}} \leq n(|\alpha|+1) E_{r}\left(\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)+m \beta e^{i n \theta}\right|^{r} d \theta\right)^{\frac{1}{r}}, \tag{1.4}
\end{equation*}
$$

where $E_{r}=\left(\frac{2 \pi}{\int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{r} d \theta}\right)^{\frac{1}{r}}$ and $m=\min _{|z|=1}|p(z)|$.
Dividing both sides of (1.4) by $|\alpha|$ and letting $|\alpha| \rightarrow \infty$, we get the following generalization of Theorem A due to Aziz [3].

Corollary 1. If $p(z)$ is a polynomial of degree n, having no zeros in $|z|<1$, then for every given complex number β with $|\beta| \leq 1$, we have for $r \geq 1$,

$$
\begin{equation*}
\left(\int_{0}^{2 \pi}\left|p^{\prime}\left(e^{i \theta}\right)+m n \beta e^{i(n-1) \theta}\right|^{r} d \theta\right)^{\frac{1}{r}} \leq n E_{r}\left(\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)+m \beta e^{i n \theta}\right|^{r} d \theta\right)^{\frac{1}{r}} \tag{1.5}
\end{equation*}
$$

where E_{r} is as in Theorem 1.
Letting $r \rightarrow \infty$ in (1.4) and choosing the argument of β, with $|\beta|=1$, suitably we get the following inequality for polynomials not vanishing in $|z|<1$, which improves upon a result due to Aziz [2]

$$
\max _{|z|=1}\left|D_{\alpha} p(z)\right|+|\alpha| n m \leq \frac{n}{2}(|\alpha|+1)\left[\max _{|z|=1}|p(z)|+m\right] .
$$

Equivalently,

$$
\max _{|z|=1}\left|D_{\alpha} p(z)\right| \leq \frac{n}{2}\left[(|\alpha|+1) \max _{|z|=1}|p(z)|-(|\alpha|-1) m\right] .
$$

The above inequality is best possible for the polynomials $p(z)=\lambda+\mu z^{n}$ where $|\lambda|=|\mu|$.
Theorem 2. If $p(z)$ is a polynomial of degree n, having all its zeros in $|z| \geq 1$ and s-fold zeros at $z=0$, then for every real or complex number α with $|\alpha| \geq 1$ and for $r \geq 1$,

$$
\begin{equation*}
\left(\int_{0}^{2 \pi}\left|D_{\alpha} p\left(e^{i \theta}\right)\right|^{r} d \theta\right)^{\frac{1}{r}} \leq\left\{|\alpha| s+(n-s)(|\alpha|+1) F_{r}\right\}\left(\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \theta\right)^{\frac{1}{r}} \tag{1.6}
\end{equation*}
$$

where $F_{r}=\left(\frac{2 \pi}{\int_{0}^{2 \pi} I+1+e^{i \theta} V^{r} d \theta}\right)^{\frac{1}{r}}$.
Letting $r \rightarrow \infty$ in (1.6), we get
Corollary 2. If a polynomial $p(z)$ has all zeros in $|z| \geq 1$ and a zero of order s at $z=0$, then for every real or complex number α with $|\alpha| \geq 1$,

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\alpha} p(z)\right| \leq\left[|\alpha| s+\frac{(n-s)(|\alpha|+1)}{2}\right] \max _{|z|=1}|p(z)| . \tag{1.7}
\end{equation*}
$$

(1.7) is best possible. Equality holds for $p(z)=z^{s}(z+1)^{n-s}$.

For $s=0$, Corollary 2 reduces to a result due to Aziz [2].
Dividing both sides of (1.6) by $|\alpha|$ and letting $|\alpha| \rightarrow \infty$, we get
Corollary 3. If $p(z)$ is a polynomial of degree n, having all its zeros in $|z| \geq 1$, with s-fold zeros at origin, then for $r \geq 1$,

$$
\begin{equation*}
\left(\int_{0}^{2 \pi}\left|p^{\prime}\left(e^{i \theta}\right)\right|^{r} d \theta\right)^{\frac{1}{r}} \leq G_{r}\left(\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \theta\right)^{\frac{1}{r}}, \tag{1.8}
\end{equation*}
$$

where $G_{r}=s+\frac{n-s}{\frac{1}{2 \pi} \int_{0}^{2 \pi} \left\lvert\, 1+e^{i \theta \theta^{\prime}} \theta^{\frac{1}{r}}\right.}$.
For $s=0$, Corollary 3 reduces to Theorem A due to de-bruijn [4].
Finally, we consider the class of self-reciprocal polynomials i.e. the polynomials satisfying $p(z) \equiv z^{n} p(1 / z)$ and prove the following result for the polar derivatives of polynomials.

Theorem 3. If $p(z)$ is a polynomial of degree n satisfying $p(z)=z^{n} p(1 / z)$ with all its coefficients lying in a sector of opening at most γ where $0 \leq \gamma \leq 2 \pi / 3$, then for every real or complex number α,

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\alpha} p(z)\right| \leq \frac{n(|\alpha|+1)}{2 \cos \frac{\gamma}{2}} \max _{|z|=1}|p(z)| . \tag{1.9}
\end{equation*}
$$

For $\alpha=0$ the above result is best possible for $0 \leq \gamma \leq \pi / 2$ with equality holding for the polynomial $p(z)=z^{n}+2 e^{i \gamma} z^{n / 2}+1, n$ being even.

Dividing both sides of (1.9) by $|\alpha|$ and Lemma 2 making $|\alpha| \rightarrow \infty$, Theorem 3 reduces to a result due to Govil and Vetterlein [6]. This result can also be obtained directly from (1.9) by putting $\alpha=0$.

For $\gamma=\frac{\pi}{2}$, Theorem 3 extends a result of Jain [7] to the polar derivative.

II. LEMMAS

For the proofs of the theorems we required following lemmas.
Lemma 1. If $p(z)$ is a polynomial of degree n having no zeros in $|z|<1$, then for $r \geq 1$ and for every real or complex number α with $|\alpha| \geq 1$,

$$
\begin{equation*}
\left(\int_{0}^{2 \pi}\left|D_{\alpha} p\left(e^{i \theta}\right)\right|^{r} d \theta\right)^{\frac{1}{r}} \leq n(|\alpha|+1) F_{r}\left(\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \theta\right)^{\frac{1}{r}} \tag{2.1}
\end{equation*}
$$

where $F_{r}=\left(\frac{2 \pi}{\int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{\prime} d \theta}\right)^{\frac{1}{r}}$.
In the limiting case, when $r \rightarrow \infty$, the above inequality is sharp and equality holds for the polynomial $p(z)=\lambda+\mu z^{n},|\lambda|=|\mu|$.

The above lemma was proved by Govil, Nyuydinkong and Tameru [5].
Lemma 2. If $p(z)$ is a polynomial satisfying $p(z)=z^{n} p(1 / z)$, with all its coefficients lying in a sector of opening at most γ where $0 \leq \gamma \leq 2 \pi / 3$, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{2 \cos \frac{\gamma}{2}} \max _{z \mid=1}|p(z)| . \tag{2.2}
\end{equation*}
$$

This lemma is due to Govil and Vetterlein [6].

III. Proofs of the Theorems

Proof of Theorem 1. By hypothesis, the polynomial $p(z)$ does not vanish in $|z|<1$ and $m=\min _{|z|=1}|p(z)|$, therefore, $m \leq p(z) \mid$ for $|z| \leq 1$. We first show that for any given complex number β with $|\beta| \leq 1$, the polynomial $G(z)=p(z)+m \beta z^{n}$ has no zeros in $|z|<1$. If $m=0$, then this is obvious. Therefore, for $m>0$ let us assume that $G(z)$ has a zero in $|z|<1$, say at $z=z_{0}$ with $\left|z_{0}\right|<1$, then we have $p\left(z_{0}\right)+m \beta z_{0}^{n}=G\left(z_{0}\right)=0$. This gives $\left|p\left(z_{0}\right)\right|=\left|m \beta z_{0}^{n}\right| \leq m\left|z_{0}\right|^{n}<m$, which is a contradiction. Hence $G(z)$ has no zeros in $|z|<1$ for every β with $|\beta| \leq 1$. Applying Lemma 1 to the polynomial $G(z)$, we get

$$
\left(\int_{0}^{2 \pi}\left|D_{\alpha} p\left(e^{i \theta}\right)+m \beta e^{i n \theta}\right|^{r} d \theta\right)^{\frac{1}{r}} \leq n(|\alpha|+1) E_{r}\left(\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)+m \beta e^{i n \theta}\right|^{r} d \theta\right)^{\frac{1}{r}}
$$

where $E_{r}=\left(\frac{2 \pi}{\int_{0}^{2 \pi} \mid+e^{i \theta} \|^{\prime} d \theta}\right)^{\frac{1}{r}}$
or

$$
\left(\int_{0}^{2 \pi}\left|n p\left(e^{i \theta}\right)+m \beta e^{i n \theta}+\left(\alpha-e^{i \theta}\right)\left\{p^{\prime}\left(e^{i \theta}\right)+n m \beta e^{i(n-1) \theta}\right\}\right|^{r} d \theta\right)^{\frac{1}{r}} \leq n(|\alpha|+1) E_{r}\left(\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)+m \beta e^{i n \theta}\right|^{r} d \theta\right)^{\frac{1}{r}}
$$

or

$$
\left(\int_{0}^{2 \pi}\left|D_{\alpha} p\left(e^{i \theta}\right)+\alpha n m \beta e^{i(n-1) \theta}\right|^{r} d \theta\right)^{\frac{1}{r}} \leq n(|\alpha|+1) E_{r}\left(\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)+m \beta e^{i n \theta}\right|^{r} d \theta\right)^{\frac{1}{r}}
$$

which is (1.4). Hence the Theorem is proved.
Proof of Theorem 2. By hypothesis, the polynomial $p(z)$ has s zeros at the origin and $n-s$ zeros in $|z| \geq 1$, therefore we can take

$$
\begin{equation*}
p(z)=z^{s} h(z), \tag{3.1}
\end{equation*}
$$

where $h(z)$ is a polynomial of degree $n-s$, having all zeros in $|z| \geq 1$. Now

$$
\begin{aligned}
D_{\alpha} p(z)=n p(z)+(\alpha-z) p^{\prime}(z) & =n\left[z^{s} h(z)\right]+(\alpha-z)\left[s z^{s-1} h(z)+z^{s} h^{\prime}(z)\right] \\
& =z^{s}\left[(n-s) h(z)+(\alpha-z) h^{\prime}(z)\right]+\alpha s z^{s-1} h(z),
\end{aligned}
$$

which implies for $0 \leq \theta<2 \pi$

$$
\begin{aligned}
\left|D_{\alpha} p\left(e^{i \theta}\right)\right| & =\left|e^{i s \theta}\left[(n-s) h\left(e^{i \theta}\right)+\left(\alpha-e^{i \theta}\right) h^{\prime}\left(e^{i \theta}\right)\right]+\alpha s e^{i(s-1)} h\left(e^{i \theta}\right)\right| \\
& =\left|e^{i \theta} D_{\alpha}\left\{h\left(e^{i \theta}\right)\right\}+\alpha \operatorname{sh} h\left(e^{i \theta}\right)\right| .
\end{aligned}
$$

This gives by using Minkowski's inequality for every $r \geq 1$,

$$
\begin{align*}
\left(\int_{0}^{2 \pi}\left|D_{\alpha} p\left(e^{i \theta}\right)\right|^{r} d \theta\right)^{\frac{1}{r}} & =\left(\int_{0}^{2 \pi}\left|\alpha \operatorname{sh}\left(e^{i \theta}\right)+e^{i \theta} D_{\alpha} h\left(e^{i \theta}\right)\right|^{r} d \theta\right)^{\frac{1}{r}} \\
& \leq\left(\int_{0}^{2 \pi} s^{r}|\alpha|^{r}\left|h\left(e^{i \theta}\right)\right|^{r} d \theta\right)^{\frac{1}{r}}+\left(\int_{0}^{2 \pi}\left|D_{\alpha} h\left(e^{i \theta}\right)\right|^{r} d \theta\right)^{\frac{1}{r}} . \tag{3.2}
\end{align*}
$$

Now since $h(z)$ is a polynomial of degree $(n-s)$, having all zeros in $\mid z \gtrless 1$, therefore, applying Lemma 1 to the polynomial $h(z)$, we get

$$
\begin{equation*}
\left(\int_{0}^{2 \pi}\left|D_{\alpha} h\left(e^{i \theta}\right)\right|^{r} d \theta\right)^{\frac{1}{r}} \leq(n-s)(|\alpha|+1) F_{r}\left(\int_{0}^{2 \pi}\left|h\left(e^{i \theta}\right)\right|^{r} d \theta\right)^{\frac{1}{r}} \tag{3.3}
\end{equation*}
$$

where $F_{r}=\left(\frac{2 \pi}{\tilde{I}_{0}^{2 \pi}\left|1+e^{\theta}\right|^{r} d \theta}\right)^{\frac{1}{r}}$.
Combining (3.2) and (3.3) and noting that

$$
\begin{aligned}
& \left|h\left(e^{i \theta}\right)\right|=\left|e^{i s \theta} h\left(e^{i \theta}\right)\right|=\left|p\left(e^{i \theta}\right)\right| \text { for }|z|=1, \text { we get for every } r \geq 1, \\
& \left(\int_{0}^{2 \pi}\left|D_{\alpha} p\left(e^{i \theta}\right)\right|^{r} d \theta\right)^{\frac{1}{r}} \leq\left\{|\alpha| s+(n-s)(|\alpha|+1) F_{r}\right\}\left(\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \theta\right)^{\frac{1}{r}} .
\end{aligned}
$$

This completes the proof of Theorem 2.
Proof of Theorem 3. Since $p(z)$ is a self-reciprocal polynomial of degree n, we have

$$
p(z)=z^{n} p(1 / z) \text { for all } z \in \square
$$

This implies

$$
z^{n-1} p^{\prime}(1 / z)=n p(z)-z p^{\prime}(z),
$$

which in particular gives

$$
\begin{aligned}
\max _{|z|=1}\left|p^{\prime}(z)\right| & =\max _{|z|=1}\left|z^{n-1} p^{\prime}(1 / z)\right| \\
& =\max _{|z|=1}\left|n p(z)-z p^{\prime}(z)\right| .
\end{aligned}
$$

Now for $|z|=1$

$$
\begin{aligned}
\left|D_{\alpha} p(z)\right| & =\left|n p(z)+(\alpha-z) p^{\prime}(z)\right| \\
& \leq\left|\alpha \| p^{\prime}(z)\right|+\left|n p(z)-z p^{\prime}(z)\right| .
\end{aligned}
$$

Equivalently,

$$
\begin{aligned}
\max _{|z|=1}\left|D_{\alpha} p(z)\right| & \leq|\alpha| \max _{|z|=1}\left|p^{\prime}(z)\right|+\max _{|z|=1}\left|n p(z)-z p^{\prime}(z)\right| \\
& =(|\alpha|+1) \max _{|z|=1}\left|p^{\prime}(z)\right| .
\end{aligned}
$$

Combining above inequality with (2.2) of Lemma 2, we conclude that'

$$
\max _{|z|=1}\left|D_{\alpha} p(z)\right| \leq \frac{n(|\alpha|+1)}{2 \cos \frac{\gamma}{2}} \max _{|z|=1}|p(z)| .
$$

This proves the desired result.

References

[1] A. Aziz, Inequalities for the derivative of a polynomial, Proc. Amer. Math. Soc., 89(1983), 259--266.
[2] A. Aziz, Inequalities for the polar derivative of a polynomial, J. Approx. Theory, 55(1988), 183--193.
[3] A. Aziz, A new proof and generalization of theorem of de-Bruijn, Proc. Amer. Math. Soc., 106(1989), 345--350.
[4] N.G. de-Bruijn, Inequalities concerning polynomials in the complex domain, Nederl. Akad. Wetench. Proc. Ser. A, 50(1947), 1265--1272; Indag. Math., 9(1947), 591--598.
[5] N.K. Govil, G. Nyuydinkong and B. Tameru, Some L^{p} inequalities for the polar derivative of a polynomial, J. Math. Anal. Appl., 254(2001), 618--626.
[6] N.K. Govil and D.H. Vetterlein, Inequalities for a class of polynomials satisfying $P(z)=z^{n} P(1 / z)$, Complex Variables, 29(1996), 1--7.
[7] V.K. Jain, Inequalities for polynomials satisfying $P(z)=z^{n} P(1 / z)$, II, J. Indian Math. Soc., 59(1993), 167--170.
[8] E. Laguarre, "Oeuvres", 1 Gauthier-villars, Paris, (1898).
[9] P.D. Lax, Proof of a conjecture of P. Erdos on the derivative of a polynomial, Bull. Amer. Math. Soc., 50(1944), 509--513.
[10] M. Marden, Geometry of the zeros of polynomials in a complex variable, Math. Surveys, No. 3, Amer. Math. Soc., Providence, R.I., 1949.
[11] G. Polya and G. Szego, Aufgaben and Lehratze ous der Analysis, Springer-Verlag, Berlin, 1925.

