Group Assignment Job Constrained Three Dimensional Model

Vijayalakshmi $\mathrm{R}^{\# 1}$, Revathi $\mathrm{P}^{\# 2}$, Srinivasulu $\mathrm{Y}^{\# 3}$ Sundara Murthy $\mathrm{M}^{\# 4}$
${ }^{\text {\#1 }}$ Research Scholar, Dept., of Mathematics, Sri Venkateswara Universty, Tirupati, India
\#2Assistant professor, Dept., of Mathematics, Brahmmaiah Engineering College, Kovur, Nellore Dist. India
\#3 Research Scholar, Dept., of Mathematics, Sri Venkateswara Universty, Tirupati, India
${ }^{\# 4}$ Professor Dept., of Mathematics, Sri Venkateswara University, Tirupati, India

Abstract

In a classical assignment problem the goal is to find an optimal assignment for agents with tasks without assigning an agent more than once and ensuring that all tasks should complete with minimum cost.

In this paper we study the problem called "Group Assignment Job Constrained Three Dimensional Model". Let us consider a set of workers $W=\{1,2, \ldots \ldots, w\}$, a set of jobs $J=\{1,2, \ldots \ldots, n\}$ and $K=\{1,2, \ldots ., k\}$ represents facilities which influence the cost as a third dimension. The set of \mathbf{W} workers due to their identical skills are subdivided into ' \mathbf{p} ' different groups, $\mathbf{i}^{\text {th }}$ group is having $\mathbf{w}_{\mathbf{i}}=\mid W_{i}$ workers as a result total workers are w, the set of ' J ' $\mathbf{j o b s}$ are subdivided into ' q ' different groups such that in each group have $\mathbf{n}_{\mathrm{j}}=$ $\left|J_{i}\right|$ jobs with total ' \mathbf{n} ' jobs. Let there are ' \mathbf{s} ' products which require the jobs as components for its finishing. Let the products be called frames and they are $F_{1}, F_{2}, \ldots \ldots, F_{s}$ and their frequencies are $\mathbf{l}_{1}, \mathbf{l}_{2}, \ldots \ldots, l_{s}$. Let 'f $f_{i j}$ ' be the number of jobs required from $j^{\text {th }}$ group for the $\mathbf{i}^{\text {th }}$ frame then $\sum_{i=1}^{s} f_{i j} . l_{i}=\mathbf{n}_{\mathbf{j}}{ }^{\mathbf{1}} \leq \mathbf{n}_{\mathbf{j}}$ is the number of jobs required for the ' \mathbf{s} ' frames from the $\mathbf{j}^{\text {th }}$ group of jobs and $\mathbf{n}_{\mathbf{j}} \leq$ $\mathbf{n}_{\mathbf{j}}$. The number of all jobs from the ' \mathbf{q} ' groups required are $\sum_{j=1}^{q} n_{j}{ }^{1}=n_{0}<n$.

There is a restriction that the jobs from same group should use same facility. Where $\mathbf{C}(\mathbf{i}, \mathbf{j}, \mathrm{k})$ is the assignment cost of doing a job in $\mathrm{j}^{\text {th }}$ group by a worker in $\mathrm{i}^{\text {th }}$ group using $\mathrm{k}^{\text {th }}$ facility. The problem is to assign the total number of jobs ' n_{0} ' which are required for the ' s ' frames subjected to the condition such that the total assignment cost is minimum. A Lexi - Search algorithm is developed using " Pattern ecognition Technique" to get an optimal assignment.

Key words- Lexi - Search algorithm, Pattern Recognition Technique, Alphabet table, Word, Search table.

I. INTRODUCTION

Assignment problem is among the first linear programming problems to be studied extensively. It is a particular case of a transportation problem where the sources are assignees and the destinations are tasks. In a classical assignment problem the goal is to find an optimal assignment of agents to tasks without assigning an agent more than once and ensuring that all tasks are completed

In this paper we study the problem called "Group Assignment Job Constrained Three Dimensional Model". Let us consider a set of workers W, another set of jobs J. The third dimension which is an independent factor which influences cost is
considered as facility which is denoted by K. Again workers W are considered as ' p ' groups, $\mathrm{i}^{\text {th }}$ group is having ' w_{i} ' workers as a result total workers are w , jobs J are considered as ' q ' groups such that in each group have n_{j} jobs with total ' n ' jobs and facility $K, C(i, j, k)$, is the cost of doing a job in $j^{\text {th }}$ group when assigned to a worker in $\mathrm{i}^{\text {th }}$ group using facility ' k '.

Let the jobs $\mathrm{J}=\{1,2,3, \ldots \ldots, n\}$ be grouped as J_{1}, $\mathrm{J}_{2}, \ldots \ldots ., \mathrm{J}_{\mathrm{q}}$ such that $\mathrm{J}=\mathrm{J}_{1} \mathrm{UJ}_{2} \mathrm{U} \ldots \ldots . \mathrm{UJ}_{\mathrm{q}}$ with $\mathrm{IJ}_{\mathrm{j}} \mathrm{I}=$ $\mathrm{n}_{\mathrm{j}}, \mathrm{lJl}=\mathrm{n}$, i.e., $\mathrm{n}_{1}+\mathrm{n}_{2}+\ldots \ldots \ldots .+\mathrm{n}_{\mathrm{q}}=\mathrm{n}$. Similarly $\mathrm{W}=$ $\{1,2, \ldots \ldots . . m\}$ be the set of ' m ' workers grouped as $\mathrm{W}_{1}, \mathrm{~W}_{2}, \ldots \ldots . . \mathrm{W}_{\mathrm{p}}$ such that $\mathrm{W}=\mathrm{W}_{1} \mathrm{U} \mathrm{W}_{2} \mathrm{U} \ldots \ldots .$. $\mathrm{U} \mathrm{W}_{\mathrm{p}}$ with $\mathrm{lW}_{\mathrm{i}} \mathrm{l}=\mathrm{w}_{\mathrm{i}}$ and $\mathrm{lWl}=\mathrm{w}$, that is $\mathrm{w}_{1}+\mathrm{w}_{2}+\ldots \ldots \ldots$ $+\mathrm{w}_{\mathrm{p}}=\mathrm{w}$.

Let there be S frames that is $\mathrm{F}_{\mathrm{i}}=(\mathrm{i}=1,2, \ldots, \mathrm{~s})$ these frames require various jobs as components. Let f_{ij} be the number of jobs required as components from the $j^{\text {th }}$ group of job for the $\mathrm{i}^{\text {th }}$ frame. Let l_{i} be the number of frames of the $\mathrm{i}^{\text {th }}$ frame that is l_{i} is the frequency of the frame F_{i}. The total number of jobs required from $\mathrm{j}^{\text {th }}$ group as components for the S frames along with their frequencies is given by

$$
\sum_{i=1}^{s} f_{i j} \cdot l_{i}=n_{j}^{1} \leq n_{j}
$$

That is $\mathrm{n}_{\mathrm{j}}{ }^{1}$ are the total number of jobs from $\mathrm{j}^{\text {th }}$ group is required for all the frames along with their frequencies. The total number of jobs required for all the frames is given by $\quad \sum_{j=1}^{q} n_{j}^{1}=n_{0}<n \quad$ and when jobs are assigned to workers from same group they have to use same facility.

When the cost $\mathrm{C}(\mathrm{i}, \mathrm{j}, \mathrm{k})$ is consider in the process of assignment if \bar{w}_{i} and \bar{n}_{j} are respectively the workers in the $\mathrm{i}^{\text {th }}$ group and jobs in the $\mathrm{j}^{\text {th }}$ group then the minimum of $\min \left(\bar{w}_{i}, \bar{n}_{j}\right)=\alpha_{\mathrm{ij}}$ will be integer if it is non-zero and in this case the α_{ij} is the number of workers will be assigned to α_{ij} number of jobs with the cost $\mathrm{C}(\mathrm{i}, \mathrm{j}, \mathrm{k})^{*} \alpha_{\mathrm{ij}}$ where the k^{th} facility is used and a fixed number of jobs $\left(\mathrm{n}_{\mathrm{j}}{ }^{1}\right)$ has to perform from each job group $\left(\mathrm{n}_{\mathrm{j}}\right)$

Now our problem is to assign ' n_{0} ' jobs for the workers subject to the conditions such that total assignment cost is minimum. We develop a Lexi-Search algorithm using pattern recognition technique for getting an optimal assignment with total least cost.

II. MATHEMATICAL FORMULATION

$\operatorname{Minimize} \mathrm{Z}(\mathrm{X})=\sum_{i \in W} \sum_{j \in J} \sum_{k \in K} c(i, j, k) \cdot \alpha_{i j} \cdot x(i, j, k)$

Where $\alpha_{\mathrm{ij}}=\operatorname{Minimum}\left(\bar{w}_{i}, \bar{n}_{j}\right)$ (i.e., $\mathrm{i}=1,2,3, \ldots, \mathrm{p} \&$
$\mathrm{j}=1,2,3 \ldots, \mathrm{q} \quad\left\{\right.$ Where $\left(\bar{w}_{i}, \bar{n}_{j}\right)$ are the workers in $\mathrm{i}^{\text {th }}$ group and Jobs in the $j^{\text {th }}$ group unassigned in the process and $\boldsymbol{\alpha}_{\mathrm{ij}}$ is an integer\}

Subject to the constraints
$\sum_{i} \sum_{j} \sum_{k} \alpha_{i j} x(i, j, k)=n_{0}<n \quad$ for $i=1,2, \ldots, p ; j=1,2, \ldots . q, k \in K$
\qquad
$\sum_{s} \sum_{j} \sum_{k} \alpha_{s j} x(s, j, k) \leq W_{s}, j=(1,2, \ldots, q), \quad k \in K$
$\sum_{i} \sum_{s} \sum_{k} \alpha_{i s} x(i, s, k) \leq n_{s}, i=(1,2, \ldots ., p), \quad k \in K$
$x\left(i_{1}, j_{1}, k_{1}\right)=x\left(i_{2}, j_{2}, k_{2}\right)=1$, where $i_{1}, i_{2} \in(1,2, \ldots, p)$ $j_{1}=j_{2} \quad \& k_{1}=k_{2}$
$x(i, j, k)=0$ or $1, \quad i=1,2, \ldots . p ; j=1,2, \ldots . q \& k \epsilon K$
\qquad
The constraint (1) is the objective function of the problem i.e., total minimum cost for assigned $\mathbf{n}_{\mathbf{0}}$ jobs under the given constraints.

The constraint (2) describes the restriction that the total number of assigned jobs n_{0}, less than n .

The constraint (3) states the number of assigned workers in a group is less than or equal to its capacity

The constraint (4) shows the number of jobs in a group is less than or equal to its capacity

The constraint (5) illustrates that same job group when assigned to workers group should use the same facility

The constraint (6) describes if the $\mathrm{i}^{\text {th }}$ worker is assigned to $\mathrm{j}^{\text {th }}$ group of job with $\mathrm{k}^{\text {th }}$ facility then $\mathrm{X}(\mathrm{i}, \mathrm{j}, \mathrm{k})$ $=1$ otherwise 0

III NUMERICAL ILLUSTRATION

The concepts developed will be illustrated by a numerical example for which the total number of workers $\mathrm{w}=15$, the total number of jobs $\mathrm{n}=20$ and the facilities $\mathrm{k}=2$. Again these 20 workers made as 4 groups, 15 jobs made as 6 groups i.e., $\mathrm{p}=4$ and $\mathrm{q}=6$ groups respectively. Let the number of workers in each group be $w_{1}=3, w_{2}=4$ $\mathrm{w}_{3}=5, \mathrm{w}_{4}=3$ and jobs as $\mathrm{J}_{1}=2, \mathrm{~J}_{2}=4, \mathrm{~J}_{3}=3, \mathrm{~J}_{4}=4, \mathrm{~J}_{5}=4, \mathrm{~J}_{6}=3$ To make 1_{i} frequency of s frames of F a fixed number of jobs has to be assigned from each group that is $n_{1}{ }^{1}=1, n_{2}{ }^{1}$ $=3, n_{3}{ }^{1}=2, n_{4}{ }^{1}=3, n_{5}{ }^{1}=4, n_{6}{ }^{1}=2$ and if a job in one set used one of facilities then the remaining jobs in that set should use the same facility. For this problem we took four groups of workers, six groups of jobs with two facilities and the number of jobs to be assigned $*$ are $n_{1}{ }^{1}+n_{2}{ }^{1}+$ $\mathrm{n}_{3}{ }^{1}+\mathrm{n}_{4}{ }^{1}+\mathrm{n}_{5}{ }^{1}+\mathrm{n}_{6}{ }^{1}=1+3+2+3+4+2=15$ (i.e., $\mathrm{n}_{0}=15$)

Let there be two frames $\mathrm{F}_{1}, \mathrm{~F}_{2}$ and the frequencies of frames are $1_{1}=2, l_{2}=1$. For these two frames job components from different groups are taken as product component f_{ij}. The following figure-1 represents frames, job components and their frequencies.

FIGURE-1

In the above figure F_{1}, F_{2} represents frames, $1_{1}=2, l_{2}=1$ represents frequencies of frames. Frame F_{1} involves 6 job components and they are represented as $n_{1}{ }^{1}=0, n_{2}{ }^{1}=1$, $\mathrm{n}_{3}{ }^{1}=1 \quad \mathrm{n}_{4}{ }^{1}=0, \mathrm{n}_{5}{ }^{1}=2, \mathrm{n}_{6}{ }^{1}=1$. f_{2} frame involves 6 job components and they are represented as $\mathrm{n}_{1}{ }^{1}=1, \mathrm{n}_{2}{ }^{1}=1$, $\mathrm{n}_{3}{ }^{1}=0, \quad \mathrm{n}_{4}{ }^{1}=3, \mathrm{n}_{5}{ }^{1}=0, \mathrm{n}_{6}{ }^{1}=0$. As a result total number of job components in two frames is 15 i.e., $1+3+2+3+4+2=15$ also sum of $n_{i}{ }^{1}$ in two frames are satisfying the restriction that they should be equal to the fixed number of jobs assigned from each group. For this problem we took four groups of workers, six groups of jobs using two facilities and the number of jobs to be assigned is fifteen (i.e., $\mathrm{n}^{1}=15$)

In the following numerical example, $\mathrm{C}(\mathrm{i}, \mathrm{j}, \mathrm{k})$'s are taken as positive integers but it can be easily seen that this is not a necessary condition. $\mathrm{C}(\mathrm{i}, \mathrm{j}, \mathrm{k})$ means the cost of assigning of that $\mathrm{i}^{\text {th }}$ worker on $\mathrm{j}^{\text {th }}$ job with facility k. The following table represents the requirement of the cost to do the job with respect to corresponding worker. Then the cost array $\mathrm{C}(\mathrm{i}, \mathrm{j}, \mathrm{k})$ is given table-1.

Table-1

$$
\mathrm{C}(\mathrm{i}, \mathrm{j}, 1)=\left[\begin{array}{cccccc}
01 & 09 & 13 & 21 & -- & 16 \\
-- & 12 & 15 & 18 & 01 & 06 \\
17 & 10 & -- & 03 & 19 & 11 \\
05 & 14 & 20 & 05 & -- & 22
\end{array}\right]
$$

Table-2
$C(i, j, 2)=\left[\begin{array}{cccccc}18 & 11 & 02 & 15 & 06 & 12 \\ -- & 19 & 13 & 10 & 14 & 09 \\ 13 & 04 & 17 & 20 & 08 & 02 \\ -- & 07 & 12 & -- & 22 & 16\end{array}\right]$
In table-1, $\mathrm{C}(3,2,1)=10$ means that the cost of assigning a job in $2^{\text {nd }}$ group by any individual worker on $3^{\text {rd }}$ group using $1^{\text {st }}$ facility is 10 units.

IV FeaSible solution

Consider an ordered triple set $\{(1,1,1),(2,5$, 1), ($1,3,2$), ($3,6,2),(3,4,1),(4,2,2)\}$ represents a feasible solution mentioned below

> FIGURE-2 [FEASIBLE SOLUTION]

The above figure-2, represents a feasible solution. The rectangle shape represents worker group, hexagon shape represents job group, diamond shape represent number of jobs assigned, octagon shape represents facility, parallelogram shape represents the
corresponding $\mathrm{C}(\mathrm{i}, \mathrm{j}, \mathrm{k})$ cost and oval shape represents multiple of number of jobs assigned and cost. The values in rectangle indicate group of the worker and in brackets represents number of unassigned workers in that group, values in hexagon indicates group of jobs and in brackets represents the number of unassigned jobs in that group, values in diamond indicates number of jobs assigned, values in octagon indicates facility, value in parallelogram indicates cost and value in oval indicates (number of jobs assigned x cost0f each job).

Here $\left\{\mathrm{w}_{1}(3), \mathrm{j}_{1}(1), \alpha(1), \mathrm{k}(1), \mathrm{C}(1), \alpha \times \mathrm{C}(1)\right\}$ represents that $\mathrm{w}_{1}(3)$ means in $1^{\text {st }}$ group number of unassigned workers is $3, j_{1}(1)$ means in $1^{\text {st }}$ group number of unassigned jobs is $1, \alpha(1)$ means the number of jobs of j_{1} assigned to w_{1} workers is ' 1 ' (which is required), $\mathrm{k}(1)$ represents the facility for performing particular job is ' 1 ', $\mathrm{C}(1)$ represents the cost of that particular job performed by the worker using facility is ' 1 ' and $\alpha \mathrm{xC}(1)$ represents the product of number of assigned jobs and cost.

SOLUTION PROCEDURE:

In the above figure-2, for the feasible solution we observed that there are $\mathbf{6}$ ordered triples $(1,1,1),(2,5,1)$, $(1,3,2),(3,6,2),(3,4,1),(4,2,2)$ taken along with the value from the cost matrices in the numerical example in table-1. The 6 ordered triples are selected such that they represents a feasible solution according to constraints of mathematical formulation and is represented in figure-2. So the problem is that we have to select $\mathbf{6}$ ordered triples from the cost matrices along with values such that the total cost is minimum and represents a feasible solution. For this selection of 6 ordered triples from cost matrices we arranged 41 ordered triples with the increasing order of their values and call this formation as alphabet table and we will develop an algorithm for the selection of six ordered triples along with the checking for the feasibility.

V THE CONCEPTS AND DEFINITIONS

5.1 Definition of a Pattern:

An indicator three-dimensional array which is associated with an assignment is called a pattern. A pattern is said to be
feasible if X is a feasible solution. The pattern represented in the table-2, is a feasible pattern.

Now $\mathrm{V}(\mathrm{X})$ the value of the pattern X is defined as

$$
V(X)=\sum_{i \in p} \sum_{j \in q} \alpha_{i j} C(i, j, k) \cdot X(i, j, k)
$$

The value $\mathrm{V}(\mathrm{X})$ gives the total cost of the feasible solution represented by X. Thus the value of the feasible pattern gives the total cost represented by it. In the algorithm, which is developed in the sequel, a search is made for a feasible pattern with the least value. Each pattern of the solution X is represented by the set of ordered triples ($\mathrm{i}, \mathrm{j}, \mathrm{k}$)for which $\mathrm{X}(\mathrm{i}, \mathrm{j}, \mathrm{k})=1$, with the understanding that the other $\mathrm{X}(\mathrm{i}, \mathrm{j}, \mathrm{k})$'s are zeros.

VI ALPHABET TABLE AND A WORD

There are $p \times q \times k$ ordered triples in the threedimensional array C. For convenience these are arranged in ascending order of their corresponding costs and are indexed from 1 to pxqxk (Sundara Murthy-1979). Let $\mathrm{SN}=$ $1,2,3 \ldots$ be the set indices. Let C be the corresponding array of costs. If $a, b \in S N$ and $a<b$ then $C(a) \leq C(b)$. Also let the arrays $\mathrm{R}, \mathrm{C}, \mathrm{K}$ be the array of indices of the ordered triples represented by SN, J and K . CC is the array of cumulative sum of the elements of C. The arrays $\mathrm{SN}, \mathrm{C}, \mathrm{CC}, \mathrm{R}, \mathrm{C}$, and K for the numerical example are given in the table-3. If $p \in S N$ then $(R(p), C(p), K(p))$ is the ordered triple and $C(a)=C(W(a), J(a), K(a))$ is the value of the ordered triple.

Table-3.

S.No	C	CC	R	C	K
1	1	1	1	1	1
2	1	2	2	5	1
3	1	3	2	1	2
4	2	5	1	3	2
5	2	7	3	6	2
6	3	10	3	4	1
7	4	14	3	2	2
8	5	19	4	4	1
9	6	25	2	6	1
10	6	31	1	5	2

11	7	38	4	2	2
12	8	46	4	1	1
13	8	54	3	5	2
14	9	63	1	2	1
15	9	72	2	6	2
16	10	82	3	2	1
17	10	92	2	4	2
18	11	103	3	6	1
19	11	114	1	2	2
20	12	126	2	2	1
21	12	138	1	6	2
22	13	151	1	3	1
23	13	164	2	3	2
24	14	178	4	2	1
25	14	192	2	5	2
26	15	207	2	3	1
27	15	222	1	4	2
28	16	238	1	6	1
29	16	254	4	6	2
30	17	271	3	1	1
31	17	288	3	3	2
32	18	306	2	4	1
33	18	324	1	1	2
34	19	343	3	5	1
25	19	362	2	2	2
36	20	382	4	3	1
37	20	402	3	4	2
38	21	423	1	4	1
39	22	445	4	6	1
40	22	467	4	5	2
41	23	490	3	1	2
42	-	-	-	-	-
43	-	-	-	-	-
44	-	-	-	-	-
45	-	-	-	\cdot	-
46	-	-	-	-	-
47	-	-	-	-	-
48	-	-	-	-	-

Let us consider $7 € \mathrm{SN}$ it represents the ordered triple $\mathrm{R}(7), \mathrm{C}(7), \mathrm{K}(7)=(3,2,2)$ then $\mathrm{C}(7)=4, \mathrm{CC}(7)=14$.

6.1 Value of the Word:

The value of the (partial) word $L_{k}, V\left(L_{k}\right)$ is defined recursively as $V\left(L_{k}\right)=V\left(L_{k-1}\right)+D\left(a_{k}\right) \times\left(\alpha_{i, j, k}\right)$ with $\mathrm{V}\left(\mathrm{L}_{\mathrm{o}}\right)=0$ where $\mathrm{D}\left(\mathrm{a}_{\mathrm{k}}\right)$ is the cost array arranged such that D $\left(a_{k}\right)<\mathrm{D}\left(\mathrm{a}_{\mathrm{k}+1}\right) . \quad \mathrm{V}\left(\mathrm{L}_{\mathrm{k}}\right)$ and $\mathrm{V}(\mathrm{x})$ the values of the pattern X will be the same. Since X is the (partial) pattern represented by L_{k}, (Sundara Murthy - 1979).

Then $V\left(L_{3}\right)=V\left(L_{2}\right)+\left(D\left(a_{k}\right)\right)\left(\alpha_{i j \mathrm{j}}\right)$,
$\left\{\begin{array}{l}\text { where } \alpha_{\mathrm{ijk}}=\alpha_{251}=\operatorname{minimum}\left(\mathrm{w}_{\mathrm{i}}, \mathrm{j}_{\mathrm{i}}, \mathrm{k}\right) \\ \operatorname{minimum}\left(\mathrm{w}_{2}{ }^{1}, \mathrm{j}_{5}{ }^{1}, 1\right)=4 \text { jobs, } \mathrm{D}\left(\mathrm{a}_{3}\right)=1\end{array}\right\}$
For example the partial word $\mathrm{L}_{3}=(1,2,3)$ then value of L_{3} is $V\left(L_{3}\right)=1+1+1=3$ and $V(x)=5$ and $L_{3}=V\left(L_{3}\right)=$ $\mathrm{V}\left(\mathrm{L}_{2}\right)+\mathrm{C}\left(\mathrm{a}_{\mathrm{k}}\right)\left(\mathrm{a}_{\mathrm{i}, \mathrm{j}, \mathrm{k}}\right)=5+1 \times 0=5$

6.2 Lower Bound of A partial word LB $\left(L_{k}\right)$:

A lower bound $\mathrm{LB}\left(\mathrm{L}_{\alpha}\right)$ for the values of the block of words represented by $L_{k}=\left(a_{1}, a_{2}, \cdots, a_{k}\right)$ can be defined as follows.

$$
L B\left(L_{k}\right)=V\left(L_{K}\right)+D\left(\mathrm{a}_{\mathrm{k}+1}\right) \times\left(\mathrm{n}_{0}{ }^{1}\right)
$$

$\left\{\right.$ where $\mathrm{n}_{0}{ }^{1}$ represents the number of jobs remaining to be assigned $\}$

Consider the partial word $L_{3}=(1,2,3)$ and $V\left(L_{3}\right)=5$

$$
\text { Then LB } \begin{aligned}
\left(\mathrm{L}_{\mathrm{k}}\right) & =V\left(L_{K}\right)+C\left(\mathrm{a}_{\mathrm{k}+1}\right)\left(\mathrm{n}_{0}{ }^{1}\right) \\
\mathrm{LB}\left(\mathrm{~L}_{3}\right) & =\mathrm{V}\left(\mathrm{~L}_{3}\right)+\left(\mathrm{C}\left(\mathrm{a}_{4}\right) \times(6)\right) \\
& =5+2 \times 10=25
\end{aligned}
$$

$\mathrm{LB}\left(\mathrm{L}_{\mathrm{k}}\right)=\mathrm{V}\left(\mathrm{L}_{\mathrm{k}}\right)+C\left(\mathrm{a}_{\mathrm{k}+\mathrm{j}}\right)$
$=\mathrm{V}\left(\mathrm{L}_{\mathrm{k}}\right)+\mathrm{CC}\left(\mathrm{a}_{\mathrm{k}}+\mathrm{n}-\mathrm{k}\right)-\mathrm{CC}\left(\mathrm{a}_{\mathrm{k}}\right)$

Where $\operatorname{CC}\left(\mathrm{a}_{\mathrm{k}}\right)=\sum_{i=1}^{k} C\left(a_{i}\right)$. It can be seen that $\operatorname{LB}\left(\mathrm{L}_{\mathrm{k}}\right)$ is the value of the complete word, which is obtained by concatenating the first ($\mathrm{n}-\mathrm{k}$) letters of $\mathrm{SN}\left(\mathrm{a}_{\mathrm{k}}\right)$ to the partial word L_{k}.

6.3 Feasibility Criterion of a partial word:

An algorithm is developed, in order to check the feasibility of a partial word $L_{k+1}=\left\{a_{1}, a_{2} \ldots \ldots a_{k}, a_{k+1}\right\}$ given that L_{k} is a feasible word. We will introduce some more notations which will be useful in the sequel.

Consider the partial word $\mathrm{L}_{3}=(1,2,3)$

* IR be an array where $\operatorname{IR}(\mathrm{i})=1$, indicates that a worker of $i^{\text {th }}$ group is doing a job , otherwise $\operatorname{IR}(\mathrm{i})=0$.
* IC be an array where IC $(\mathrm{j})=1$, indicates that in $\mathrm{j}^{\text {th }}$ group a job is performed by a worker, otherwise $\mathrm{IC}(\mathrm{j})=0$.
* IK be an array where IK(i)=1, indicates that facility used by $\mathrm{j}^{\text {th }}$ group of job
* \mathbf{L} be an array where $\mathrm{L}[\mathrm{i}]=\mathrm{a}_{\mathrm{i}}$ is the letter in the $\mathrm{i}^{\text {th }}$ position of a word.Then the values of the arrays IR, IC and L are as follows
* $\operatorname{IR}(R A)=1, i=1,2,-\cdots, k$ and $\operatorname{IR}(j)=0$ for other elements of j. (where RA $\left.=R\left(a_{i}\right), C A=\left(a_{i}\right)\right)$
* $\operatorname{IC}(\mathrm{CA})=1, \mathrm{i}=1,2, \cdots,-\cdots, \mathrm{k}$ and $\operatorname{IC}(\mathrm{j})=0$ for other elements of j
* $L(i)=a_{i}, i=1,2, \cdots-, k$, and $L(j)=0$, for other elements of j
* NA $\left(a_{k}\right)=\alpha_{i j}=\left[w^{1}(R A), n^{1}(C A)\right]$ the number of jobs assigned to workers at $\mathrm{i}^{\text {th }}$ position.

For example consider a sensible partial word $\mathrm{L}_{5}=(1,2,4,5$, 6) which is feasible. The array IR, IC, IK and L takes the values represented in table -4 given below.

TABLE-4

S	1	2	3	4	5	6	7
L	1	2	4	5	6		
IR	2	1	1				
IC	1		1		1	1	
IK	2	2					
NA	1	4	2	2	3		

The recursive algorithm for checking the feasibility of a partial word L_{p} is given as follows. In the algorithm first we equate $\mathrm{IX}=0$, at the end if IX $=1$ then the
partial word is feasible, otherwise it is infeasible. For this algorithm we have $R A=R\left(a_{i}\right), C A=C\left(a_{i}\right)$.

6.4. ALGORITHMS

ALGORITHM 1: (Algorithm for feasible checking)

Step 20 :	$\mathrm{IX}=0$	goto ...21
Step 21 :	Is WA [RA] $=0$	yes goto...29,
		no goto... 22
Step 22 :	$\mathrm{WX}=\mathrm{WA}$ [RA]	goto... 23
Step 23 :	Is JA $[\mathrm{CA}]=0$	yes goto... 29 ,
		no goto... 24
Step 24 :	$\mathrm{JX}=\mathrm{JA}[\mathrm{CA}]$	goto... 25 ,
Step 25 :	Is KN(CA $)=0$	yes goto... 26
		no goto... 27
Step 26 :	Is $[\mathrm{KN}(\mathrm{CA})=\mathrm{KA}]$	yes goto ... 27
		no goto ... 29
Step 27 :	$\operatorname{Min}(\mathrm{JX}, \mathrm{WX})=\mathrm{JM}$	yes goto... 28
Step 28 :	IX=1	yes goto...29,
Step 29 :	STOP	

This recursive algorithm will be used as a subroutine in the lexi-search algorithm. We start the algorithm with a very large value, say, 9999 as a trial value of VT. If the value of a feasible word is known, we can as well start with that value as VT. During the search the value of VT is improved. At the end of the search the current value of VT gives the optimal feasible word. We start with the partial word $\mathrm{L}_{1}=\left(\mathrm{a}_{1}\right)=(1)$. A partial word $L_{p}=L_{p-1} *\left(a_{p}\right)$ where $*$ indicates chain form or concatenation. We will calculate the values of $\mathrm{V}\left(\mathrm{L}_{\mathrm{p}}\right)$ and LB (L_{p}) simultaneously. Then two cases arises (one for branching and other for continuing the search).

1. $\boldsymbol{L} \boldsymbol{B}\left(\boldsymbol{L}_{p}\right)<\boldsymbol{V} \boldsymbol{T}$. Then we check whether L_{p} is feasible or not. If it is feasible we proceed to consider a partial word of order $(p+1)$, which represents a sub block of the block of words represented by L_{p}. If Lp is not feasible then consider the next partial word of order p by taking another letter which succeeds a_{p} in
the $\mathrm{p}^{\text {th }}$ position. If all the words Sof order p are exhausted then we consider the next partial word of order ($\mathrm{p}-1$).
2. $\boldsymbol{L} \boldsymbol{B}\left(\boldsymbol{L}_{P}\right) \geq \boldsymbol{V} \boldsymbol{T}$. In this case we reject the partial word meaning that the block of words with L_{p} as leader is rejected for not having an optimal word and we also reject all partial words of order p that succeeds L_{p}.

Now we are in a position to develop lexi search algorithm to find an optimal feasible word.

6.4. ALGORITHM2: (LEXI-SEARCH ALGORITHM)

The following algorithm gives an optimal feasible word.

STEP-1: (initialization):
The arrays $\mathrm{SN}, \mathrm{D}, \mathrm{DC}, \mathrm{R}, \mathrm{C}, \mathrm{K}, \mathrm{NA}\left(=\mathrm{n}_{0}\right)$, WA, JA, KA, max, and VT are made available. RA, CA, KA, L, V, LB, WX, JX, JM, W, N, KN, LN,CJM, LNM and CJN are initialized to zero. The values $\mathrm{i}=1, \mathrm{j}=0$.

Stepl:	$\mathrm{j}=\mathrm{j}+1$	
	Is ($\mathrm{j}=\mathrm{max}$)	yes goto...2,
		no goto... 9
Step 2 :	$\mathrm{L}[\mathrm{i}]=\mathrm{j}$	
	$\mathrm{RA}=\mathrm{R}(\mathrm{j})$	
	$\mathrm{CA}=\mathrm{C}(\mathrm{j})$	
	$\mathrm{KA}=\mathrm{K}(\mathrm{j})$	yes goto... 3

Step 3: (CHECK FEASIBILITY OF USINGALGORITHM-1)

$I X=0$	yes goto...1
	no goto...

Step 4 :	$\mathrm{V}(\mathrm{i})=\mathrm{V}(\mathrm{i}-1)+\mathrm{D}(\mathrm{j}) * \mathrm{JM}$	goto...4a
Step 4a :	WA(RA) $=$ WA(RA)-JM;	
	$\mathrm{JA}(\mathrm{CA})=\mathrm{JA}(\mathrm{CA})-\mathrm{JM}$	goto... 5
Step 5 :	$\mathrm{CJN}=\mathrm{CJM}(\mathrm{i}-1)+\mathrm{JM}$	goto...5a
Step 5a	$\operatorname{CJM}(\mathrm{i})=\mathrm{CJN}$	goto...5b
Step 5b:	$\mathrm{LN}(\mathrm{i})=\mathrm{JM}$	goto ...6
Step 6 :	ISRJ=[NA-CJN] $=0$	yes goto... 8
		no goto ...6a

Step 6a:	$\mathrm{LB}(\mathrm{i})=\mathrm{V}(\mathrm{i})+\mathrm{D}(\mathrm{j}+\mathrm{l}) * \mathrm{RJ}$	goto...6b,
Step 6b:	$\mathrm{LB}(\mathrm{i})=\mathrm{VT}$	yes goto...7
		no goto $\ldots 9$
Step 7:	$\mathrm{i}=\mathrm{i}+1$	goto $\ldots 1$
Step 8:	$\mathrm{L}(\mathrm{i})=\mathrm{j}$	
	$\mathrm{L}(\mathrm{i})$ is full length word and is feasible	
	$\mathrm{VT}=\mathrm{V}(\mathrm{i})$, Record $\mathrm{VT}, \mathrm{L}(\mathrm{i})$	goto $\ldots 9$

Step 11: \quad| $\mathrm{j}=\mathrm{L}(\mathrm{i})$ | |
| :--- | :--- |
| | $\mathrm{RA}=\mathrm{R}(\mathrm{j})$ |
| | $\mathrm{CA}=\mathrm{C}(\mathrm{j})$ |

$\mathrm{KA}=\mathrm{K}(\mathrm{j})$ goto ... 12
Step 12: \quad LNM $=\mathrm{LN}(\mathrm{i})$
$W A(R A)=W A(R A)-L N M ;$
$\mathrm{JA}(\mathrm{CA})=\mathrm{JA}(\mathrm{CA})-\mathrm{LNM}$
yes goto ...l
no goto ... 13

Step 13 : STOP

6.5. FLOW CHART:

The flow chart for this algorithm is as follows

VII SEARCH TABLE:

The working details of getting an optimal word, using the above algorithm for the illustrative numerical example are given in the Table-5. The columns (1), (2), (3), (4),...... gives the letters in the first, second, third, fourth so on respectively. The corresponding NA, V and LB are indicated in the next three columns. The rows R, C and K gives the row, column and facility indices of the letter. The last column gives the remarks regarding the acceptability of the partial words. In the following table A indicates ACCEPT and R indicates REJECT.

Table-5

S.No 1	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	NA	V	LB	R	C	K	REM	
$\mathbf{1}$	1						1	1	15	1	1	1	A
2		2					4	5	15	2	5	1	A
3			3							2	1	2	R
4			4				2	9	25	1	3	2	A
5				5			2	13	31	3	6	2	A
6				6		3	22	34	3	4	1	A	
7					7				3	2	2	R	
8				8				4	4	1	R		
9					9				2	6	1	R	
10					10			1	5	2	R		

At the end of the search the current value of $\mathbf{V T}=$ 40 and it the value of the feasible word $\mathbf{L}_{\mathbf{6}}=(\mathbf{1 , 2 , 4 , 5 , 7 , 8})$ it is given in $13^{\text {th }}$ row of the search table -4 and the corresponding order triples are $(\mathbf{1}, \mathbf{1}, \mathbf{1}),(\mathbf{2}, \mathbf{5}, \mathbf{1}),(\mathbf{1}, \mathbf{3}, \mathbf{2}),(\mathbf{3}, \mathbf{6}, \mathbf{2}),(\mathbf{3}, \mathbf{2}, \mathbf{2})$, $(4,4,1)$. For this optimal feasible word the arrays IR, IC, IK L and NA are given in the following Table- 6.

At the end of the search table the optimum solution value of VT is $\mathbf{4 0}$ and is the value of optimal feasible word L $=(1,2,4,5,7,8)$. Then the following figure $\mathbf{- 3}$ represents the optimal solution to the assignment

Fig-3 (OPTIMAL SOLUTION)
In figure-4 $\left\{w_{1}(3), j_{1}(3), \alpha(3), k(1), C(5), \alpha \times C(5 X 3)\right\}$ represents that $w_{1}(3)$ means in $1^{\text {st }}$ group of workers number of unassigned workers is $3, \mathrm{j}_{1}(3)$ means in $1^{\text {st }}$ group of jobs number unassigned jobs are $3, \alpha(3)$ means the number of assigned job (which is required), $\mathrm{k}(1)$ is the facility used by that job group, $\mathrm{C}(5)$ is the cost of that job performed by the
worker using facility and $\operatorname{\alpha xC}(5 \times 3=15)$ is the number of assigned jobs x cost.

According to the pattern represented in figure-3 is satisfies all the constraints the section 3. The ordered tripled set represents the cost of total number of assigned jobs. The total cost $=1+4+4+4+12+15=40$.

VIII CONCLUSION

In this chapter, we studied a model of Assignment problem namely Group Asssignment Job Constrained Three Dimensional Model. We have developed a Lexi-Search Algorithm using Pattern Recognition Technique for getting an optimal solution.

REFERENCES:

1. AGARWAL, V. The assignment problem under categorized jobs, European Journal of Operational Research 14 (1983) 193-195.
2. AGARWAL, V., TIKEKAR, V.G., HSU, L.F. BOTTLENECK assignment problem under categorization, Computers and Operations Research 13(1) (1986) 11-26.
3. BURKARD, R. E. RUDOLF.R, AND WOEGINGER, G.J., Three-dimensional axial assignment problems with decomposable cost coefficients. Technical Report 238, Graz, 1996.
4. CARLOS A., OLIVEIRA, S. AND PANOS M. PARDALOS., Randomized parallel algorithms for the multidimensional assignment problem. Appl. Numer. Math., 49(2004)117-133, 2004.
5. CRAMA, Y. AND F. C. R. SPIEKSMA. Approximation algorithms for three-dimensional assignment problems with triangle inequalities. European Journal of Operational Research, 60 (3) (1992) 273-279.
6. FRIEZE, A.M. and J. YADEGAR. An Algorithm for solving 3-Dimensional Assignment Problems with Application to Scheduling a Teaching Practice. J. Ope. Res., 32(1981) (989995).
7. PANDIT, S.N.N and SUNDARA MURTHY, M. Enumeration of all optimal Job sequence - Opsearch, 12, (1975) 35-39.
8. PANNERSELVAM, R. Operations Research second edition, Prentice Hall of India private limited, New Delhi, 2006.
9. PURUSOTHAM, S, SURESH BABU, C. And SUNDARA MURTHY, M. Pattern Recognition based Lexi-Search Approach to the Variant Multi-Dimensional Assignment Problem, International Journal of Engineering Science and Technology (IJEST). 3(8) (2011) 6350-6363.
10. SOBHAN BABU.K, CHANDRA KALA.K, PURUSHOTTAM.S, SUNDARA MURTHY.M, A New Approach for Variant Multi Assignment Problem. International Journal on Computer Science and Engineering, 02,(05) (2010) 1633-1640.
11. SOMASEKHAR SRINIVAS.V.K P-AGENTS SEASONAL JOB COMPLETION MODEL" in the "International Journal of Scientific Research and Engineering" for publication. Vol 2 No (11), November,2013.
