Classification of All Ideals of the Group Algebra of Some Lie Groups .

Kahar El-Hussein \dagger, Badahi Ould Mohamed \ddagger
Department of Mathematics, Faculty of Science and Arts at Al Qurayat, Al-Jouf University, Kingdom of Saudi Arabia

April 18, 2015

Abstract

Let $G=\mathbb{R}^{n} \underset{\rho}{\rtimes} \mathbb{R}^{m}$ be the Lie group, which is the semi-direct product of the real vector group \mathbb{R}^{n} and $\mathbb{R}^{m}, 1 \leq m \leq n$. Let \mathcal{U} be the complexified universal enveloping algebra of the real Lie algebra \underline{g} of G. The purpose of this paper is to give a characterization of the all ideals of the group algebra $L^{1}(G)$ of G. Besides, we prove some existence theorems for \mathcal{U}.

Keywords: Semi-Direct Product of Two Lie Groups, Ideals of Group Algebra, Fourier Transform, Differential Operators.

AMS 2000 Subject Classification: 43A30\&35D 05

1 Preliminaries and Results

1.1. If G is a Lie group, we denote by $C^{\infty}(G), \mathcal{D}(G), \mathcal{D}^{\prime}(G), \mathcal{E}^{\prime}(G)$ be the space of C^{∞} - functions, C^{∞} with compact support, distributions and distributions with compact support on G respectively.. Let \mathcal{U} be the complexified universal enveloping algebra of the real Lie algebra \underline{g} of G; which is
canonically isomorphic to the algebra of all distributions on G supported by $\{0\}$, where 0 is the identity element of G. For any $u \in \mathcal{U}$ one can define a differential operator P_{u} on G as follows:

$$
\begin{equation*}
P_{u} f(x)=u * f(x)=\int_{K} f\left(y^{-1} x\right) u(y) d y \tag{1}
\end{equation*}
$$

for any $f \in C^{\infty}(G)$, where $d y$ is the right Haar measure on $G, y \in G$, $x \in G$ and $*$ denotes the convolution product on G. The mapping $u \rightarrow P_{u}$ is an algebra isomorphism of \mathcal{U} onto the algebra of all invariant differential operators on G. For more details see $[3,9]$. We denote by $L^{1}(G)$ the Banach algebra that consists of all complex valued functions on the group G, which are integrable with respect to the Haar measure of G and multiplication is defined by convolution on G as

$$
\begin{equation*}
\phi * f(g)=\int_{G} f\left(h^{-1} g\right) \phi(h) d h \tag{2}
\end{equation*}
$$

for every ϕ and f belong to $L^{1}(G)$, and we denote by $L^{2}(G)$ its Hilberst spac
1.2. Let B be the vector group of G, which is the vector of space of the Lie algebra of G. We denote also by \mathcal{U} the complexified enveloping algebra of the real Lie algebra \underline{b} of B. For every $u \in \mathcal{U}$, we can associate a differential operator Q_{u} on B as follows

$$
\begin{equation*}
Q_{u} f(x)=u *_{c} f(x)=\int_{B} f((x-y) u(y) d y \tag{3}
\end{equation*}
$$

for any $f \in C^{\infty}(B), x \in B, y \in B$, where $*_{c}$ signify the convolution product on the real vector group B and $d y$ is the Lebesgue measure on B. The mapping $u \mapsto Q_{u}$ is an algebra isomorphism of \mathcal{U} onto the algebra of all invariant differential operators on B, which are nothing but the algebra of differential operator with constant coefficients on B. Also, We denote by $L^{1}(B)$ the Banach algebra that consists of all complex valued functions on the group B, which are integrable with respect to the Haar measure of B and multiplication is defined by convolution on B as

$$
\begin{equation*}
\phi *_{c} f(g)=\int_{G} f(g-h) \phi(h) d h \tag{4}
\end{equation*}
$$

for every ϕ and f belong to $L^{1}(B)$, and we denote by $L^{2}(B)$ its Hilberst space

2 Left Ideals of Group Algebra of G

2.1. For any $k \in \mathbb{N}$, we denot by \mathbb{R}^{k} the k-dimensional real vector group. Let $G=\mathbb{R}^{n} \rtimes_{\rho} \mathbb{R}^{m}$ be the Lie group of the semidi-direct of the two real vector groups \mathbb{R}^{n} and \mathbb{R}^{m}, via the group homomorphism $\rho: \mathbb{R}^{m} \rightarrow A u t\left(\mathbb{R}^{n}\right)$, where $\operatorname{Aut}\left(\mathbb{R}^{n}\right)$ is the group of all automorphisms of \mathbb{R}^{n}. The multiplication of two elements $X=(x, y)$ and $Y=\left(x^{\prime}, y^{\prime}\right)$ in G is given by :

$$
\begin{equation*}
X \cdot Y=(x, y)\left(x^{\prime}, y^{\prime}\right)=\left(x+\rho(y)\left(x^{\prime}\right), y+y^{\prime}\right) \tag{5}
\end{equation*}
$$

The inverse X^{-1} of an element X in G is :

$$
X^{-1}=(x, y)^{-1}=\left(\rho(-y)\left(-x^{\prime}\right),-y\right)
$$

for any $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}, y=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{R}^{m}$. In the next, we write $y x$ in the place of $\rho(y)(x)$

Let $L=\mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R}^{m}$ be the group with law:

$$
(x, t, r)(y, s, q)=(x+\rho(r) y, t+s, r+q)
$$

for all $(x, t, r) \in L$ and $(y, s, q) \in L$. In this case the group G can be identified with the closed subgroup $\mathbb{R}^{n} \times\{0\} \times{ }_{\rho} \mathbb{R}^{m}$ of L and B with the subgroup $\mathbb{R}^{n} \times$ $\mathbb{R}^{m} \times\{0\}$ of L.

Definition 2.1. For every $f \in C^{\infty}(G)$, one can define a function $\tilde{f} \in$ $C^{\infty}(L)$ as follows:

$$
\begin{equation*}
\widetilde{f}(x, t, r)=f(\rho(t) x, r+t) \tag{6}
\end{equation*}
$$

for all $(x, t, r) \in L$. So every function $\psi(x, r)$ on G extends uniquely as an invariant function $\widetilde{\psi}(x, t, r)$ on L.

Remark 2.1 The function \tilde{f} is invariant in the following sense:

$$
\begin{equation*}
\widetilde{f}(\rho(s) x, t-s, r+s)=\widetilde{f}(x, t, r) \tag{7}
\end{equation*}
$$

for any $(x, t, r) \in L$ and $s \in \mathbb{R}^{m}$.
Lemma 2.1 For every function $F \in C^{\infty}(L)$ invariant in sense (7) and for every $u \in \mathcal{U}$, we have

$$
\begin{equation*}
u * F(x, t, r)=u *_{c} F(x, t, r) \tag{8}
\end{equation*}
$$

for every $(x, t, r) \in L$, where $*$ signifies the convolution product on G with respect the variables (x, r) and $*_{c}$ signifies the commutative convolution product on B with respect the variables (x, t).

Proof: In fact we have

$$
\begin{align*}
& P_{u} F(x, t, r)=u * F(x, t, r) \\
= & \int_{G} F(y, s)^{-1}(x, t, r) u(y, s) d y d s \\
= & \int_{G} F[(\rho(-s)(-y),-s)(x, t, r)] u(y, s) d y d s \\
= & \int_{G} F[\rho(-s)(x-y), t, r-s] u(y, s) d y d s \\
= & \int_{G} F[x-y, t-s, r] u(y, s) d y d s \\
= & u *_{c} F(x, t, r)=Q_{u} F(x, t, r) \tag{9}
\end{align*}
$$

where P_{u} and Q_{u} are the invariant differential operators on G and B respectively.

Definition 2.1. If $u \in L^{1}(G)$, then one can define two convolutions product on the group L by:

$$
\begin{align*}
&(i) u * F(x, y, z)=\int_{G} F\left[(t, s)^{-1}(x, y, z)\right] u(t, s) d t d s \\
&\left.=\int_{G} F[\rho(-s)(x-t) y, z-s)\right] u(t, s) d t d s \tag{10}\\
&\text { (ii) } \left.u *_{c} F(x, y, z)=\int_{B} F[x-t, y-s, z)\right] u(t, s) d t d s \tag{11}
\end{align*}
$$

for any $F \in L^{1}(L),(x, y, z) \in L$ and $(t, s) \in \mathbb{R}^{2 m}$, where dtds is the left Haar measure on $G, *$ is the convolution product on G and $*_{c}$ is the convolution product on B. It results

$$
\begin{equation*}
u * \widetilde{F}(x, y, z)=u *_{c} \widetilde{F}(x, y, z) \tag{12}
\end{equation*}
$$

for each $F \in L^{1}(G)$
Proposition 2.1. The mapping γ from $\left.L^{1}(G)\right|_{B}$ to $\left.L^{1}(G)\right|_{G}$ defined by

$$
\begin{equation*}
\left.\widetilde{F}\right|_{B}(x, y, 0) \rightarrow \gamma\left(\left.\widetilde{F}\right|_{B}\right)(x, 0, y)=\left.\widetilde{F}\right|_{G}(x, 0, y) \tag{13}
\end{equation*}
$$

is a topological isomorphism, and

$$
\begin{equation*}
\gamma\left(\left.u *_{c} \widetilde{F}\right|_{B}\right)(x, 0, y)=\left.u * \widetilde{F}\right|_{G}(x, 0, y) \tag{14}
\end{equation*}
$$

where

$$
\begin{align*}
\left(\left.u *_{c} \widetilde{F}\right|_{B}\right)(x, y, 0)=\int_{B} & \widetilde{F}[x-t, y-s, 0)] u(t, s) d t d s, F \in L^{1}(G) \tag{15}\\
\gamma\left(\left.u * \widetilde{F}\right|_{G}\right)(x, 0, y) & \left.=\int_{B} \widetilde{F}[\rho(-s)(x-t), 0, y-s)\right] u(t, s) d t d s \\
& =u * F(x, y), F \in L^{1}(G) \tag{16}
\end{align*}
$$

Proof: It easy to see that $\gamma:\left.\left.L^{1}(G)\right|_{B} \rightarrow L^{1}(G)\right|_{G}$ is a topological isomorphism and

$$
\begin{align*}
& \gamma\left(\left.u *_{c} \widetilde{F}\right|_{B}\right)(x, 0, y) \\
= & \int_{G} \widetilde{F}[x-t,-s, y] u(t, s) d t d s \\
= & \int_{G} \widetilde{F}[\rho(-s)(x-t), 0, y-s] u(t, s) d t d s \\
= & \left.u * \widetilde{F}\right|_{G}(x, 0, y) \tag{17}
\end{align*}
$$

for every $F \in L^{1}(G)$. The fact that

$$
\begin{equation*}
\gamma^{-1}:\left.\left.\widetilde{L^{1}(G)}\right|_{G} \rightarrow \widetilde{L^{1}(G)}\right|_{B} \tag{18}
\end{equation*}
$$

is a topological isomorphismm, we get

$$
\begin{align*}
\left.\widetilde{F}\right|_{G}(x, 0, y) & \rightarrow \gamma^{-1}\left(\left.\widetilde{F}\right|_{G}\right)(x, y, 0) \\
& =\left.\widetilde{F}\right|_{B}(x, y, 0) \tag{19}
\end{align*}
$$

Hence the proposition
If I is a subspace of $L^{1}(G)$, we denote by \widetilde{I} its image by the mapping \sim. Let $J=\left.\widetilde{I}\right|_{B}$. Our main result is:

Theorem 2.1. Let I be a subspace of $L^{1}(G)$, then the following conditions are equivalents.
(i) $J=\left.\widetilde{I}\right|_{B}$ is an ideal in the Banach algebra $L^{1}(B)$.
(ii) I is a left ideal in the Banach algebra $L^{1}(G)$.

Proof: (i) implies (ii) Let I be a subspace of the space $L^{1}(B)$ such that $J=\left.\widetilde{I}\right|_{B}$ is an ideal in $L^{1}(B)$, then we have:

$$
\begin{equation*}
\left.\left.u *_{c} \widetilde{I}\right|_{B}(x, y, 0) \subseteq \widetilde{I}\right|_{B}(x, y, 0) \tag{20}
\end{equation*}
$$

for any $u \in L^{1}(B)$ and $(x, y) \in B$, where

$$
\begin{equation*}
\left.\left.u *_{c} \widetilde{I}\right|_{B}(x, y, 0)=\left\{\left.\int_{B} \widetilde{f}\right|_{B}[x-t, y-s, 0)\right] u(t, s) d t d s, f \in I\right\} \tag{21}
\end{equation*}
$$

It shows that

$$
\begin{equation*}
\left.\left.u *_{c} \widetilde{f}\right|_{B}(x, y, 0) \in \widetilde{I}\right|_{B}(x, y, 0) \tag{22}
\end{equation*}
$$

for any $\tilde{f} \in \widetilde{I}$. According to equation(14), we get

$$
\begin{align*}
& \gamma\left(\left.u *_{c} \widetilde{f}\right|_{B}\right)(x, 0, y) \\
= & u * \widetilde{f}(x, 0, y) \in \gamma\left(\left.\widetilde{I}\right|_{B}(x, 0, y)\right. \\
= & \left.\widetilde{I}\right|_{G}(x, 0, y)=I \tag{23}
\end{align*}
$$

(ii) implies (i) If I is an ideal in $L^{1}(G)$, then we get

$$
\begin{align*}
& \left.u * \widetilde{I}\right|_{G}(x, 0, y) \\
= & \left.u * I(x, y) \subseteq \widetilde{I}\right|_{G}(x, 0, y)=I(x, y) \tag{24}
\end{align*}
$$

where

$$
\begin{equation*}
\left.u * \widetilde{I}\right|_{G}(x, 0, y)=\left\{\left.\int_{B} \widetilde{f}\right|_{G}[\rho(-s)(x-t), 0, y-s] u(t, s) d t d s, f \in I\right\} \tag{25}
\end{equation*}
$$

Apply now equation (19), we obtain

$$
\begin{align*}
& \gamma^{-1}\left(\left.u * \widetilde{f}\right|_{G}\right)(x, 0, y) \\
= & \left.u *_{c} \widetilde{f}\right|_{B}(x, y, 0) \in \gamma^{-1}\left(\left.u * \widetilde{I}\right|_{G}\right)(x, y, 0) \\
= & \left.u * \widetilde{I}\right|_{B}(x, y, 0) \tag{26}
\end{align*}
$$

Corollary 2.1. Let I be a subspace of the space $L^{1}(G)$ and \widetilde{I} its image by the mapping \sim such that $J=\left.\widetilde{I}\right|_{B}$ is an ideal in $L^{1}(B)$, then the following conditions are verified.
(i) J is a closed ideal in the algebra $L^{1}(B)$ if and only if I is a left closed ideal in the algebra $L^{1}(G)$.
(ii) J is a prime ideal in the algebra $L^{1}(B)$ if and only if I is a left prime ideal in the algebra $L^{1}(G)$
(iii) J is a maximal ideal in the algebra $L^{1}(B)$ if and only if I is a left maximal ideal in the algebra $L^{1}(G)$
(iv) J is a dense ideal in the algebra $L^{1}(B)$ if and only if I is a left dense ideal in the algebra $L^{1}(G)$.

The proof of this corollary results immediately from theorem 2.1.

3 Fourier Transform and Existence theorems

In this paragraph, we will prove the solvability of any element of \mathcal{U}. Let $G=\mathbb{R}^{n} \rtimes \mathbb{R}^{m}$ be the Lie group which is the semi-direct product of the two real vector groups \mathbb{R}^{n} and \mathbb{R}^{m}. Therefor we define the Fourier transform on G in view of its vector group, in order to obtain the Plancherel formula. Besides we prove the existence theorem for the algebra of all invariant differential operators. As in [3], we will define the Fourier transform on G. Therefor let $\mathcal{S}(G)$ be the Schwartz space of G which can be considered as the Schwartz space of $\mathcal{S}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$, and let $\mathcal{S}^{\prime}(G)$ be the space of all tempered distributions on G. The action ρ of the group \mathbb{R}^{m} on \mathbb{R}^{n} defines a natural action ρ of the dual group $\left(\mathbb{R}^{m}\right)^{*}$ of the group $\mathbb{R}^{m}\left(\left(\mathbb{R}^{m}\right)^{*} \simeq \mathbb{R}^{m}\right)$ on $\left(\mathbb{R}^{n}\right)^{*}$, which is given by :

$$
\begin{equation*}
\langle\rho(t)(\xi), x\rangle=\langle\xi, \rho(t)(x)\rangle \tag{27}
\end{equation*}
$$

for any $\xi=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right) \in \mathbb{R}^{n}, t=\left(t_{1}, t_{2}, \ldots, t_{m}\right) \in \mathbb{R}^{m}$ and $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in$ \mathbb{R}^{n}

Definition 3.1. If $f \in \mathcal{S}(G)$, one can define its Fourier transform $\mathcal{F} f$ by :

$$
\begin{equation*}
\mathcal{F} f(\xi, \lambda)=\int_{G} f(x, t) e^{-i(\langle\xi, x\rangle+\langle\lambda, t\rangle)} d x d t \tag{28}
\end{equation*}
$$

for any $\xi=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right) \in \mathbb{R}^{n}, x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}, \lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right) \in$ \mathbb{R}^{m} and $t=\left(t_{1}, t_{2}, \ldots, t_{m}\right) \in \mathbb{R}^{m}$, where $\langle\xi, x\rangle=\xi_{1} x_{1}+\xi_{2} x_{2}+\ldots+\xi_{n} x_{n}$ and $\langle\lambda, t\rangle=\lambda_{1} t_{1}+\lambda_{2} t_{2}+\ldots+\lambda_{m} t_{m}$. It is clear that $\mathcal{F} f \in \mathcal{S}\left(\mathbb{R}^{n+m}\right)$ and the mapping $f \rightarrow \mathcal{F} f$ is isomorphism of the topological vector space $\mathcal{S}(G)$ onto $\mathcal{S}\left(\mathbb{R}^{n+m}\right)$.

Definition 3.2. If $f \in \mathcal{S}(G)$, we define the Fourier transform of its invariant \tilde{f} as follows

$$
\begin{equation*}
\mathcal{F}(\tilde{f})(\xi, \lambda, 0)=\int_{G \times \mathbb{R}^{m}} \widetilde{f}(x, t, s) e^{-i(\langle\xi, x\rangle+\langle\lambda, t\rangle)} e^{-i\langle\mu, s\rangle} d x d t d s d \mu \tag{29}
\end{equation*}
$$

where $(\mu, s) \in \mathbb{R}^{n+m}$ and $\langle\mu, s\rangle=\mu_{1} s_{1}+\mu_{2} s_{2}+\ldots+\mu_{m} s_{m}$
Corollary 3.1. For every $u \in \mathcal{S}(G)$, and $f \in \mathcal{S}(G)$, we have

$$
\begin{align*}
& \int_{\mathbb{R}^{m}} \mathcal{F}(\stackrel{\vee}{u} * \widetilde{f})(\xi, \lambda, \mu) d \mu \\
= & \int_{\mathbb{R}^{m}} \mathcal{F}(\tilde{f})(\xi, \lambda, \mu) \mathcal{F}(\stackrel{\vee}{u})(\xi, \lambda) d \mu=\mathcal{F}(\widetilde{f})(\xi, \lambda, 0) \overline{\mathcal{F}(u)(\xi, \lambda)} \tag{30}
\end{align*}
$$

for any $\xi=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right) \in \mathbb{R}^{n}, \lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right) \in \mathbb{R}^{m}$ and $\mu=$ $\left(\mu_{1}, \mu_{2}, \ldots, \mu_{m}\right) \in \mathbb{R}^{m}$, where $\stackrel{\vee}{u}(x, t)=\overline{u(x, t)^{-1}}$

Proof: By Lemma 2.1, we have

$$
\begin{equation*}
\stackrel{\vee}{u} * \widetilde{f}(x, t, r)=\stackrel{\vee}{u} *_{c} \widetilde{f}(x, t, r) \tag{31}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\mathbb{R}^{m}} \mathcal{F}(\stackrel{\vee}{u} * \widetilde{f})(\xi, \lambda, \mu) d \mu=\mathcal{F}\left(\stackrel{\vee}{u} *_{c} \widetilde{f}\right)(\xi, \lambda, 0)=\mathcal{F}(\widetilde{f})(\xi, \lambda, 0) \overline{\mathcal{F}(u)(\xi, \lambda)} \tag{32}
\end{equation*}
$$

Theorem 3.1.(Plancherel's formula). For any $f \in L^{1}(G) \cap L^{2}(G)$, we get

$$
\begin{equation*}
\int_{G}|f(x, t)|^{2} d x d t=\int_{\mathbb{R}^{n+m}}|\mathcal{F} f(\xi, \lambda)|^{2} d \xi d \lambda \tag{33}
\end{equation*}
$$

Proof: First, let \widetilde{v} be the function defined by

$$
\begin{equation*}
\stackrel{\widetilde{v}}{f(x, t, r)}=\overline{f\left((t x, r+t)^{-1}\right)} \tag{34}
\end{equation*}
$$

then we have

$$
\begin{align*}
& f * \widetilde{\vee}(0,0,0)=\int_{G} \widetilde{\widetilde{v}} f\left[(x, t)^{-1}(0,0,0)\right] f(x, t) d x d t \\
& =\int_{G}^{\widetilde{v}} f[\rho(-t)((-x)+(0)), 0,0-t] f(x, t) d x d t \\
& =\int_{G}^{\widetilde{v}} f[\rho(-t)(-x), 0,-t] f(x, t) d x d t=\int_{G}^{\vee} f[\rho(-t)(-x),-t] f(x, t) d x d t \\
& =\int_{G} \overline{f(x, t)} f(x, t) d x d t=\int_{G}|f(x, t)|^{2} d x d t \tag{35}
\end{align*}
$$

Second by (31), we obtain

$$
\begin{align*}
& f *{ }^{\sim}(0,0,0) \\
= & \int_{\mathbb{R}^{n+2 m}} \mathcal{F}(f * \stackrel{\widetilde{v}}{ })(\xi, \lambda, \mu) d \xi d \lambda d \mu=\int_{\mathbb{R}^{n+2 m}} \mathcal{F}\left(f *_{c} \stackrel{\widetilde{v}}{f}\right)(\xi, \lambda, \mu) d \xi d \lambda d \mu \\
= & \int_{\mathbb{R}^{n+m}} \mathcal{F}(f)(\xi, \lambda, 0) \mathcal{F}(f)(\xi, \lambda) d \xi d \lambda=\int_{\mathbb{R}^{n+m}} \overbrace{(\mathcal{F} f)}^{V})(\xi, \lambda, 0) \mathcal{F}(f)(\xi, \lambda) d \xi d \lambda \\
= & \int_{\mathbb{R}^{n+m}} \overbrace{(\mathcal{F} f)}^{V}(\lambda \xi, \lambda) \mathcal{F}(f)(\xi, \lambda) d \xi d \lambda=\int_{\mathbb{R}^{n+m}} \overline{\mathcal{F} f\left[(\lambda \xi, \lambda)^{-1}\right]} \mathcal{F}(f)(\xi, \lambda) d \xi d \lambda \\
= & \int_{\mathbb{R}^{n+m}} \overline{\mathcal{F}(f)}(\xi, \lambda) \mathcal{F}(f)(\xi, \lambda) d \xi d \lambda \\
= & \int_{\mathbb{R}^{n+m}}|\mathcal{F}(f)(\xi, \lambda)|^{2} d \xi d \lambda=\int_{G}|f(x, t)|^{2} d x d t \tag{36}
\end{align*}
$$

Which is the Plancherel's formula on G. So the Fourier transform can be extended to an isometry of $L^{2}(G)$ onto $L^{2}\left(\mathbb{R}^{n+m}\right)$.

Corollary 3.2. In equation (36), if we replace the first f by g, we obtain the Parseval formula on G

$$
\begin{equation*}
\int_{G} \overline{f(x, t)} g(x, t) d x d t=\int_{\mathbb{R}^{n+m}} \overline{\mathcal{F}(f)(\xi, \lambda} \mathcal{F} g(\xi, \lambda) d \xi d \lambda \tag{37}
\end{equation*}
$$

In the following, we introduce some existence theorems, the first one is:

Theorem 3.2. Every invariant differential operator on G which is not identically 0 has a tempered fundamental solution.

Proof: For each complex number s with positive real part, we can define a distribution T^{s} on $G \times \mathbb{R}^{m}$ by:

$$
\left\langle T^{s}, f\right\rangle=\int_{G} \int_{\mathbb{R}^{m}}\left[|\mathcal{F}(u)(\xi, \lambda)|^{2}\right]^{s} \mathcal{F}(f)(\xi, \lambda) d \xi d \lambda
$$

for each $f \in \mathcal{S}\left(G \times \mathbb{R}^{m}\right)$. By Atiyah-Bernstein theorems [1], the function $s \mapsto T^{s}$ has a meromorphic continuation in the whole complex plan, which is analytic at $s=0$ and its value at this point is the Dirac measure on the group $L=G \times \mathbb{R}^{m}$. Now we can define another distribution, $\widehat{T^{s}}$, as follows.

$$
\left\langle\widehat{T^{s}}, f\right\rangle=\left\langle T^{s}, \widehat{f}\right\rangle=\int_{G} \int_{\mathbb{R}^{m}}\left[|\mathcal{F}(u)(\xi, \lambda)|^{2}\right]^{s} \mathcal{F}(\widehat{f})(\xi, \lambda, v) d \xi d \lambda d v
$$

for any $f \in \mathcal{S}\left(G \times \mathbb{R}^{n}\right)$ and $s \in \mathbb{C}$, with $\operatorname{Re}(s) \geq 0$.
Note that the distribution $\widehat{T^{s}}$ is invariant in sense (7) and we have

$$
\begin{aligned}
\left\langle u * \widehat{v} *_{c} T^{s}, f\right\rangle & =\left\langle u * \widetilde{u} *_{c} T^{s}, \widehat{f}\right\rangle=\left\langle T^{s}, u *_{c} \stackrel{\vee}{u} * \widehat{f}\right\rangle \\
& =\int_{G} \int_{\mathbb{R}^{n}}\left[|\mathcal{F}(\stackrel{\vee}{u})(\xi, \lambda)|^{2}\right]^{s} \mathcal{F}(\widetilde{u} * c \stackrel{\vee}{v} * \widehat{f})(\xi, \lambda, v) d \xi d \lambda d v
\end{aligned}
$$

here

$$
u *_{c} f=\int_{G} f((z-a, y-b, x-c) u((a, b, c) d a d b d c
$$

is the commutative convolution product on G. By proposition 2.1, we get:

$$
\left\langle u * \widehat{\stackrel{v}{u} *_{c}} T^{s}, f\right\rangle=\int_{G \mathbb{R}^{n}}\left[|\mathcal{F}(u)(\xi, \lambda)|^{2}\right]^{s+1} \mathcal{F}(\widehat{f})(\xi, \lambda, v) d \xi d \lambda d v
$$

Hence

$$
u * \widehat{v^{*} *_{c}} T^{s}=\widehat{T^{s+1}}
$$

In view of invariance (7), the restriction of the distributions $u * \widehat{v_{*_{c}}} T^{s}=$ $\widehat{T^{s+1}}$ on the sub-group $\mathbb{R}^{n} \times\{0\} \underset{\rho}{\propto} \mathbb{R}^{m} \simeq G$ are nothing but the distributions

$$
u * \stackrel{\vee}{u} *_{c} T^{s}=T^{s+1} .
$$

The distribution T^{s} can be expanded a round $s=-1$ in the form

$$
\begin{equation*}
T^{s}=\sum_{j=-(n+2 m)}^{\infty} \alpha_{j}(s+1)^{j} \tag{38}
\end{equation*}
$$

where each α_{j} is a distribution on G. But $u * \widetilde{u} * c T^{s}=T^{s+1}$ can not have a pole at $s=-1\left(\right.$ since $\left.T^{0}=\delta_{G}\right)$ and so we must have:

$$
\begin{align*}
& u * \stackrel{\vee}{u} *_{c} \alpha_{j}=0 \quad \text { for } \quad j<0 \\
& u * \stackrel{\vee}{u} *_{c} \alpha_{0}=\delta_{G} \tag{39}
\end{align*}
$$

Hence the theorem.

The second is

If we consider the group G as a subgroup of L, then $\widetilde{f}(x, s, t) \in \mathcal{S}(G)$ for s is fixed, and if we consider B as a subgroup of L, then $\widetilde{f}(x, s, t) \in \mathcal{S}(B)$ for
t fixed. This being so; denote by $\mathcal{S}_{E}(L)$ the space of all functions $\phi(x, s, t) \in$ $C^{\infty}(L)$ such that $\phi(x, s, t) \in \mathcal{S}(G)$ for s is fixed, and $\phi(x, s, t) \in \mathcal{S}(B)$ for t is fixed. We equip $\mathcal{S}_{E}(L)$ with the natural topology defined by the seminomas:.

$$
\begin{array}{ll}
\phi \rightarrow \sup _{(x, t) \in G}|Q(x, t) P(D) \phi(x, s, t)| & \text { s fixed. } \\
\phi \rightarrow \sup _{(x, s) \in B}|R(x, s) H(D) \phi(x, s, t)| & t \text { fixed. } \tag{41}
\end{array}
$$

where P, Q, R and H run over the family of all complex polynomial in $n+m$ variables. Let $\mathcal{S}_{E}^{I}(L)$ be the subspace of all functions $F \in \mathcal{S}_{E}(L)$, which are invariant in sense (7), then we have the following result.
lemma 3.1. Let $u \in \mathcal{U}$ and Q_{u} be the invariant differential operator on the group B, which is associated to u, then we have:
(i) The mapping $f \mapsto \widetilde{f}$ is a topological isomorphism of $\mathcal{S}(G)$ onto $\mathcal{S}_{E}^{I}(L)$
(ii) The mapping $F \mapsto Q_{u} F$ is a topological isomorphism of $\mathcal{S}_{E}^{I}(L)$ onto its image, where Q_{u} acts on the variables $(x, s) \in B$.

Proof: (i) In fact \sim is continuous and the restriction mapping $F \mapsto R F$ on G is continuous from $\mathcal{S}_{E}^{I}(L)$ into $\mathcal{S}(G)$ that satisfies $R \circ \sim=I d_{\mathcal{S}(G)}$ and $\sim \circ R=I d_{\mathcal{S}_{E}^{I}(L)}$, where $I d_{\mathcal{S}(G)}$ (resp. $\left.I d_{\mathcal{S}_{E}^{I}(L)}\right)$ is the identity mapping of $\mathcal{S}(G)\left(\right.$ resp. $\left.\mathcal{S}_{E}^{I}(L)\right)$ and G is considered as a subgroup of L. To prove(ii) we refer to [14, P.313-315] and his famous result that is:
"Any invariant differential operator on B, is a topological isomorphism of $S(B)$ onto its image" From this result, we obtain:

$$
\begin{equation*}
Q_{u}: \mathcal{S}_{E}(L) \rightarrow \mathcal{S}_{E}(L) \tag{42}
\end{equation*}
$$

is a topological isomorphism and its restriction on $\mathcal{S}_{E}^{I}(L)$ is a topological isomorphism of $\mathcal{S}_{E}^{I}(L)$ onto its image. Hence the lemma is proved.

In the following we will prove that every invariant differential operator on $G=\mathbb{R}^{n} \times\{0\} \times{ }_{\rho} \mathbb{R}^{m}$ has a tempered fundamental solution. As in the introduction, we will consider the two invariant differential operators P_{u} and Q_{u}, the first on the group $G=\mathbb{R}^{n} \times\{0\} \times \rho \mathbb{R}^{m}$, and the second on the commutative group $B=\mathbb{R}^{n} \times \mathbb{R}^{m} \times\{0\}$. Our main result is:

Theorem 3.3. Every nonzero invariant differential operator P_{u} on G associated to \mathcal{U} is a topological isomorphism of $\mathcal{S}_{E}^{I}(L)$ onto its image.

Proof: By equation (31) we have for every $u \in \mathcal{U}$ and $F \in \mathcal{S}_{E}^{I}(L)$

$$
\begin{align*}
& P_{u} F(x, s, t)=u * F(x, s, t) \\
= & u *_{c}(x, s, t)=Q_{u} F(x, s, t) \tag{43}
\end{align*}
$$

This shows that:

$$
\begin{equation*}
P_{u} F(x, s, t)=Q_{u} F(x, s, t) \tag{44}
\end{equation*}
$$

for all $(x, s, t) \in L$, where \star is the convolution product on $G=\mathbb{R}^{n} \times\{0\} \times$ \mathbb{R}^{m} and \star_{c} is the convolution product on the group $B=\mathbb{R}^{n} \times \mathbb{R}^{m} \times\{0\}$. By lemma 3.1 the mapping $F \mapsto Q_{u} F$ is a topological isomorphism of $\mathcal{S}_{E}^{I}(L)$ onto its image, then the mapping $F \mapsto P_{u} F$ is a topological isomorphism of $\mathcal{S}_{E}^{I}(L)$ onto its image. Since

$$
\begin{equation*}
R\left(P_{u} F\right)(x, s, t)=P_{u}(R F)(x, s, t) \tag{45}
\end{equation*}
$$

so the following diagram is commutative:

$\mathcal{S}_{E}^{I}(L)$	P_{u}	$P_{u} \mathcal{S}_{E}^{I}(L)$
$\sim \uparrow \downarrow R$		
$\mathcal{S}(G)$	P_{u}	$\downarrow R$
	\rightarrow	$P_{u} \mathcal{S}(G)$

Hence the mapping $F \mapsto P_{u} F$ is a topological isomorphism of $\mathcal{S}(G)$ onto its image.

Corollary 3.3. Every nonzero invariant differential operator on G has a tempered fundamental solution.

Proof : The transpose ${ }^{t} P_{u}$ of P_{u} is a continuous mapping of $\mathcal{S}^{\prime}(G)$ onto $\mathcal{S}^{\prime}(G)$. This means that for every tempered distribution T on G there is a tempered distribution E on G such that

$$
\begin{equation*}
P_{u} E=T \tag{46}
\end{equation*}
$$

Indeed the Dirac measure δ belongs to $\mathcal{S}^{\prime}(G)$.

References

[1] M. F. Atiyah, (1970), Resolution of Singularities and Division of Distributions, Comm.on Pure and App. Math, Vol, 23, 145-150.
[2] K. El- Hussein, (2009), Eigendistributions for the Invariant Differential operators on the Affine Group. Int. Journal of Math. Analysis, Vol. 3, no. 9, 419-429.
[3] K. El- Hussein, A Fundamental Solution of an Invariant Differential Operator on the Heisenberg Group, Mathematical Forum, 4, (2009), no. 12, 601-612.
[4] K. El- Hussein, (2010), Note on the Solvability of the Lewy Operator, International Mathematical Forum, 5, no. 8, 389-393..
[5] K. El- Hussein, (2011), On the left ideals of group algebra on the affine group, Int. Math Forum, Int, Math. Forum 6, No. 1-4, 193-202.
[6] K. El- Hussein, (2014), Abstract Harmonic Analysis on Spacetime, arXiv:1404.1600v1 [math-ph] 6 Apr.
[7] Harish-Chandra, (1952), Plancherel formula for 2×2 real unimodular group, Proc. nat. Acad. Sci. U.S.A., vol. 38, pp. 337-342.
[8] Harish-Chandra, (1952), The Plancherel formula for complex semisimple Lie group, Trans. Amer. Mth. Soc., vol. 76, pp. 485-528.
[9] S. Helgason, (2005), The Abel, Fourier and Radon Transforms on Symmetric Spaces. Indagationes Mathematicae. 16, 531-551.
[10] L. Hormander, 1983, The analysis of Linear Partial Differential Operator I, Springer-Verlag, 1983.
[11] Kirillov, A. A., ed, (1994), Representation Theory and Noncommutative Harmonic Analysis I, Springer- Verlag, Berlin.
[12] Okamoto, K, (1965), On The Plancherel Formulas For Some Types of Simple Lie Groups, Osaka J. Math. 2, 247-282.
[13] W.Rudin., (1962), Fourier Analysis on Groups, Interscience Publishers, New York, NY..
[14] F. Treves, Linear Partial Differential Equations with Constant Coefficients, Gordon and Breach, (1966)..
[15] V. S. Varadarajan, Lie Groups, Lie Algebras and Their Representations, Prentice Hall. Engle-wood Cliffs, New Jersey, (1974).
[16] N.R. Wallach, Harmonic Analysis on Homogeneous Spaces, Marcel Dekker, INC, New York, (1973)..

