On the Negative Pell Equation

$$
y^{2}=54 x^{2}-5
$$

V. Pandichelvi ${ }^{1}$, P. Sivakamasundari ${ }^{2}$, M.A. Gopalan ${ }^{3}$
${ }^{1}$ Assistant Professor, Department of Mathematics, UDC, Trichy. ${ }^{2}$ Guest Lecturer, Department of Mathematics, BDUCC,Lalgudi, Trichy.
${ }^{3}$ Professor, Department of Mathematics, SIGC, Trichy

Abstract

The negative pell equation represented by the binary quadratic equation $y^{2}=54 x^{2}-5$ is analyzed for its non-zero distinct integer solutions. A few interesting relations among the solutions are presented employing the solutions of the equation under consideration. The integer solutions for a few choices of hyperbola and parabola are obtained.

Keywords-Binary Quadratic, Hyperbola, Parabola, Integral Solutions, Pell Equation
2010 Mathematics subject classification: 11D09

1.Introduction

Diophantine equation of the form $y^{2}=D x^{2}+1$ where D is a given positive square free integer is known as pell equation and is one of the oldest Diophantine equation that has interested mathematicians all over the world, since antiquity, J.L. Lagrange proved that the positive pell equation $y^{2}=D x^{2}-1$ has infinitely many distinct integer solutions where as the negative pell equation $y^{2}=D x^{2}-1$ does not always have a solution. In [1], an elementary proof of a ceriterium for the solubility of the pell equation $x^{2}-D y^{2}=-1$ where D is any positive non-square integer has been presented. For examples the equations $\quad y^{2}=3 x^{2}-1, y^{2}=7 x^{2}-4 \quad$ have no integer solutions, where as $y^{2}=65 x^{2}-1, y^{2}=202 x^{2}-1$ have integer solutions. In this context, one may refer [2-11]. More specifically one may refer "The on-line encyclopedia of integer sequences" (A031396, A130226, A031398) for values of D for which the negative pell equation $y^{2}=D x^{2}-1$ is solvable or not.

In this communication, the negative pell equation given by $y^{2}=54 x^{2}-5$ is considered and infinitively many integer solutions are obtained. A few interesting relations among the solutions are presented.

2.Methods For Analysis:

The negative pell equation representing hyperbola under consideration is

$$
\begin{equation*}
y^{2}=54 x^{2}-5 \tag{1}
\end{equation*}
$$

whose smallest positive integer solution is $x_{0}=1, y_{0}=7$.To obtain the other solutions of (1), consider the pell equation

$$
y^{2}=54 x^{2}+1
$$

whose general solution is given by

$$
\tilde{\mathrm{y}}_{\mathrm{n}}=\frac{1}{2} \mathrm{f}_{\mathrm{n}} ; \tilde{\mathrm{x}}_{\mathrm{n}}=\frac{1}{2 \sqrt{54}} \mathrm{~g}_{\mathrm{n}}
$$

Where

$$
f_{n}=(485+66 \sqrt{54})^{n+1}+(485-66 \sqrt{54})^{n+1}
$$

$$
g_{n}=(485+66 \sqrt{54})^{n+1}-(485-66 \sqrt{54})^{n+1}, n=0,1,2,3, \ldots \ldots \ldots
$$

Applying Brahmagupta lemma between $\left(x_{0}, y_{0}\right)$ and $\left(\tilde{x}_{n}, \tilde{y}_{n}\right)$ the other integer solutions of (1) are given by

$$
\begin{aligned}
& 108 x_{n+1}=54 f_{n}+7 \sqrt{54} g_{n} \\
& 2 y_{n+1}=7 f_{n}+\sqrt{54} g_{n}
\end{aligned}
$$

The recurrence relations satisfied by x and y are given by

$$
\begin{aligned}
& x_{n+3}-970 x_{n+2}+x_{n+1}=0, x_{0}=1, x_{1}=947 \\
& y_{n+3}-970 y_{n+2}+y_{n+1}=0, y_{0}=7, y_{1}=6959
\end{aligned}
$$

Some numerical examples of x and y satisfying (1) are given in the following table1.
Table 1: Numerical Examples

n	x_{n}	y_{n}
0	1	7
1	947	6959
2	918589	6750223
3	891030383	6547709351

A few interesting properties between the solutions and special numbers are given below:

1. $\frac{6}{5}\left[108 x_{2 n+2}-14 y_{2 n+2}+10\right]$ is a nasty number
2. $\frac{1}{5}\left(108 \mathrm{x}_{3 \mathrm{n}+3}-14 \mathrm{y}_{3 \mathrm{n}+3}+3\left(108 \mathrm{x}_{\mathrm{n}+1}-14 \mathrm{y}_{\mathrm{n}+1}\right)\right)$ is a cubic integer
3. $\frac{1}{5}\left(108 \mathrm{x}_{2 \mathrm{n}+2}-14 \mathrm{y}_{2 \mathrm{n}+2}+10\right)$ is a perfectsquare
4. $44604 x_{n+1}=6372 y_{n+1}$
5. $x_{n+3}=485 x_{n+1}+66 y_{n+1}$
6. $\mathrm{x}_{\mathrm{n}+3}=470449 \mathrm{x}_{n+1}+64020 \mathrm{y}_{\mathrm{n}+1}$
7. $y_{n+2}=3564 x_{n+1}+485 y_{n+1}$
8. $Y_{n+3}=3457080 x_{n+1}+470449 y_{n+1}$
9. $108 \mathrm{x}_{\mathrm{n}+2}=52380 \mathrm{x}_{\mathrm{n}+1}+7128 \mathrm{y}_{\mathrm{n}+1}$
10. $108 \mathrm{x}_{\mathrm{n}+3}=50808492 \mathrm{x}_{\mathrm{n}+1}+6914160 \mathrm{y}_{\mathrm{n}+1}$

International Journal of Mathematics Trends and Technology- Volume21 Number1 - May 2015
 REMARKABLE OBSERVATIONS:

1. Let p, q be two non-zero distinct positive integers such that $p=x_{n}+2 y_{n}, q=x_{n}$ note that $p>q>0$.Treat p, q as the generators of the Pythagorean triangle $\mathrm{T}(\alpha, \beta, \gamma)$ where $\alpha=2 \mathrm{pq}, \quad \beta=p^{2}-q^{2}$ and $\gamma=p^{2}+q^{2}$.Let A,P represent the area and perimeter of
$\mathrm{T}(\alpha, \beta, \gamma)$. Then the following interesting relations are observed:
2. $\alpha-27 \beta+26 \gamma=5$
3. $\frac{2 A}{P}=x_{n+1} y_{n+1}$
4. By considering linear combination among the solutions of (1), one may obtain solutions of different hyperbolas. A few examples are given in table 2 below:

Table 2:Hyperbolas

S. No	X,Y	Hyperbola
1	$108 x_{n+1}-14 y_{n+1}, 108 y_{n+1}-756 x_{n+1}$	$54 X^{2}-Y^{2}=5400$
2	$6959 x_{n+1}-7 x_{n+2}, 108 y_{n+1}-756 x_{n+1}$	$54 \mathrm{X}^{2}-1089 \mathrm{Y}^{2}=5880600$
3	$6750223 \mathrm{x}_{\mathrm{n}+1}-7 x_{\mathrm{n}+3}, 108 \mathrm{y}_{\mathrm{n}+1}-756 \mathrm{x}_{\mathrm{n}+1}$	$54 \mathrm{X}^{2}-1024640100 \mathrm{Y}^{2}=5.53305654 \times 10^{12}$
4	$108 \mathrm{x}_{\mathrm{n}+1}-14 \mathrm{y}_{\mathrm{n}+1}, 54 \mathrm{x}_{\mathrm{n}+2}-51138 \mathrm{x}_{\mathrm{n}+1}$	$58806 X^{2}-Y^{2}=5880600$
5	$108 \mathrm{x}_{\mathrm{n}+1}-14 \mathrm{y}_{\mathrm{n}+1}, 54 \mathrm{x}_{\mathrm{n}+3}-49603806 \mathrm{x}_{\mathrm{n}+1}$	$\begin{aligned} & 5.53305654 \times 10^{10} \mathrm{X}^{2}-\mathrm{Y}^{2} \\ & =5.53305654 \times 10^{12} \end{aligned}$
6	$6959 x_{n+1}-7 x_{n+2}, 54 x_{n+2}-51138 x_{n+1}$	$54 X^{2}-Y^{2}=5880600$
7	$6750223 x_{n+1}-7 x_{n+3}, 54 x_{n+3}-49603806 x_{n+1}$	$54 X^{2}-Y^{2}=5.53305654 \times 10^{12}$
8	$2 y_{n+2}-1894 y_{n+1}, 108 y_{n+1}-756 x_{n+1}$	$54 X^{2}-4356 Y^{2}=23522400$
9	$y_{n+3}-918589 y_{n+1}, 108 y_{n+1}-756 x_{n+1}$	$\begin{aligned} & 25 \mathrm{X}^{2}-474370416 \mathrm{Y}^{2} \\ & =2.56160025 \times 10^{12} \end{aligned}$
10	$108 x_{n+1}-14 y_{n+1}, 13918 y_{n+1}-14 y_{n+2}$	$235224 X^{2}-Y^{2}=23522400$
11	$108 x_{n+1}-14 y_{n+1}, 13500446 y^{n+1}$-14y ${ }_{n+3}$	$\begin{aligned} & 2.213222616 \times 10^{11} X^{2}-Y^{2} \\ & =2.213222616 \times 10^{13} \end{aligned}$

International Journal of Mathematics Trends and Technology- Volume 21 Number1 - May 2015

12	$1894 \mathrm{y}_{\mathrm{n}+3}-1837178 \mathrm{y}_{\mathrm{n}+2}$, $13500446 \mathrm{y}_{\mathrm{n}+2}-13918 \mathrm{y}_{\mathrm{n}+3}$	$54 \mathrm{X}^{2}-\mathrm{Y}^{2}=23522400$
13	$\mathrm{y}_{\mathrm{n}+3}-918589 \mathrm{y}_{\mathrm{n}+1}, 13500446 \mathrm{y}_{\mathrm{n}+1}-14 \mathrm{y}_{\mathrm{n}+3}$	$216 \mathrm{X}^{2}-\mathrm{Y}^{2}=2.213222616 \times 10^{13}$

3. By considering linear combination among the solutions of (1), one may obtain solutions of different parabolas. A few examples are given in table 3 below:

Table 3:Parabolas

S.No	X,Y	Parabola
1	$108 \mathrm{x}_{2 \mathrm{n}+2}-14 \mathrm{y}_{2 \mathrm{n}+2}+10,108 \mathrm{y}_{\mathrm{n}+1}-756 \mathrm{x}_{\mathrm{n}+1}$	$Y^{2}=270 X-5400$
2	$108 x_{2 n+2}-14 y_{2 n+2}+10,54 x_{n+2}-51138 x_{n+1}$	$\mathrm{Y}^{2}=294030 \mathrm{X}-5880600$
3	$\begin{aligned} & 108 x_{2 n+2}-14 y_{2 n+2}+10,54 x_{n+3} \\ & -49603806 x_{n+1} \end{aligned}$	$\mathrm{Y}^{2}=2.76652827 \times 10^{11} X-5.53305654 \times 10^{12}$
4	$108 x_{2 n+2}-14 y_{2 n+2}+10,13918 y_{n+1}-14 y_{n+2}$	$Y^{2}=1176120 X-23522400$
5	$\begin{aligned} & 108 x_{2 n+2}-14 y_{2 n+2}+10, \\ & 13500446 y_{n+1}-14 y_{n+3} \end{aligned}$	$Y^{2}=1.106611308 \times 10^{12} X-2.213222616 \times 10^{13}$

3.CONCLUSIONS

In this paper, We have presented infinitely many integer solutions for the hyperbola represented by the negative Pell equation $y^{2}=54 x^{2}-5$. As the binary quadratic Diophantine equation are rich in variety, one may search for the other choices of negative Pell equations and determine their integer solutions along with suitable properties.

References

[1]. Ahmet Tekcan, The pell equation $x^{2}-\left(k^{2}-k\right) y^{2}=2^{t}$ ", World Academy of science, Engineering and Technology, 2008,19,(697701).
[2]. Ahmet Tekcan, Betw Gezer and Osman Bizim, On the integer solutions of the pell Equation $\mathrm{X}^{2}-\mathrm{dy}^{2}=2^{\mathrm{t}}$ ", World Academy of science, Engineering and Technology 2007,1, (522-526).
[3]. Dickson.L.E., History of Theory of numbers, vol.2:Diophantine Analysis, New York, Dover, 2005.
[4]. Gopalan M.A.,G.sumathi,S.vidhyalakshmi, Observations on the hyperbola $x^{2}=19 y^{2}-3^{t}$,, Scholars Journal of the Engineering and Technology,(2014), Vol:2(2A):152-155.
[5]. Gopalan M.A., S.vidhyalakshmi and A.Kavitha, On the integral solution of the Binaryquadratic equation $x^{2}=15 y^{2}-11^{2}$ ", Scholars Journal of the Engineering and Technology, 2014, Vol 2(2A),156-158.
[6]. Merve Guney, Solutions of the pell equations $x^{2}-\left(a^{2} b^{2}+2 b\right) y^{2}=2^{t}$,

$$
\mathrm{N} \in(\pm 1, \pm 4) ", \text { Mathematica Aeterna , 2012, Vol 2, no. } 7 \text { (629-638) }
$$

[7]. Mollin.R.A and Anitha srinivasan, A Note on the negative pell equation ", International Journal of Algebra, 2010,Vol 4,no .19,919-922.
[8]. Sangeetha.V, M.A.Gopalan and Manju Somanath, On the integral solutions of the pell equation $x^{2}=13 y^{2}-3^{t}$ ", International journal of appield Mathematical research, 2014,Vol .3, issue 1 (58-61).
[9]. M.A.Gopalan,S.Vidhyalakshmi,N.Thiruniraiselvi, A study on the Hyperbola $y^{2}=8 x^{2}-31$ ",International Journal of Latest Research in Science and Technology,2013,2(1),454-456
[10]. M.A.Gopalan,S.Vidhyalakshmi,T.R.UshaRani,S.Mallika, Observations on $y^{2}=12 x^{2}-3$ ",Bessel Journal of Mathematics,2012,2(3),153158.
[11]. S.Vidhyalakshmi,T.R.UshaRani,S.Mallika,V,Kumari, Observations on the negative pellian $y^{2}=86 x^{2}-5$ ", International Journal of Applied Research,2015,1(3),86-87.

