Non-Differentiable Fractional Programming Under Generalized d, ρ , η , θ - Type 1 Univex Function

* Gayatri Devi, Rashmita Mohanty

Prof. in : CSE, ABIT College, CDA-1, Cuttack

Abstract: Non-differentiable fractional duality is given and its weak duality and strong duality results are established under generalized d, ρ , η , θ type-1 univex function.

Key Words: Non differentiable fractional duality, generalized university, d, ρ, η, θ type – 1 univex function.

INTRODUCTION:

Several authors have shown their interest in developing optimality conditions and duality result for minimax programming problems. Bector at al [1] and Xu [2] gave a mixed type duality for fractional programming, established some sufficient condition and obtained various duality results between the mixed dual and primal problem. Zhou and Wang [3] introduced a class of nonsmooth multiobjective fractional mixed mixed dual programming. Mishra and Rautela [4] formulated a general dual and proved the duality results under generalized semi locally type – 1 univex and related function. To relax convexity assumption imposed on the function in theorems on optimality and duality , various generalized convexity concept have been proposed. Hanson and Mond [5] defined two new classes of function called type – I and type – II function. Rueda and Hanson [6] further extende type – I function to the class of pseudo type – I univex, pseudo type – I univex, quasi type – I univex function and obtained optimality results for mathematical programs under generalized type – I univex function. Recently, Nahak and Mohapatra [9] obtained duality results for multiobjective programming problems under d, ρ , η , θ invexity assumption.

In his paper, we have introduced duality problems in non-differentiable fractional programming problem and established results under generalized class of d, ρ, η, θ - type – I univex function.

2. **Preliminaries and Definitions.** : Let R^n be n-dimensional Euclidean space and R^n_+ be the non negative orthant. For vectors x and y in R^n , we denote $x < y \Rightarrow x_i < y_i$ for i = 1, 2, ..., n,

International Journal of Mathematics Trends and Technology- Volume21 Number1 – May 2015

 $x \leq y \Leftrightarrow x_i \leq y_i, i = 1, 2, \dots n, x \leq y \Leftrightarrow x_i \leq y_i, i = 1, 2, \dots n. \text{ Let } D \subseteq R^n \text{ be an invex set } \\ \eta: D \times D \to R^n, x_0 \text{ be an arbitrary point of } D \text{ and } F: D \to R, i = 1, 2, \dots p, \Psi: R \to R, b: D \times D \to R_+.$

Definition 2.1 : (Bector etal [7] A differentiable function f is said to be univex at $x_0 \in D$ of for all $x \in D$, we have b x, $x_0 \quad \Psi[F \ x \ -f \ x_0 \] \ge n \ x, x_0 \ ^T \nabla_x f \ x_0$.

Definition 2.2 : (f, h) is said to be d, ρ, η, θ - type I univex functions at $x_0 \in D$ if for all $x \in X$.

$$\begin{split} & b_0 \ x, x_0 \ \psi_0 \Big[f \ x \ -f \ x_0 \ \Big] \ge f' \ x_0, n \ x, x_0 \ +\rho_0 \, \| \, \theta \ x, x_0^{-2} \, \| \ , \\ & b_1 \ x, x_0 \ \psi \Big[h \ x_0 \ \Big] \ge h' \ x_0 in \ x, x_0 \ +\rho_1 \, \| \, \theta \ x, x_0 \ \|^2. \end{split}$$

Definition 2.3 : (f, h) is said to be weak strictly pseudo d, ρ , η , θ - type – I univex functions at $x_0 \in D$ if for all $x \in X$.

$$\begin{split} b_0 & x, x_0 \ \psi_0 \Big[f \ x \ -f \ x_0 \ \Big] \leq 0 \Longrightarrow f' \ x_0, n \ x, x_0 & < -\rho_0 \parallel \theta \ x, x_0 \parallel^2, \\ b_1 & x, x_0 \ \psi_1 \Big[h \ x_0 \ \Big] \geq 0 \Longrightarrow h' \ x_0, \eta \ x, x_0 & < -\rho_1 \parallel \theta \ x, x_0 \parallel^2 \end{split}$$

PRIMAL PROBLEM

We consider the following nondifferentiable fractional programming problems.

(FP) minimize
$$\frac{f x}{g x}$$

Subject to $h x \leq 0, x \in X$,

Where $f: x \to R$, $g: x \to R$ and $h: x \to R^m$ (3.1)

We assume that $f x \ge 0$ and g x > 0 on \mathbb{R}^n

Dual Problem (FD)

(FD) maximize
$$\frac{f}{g} \frac{u}{u} + y^{T}h u = v$$

Subject to $f' + y_{J_1}^T \dot{h}_{J_1}$ $u; \eta x, u - vg' u; \eta x, u + \sum_{j \in J_2} y_J^T; h_j^1 u; \eta x, u \ge 0$ (3.2)

$$f u + y_{J_1}^T h u - vg u \ge 0$$
 (3.3)

$$u \in D, \, \boldsymbol{y}_{j_1} \geq 0, \, \boldsymbol{y}_{J_2} \geq 0, \eta \colon \boldsymbol{x} \to D \to \boldsymbol{R}^n \quad \dots \dots \quad (3.5)$$

Theorem – 3.1 (Weak duality theorem)

Let x and u, y, η be the feasible solution for (FP) and (FD) respectively. If

 $(i) \qquad \quad f+y_{J_1}^Th_{J_1}-\nu g, \ h_{j_2} \quad \text{is weak strictly pseudo} \quad d, \ \rho, \ \eta, \ \theta \ \ \text{-type-I univex at u.}$

$$(ii) \qquad \text{For any } a \in R, \, a \leq 0 \Rightarrow \psi_0 \;\; a \; \leq 0 \; \& \; b \in R, \, b \geq 0 \; \Rightarrow \psi \; b \; \geq 0, b_0 \;\; x, \, u \; > 0, \, b_1 \;\; x, \, u \; > 0$$

(iii)
$$\rho_0 + \sum_j \rho_{1j} \ge 0, \rho_0, \rho_{1j} \in \mathbb{R}, \ j \in \mathbb{J}_2$$

Then $\frac{f \ x}{g \ x} \le v$

Proof : Suppose to the contrary that $\frac{f \cdot x}{g \cdot x} \le v$

$$\Rightarrow f \ x - vg \ x \le 0$$

$$\Rightarrow f \ x - vg \ x + y^{T}h \ x \le 0 \text{ from } 3.1$$

$$\Rightarrow \left[f \ x - vg \ x + y^{T}h \ x \right] - \left[f \ u - vg \ u + y^{T}h \ u \right] \le 0$$
from (3.3).

From assumption (ii) of theorem 3.1, we get

$$b_0 x, u \psi_0 \left[f x - vg x + y^T h x - f u - vg u + y^T h u \right] < 0 \dots 3.6$$

and

$$\mathbf{b}_1 \mathbf{x}, \mathbf{u} \mathbf{\psi}_1 \left[\mathbf{y}_j \mathbf{h}_j \mathbf{u} \right] \ge 0, \ j \in \mathbf{J}_2 \dots (3.7)$$

Since hypothesis (i) of weak duality theorem satisfied and from above inequation (3.6) and (3.7), we get

$$f'\!+y_{J_1}^T, h_{J_1}^1 \quad u; \eta \ x, u \quad -\nu g' \ u; \eta \ x, u \quad <\!-\rho_0 \, \|\, \theta \ x, u \ \|^2,$$

$$\sum_{j \in J_2} \ y_j h_j \ ' \ u; \eta \ x, u \ < - \sum_{j \in J_2} \rho_{ij} \, \| \, \theta \ x, u \ \|^2, \ j \in J_2$$

Adding above these two equations, we get

$$f' + y_{J_1}^T h_{J_1}^{'} \quad u; \eta \ x, u \ - \nu g \ u; \eta \ x, u \ + \sum_{j \in J_2} \ y_j h_j^1 \quad u; \eta \ x, u$$

ISSN: 2231-5373

International Journal of Mathematics Trends and Technology- Volume21 Number1 – May 2015

$$< -\left[\rho_0 \left\|\theta \ x, u \ \right\|^2\right] - \sum_{j \in J_2} \rho_{ij} \left\|\theta \ x, u \ \right\|^2 < -\left[\rho_0 + \rho_{1j}\right] \left\|\theta \ x, u \ \right\|^2 < 0$$

This is a contradiction.

Theorem 3.2 (Strong duality) :

Let x_0 be a weakly efficient solution of (FP) and h_j continues at x_0 for $j \in J_2$ and f - vg; h_j , $j \in J_1$ are directionality differentiable at x_0 . Also $f' - vg' x_0$, $\eta x, x_0$, i = 1, 2, ..., k and $h'_j x_0$; $\eta x, x_0$, $j \in J_i$ are pre-invex function on X. If h satisfies the generalized Slater's constraint qualification at x_0 , $y \in R^k$ such that x_0, y, η is feasible for (FD) and the objective function values of (FP) and (FD) are equal. Moreover, if theorem (3.1) holds, then x_0, y, η is an efficient solution of (FD).

Proof : Since x_0 is weakly efficient solution of (FP), therefore by Karush – Kuhn Tucker constraints conditions, there exist $y \in R^k$ such that

$$\left[f' x_0, \eta x, x_0 - \nu g' x_0, \eta x, x_0\right] + \sum_{j=1}^k y_j, h_j' x_0, \eta x, x_0 \ge 0, \forall x \in X \text{ and}$$

$$y_j h_j x_0 = 0, j = 1, 2, ...k$$

It follows that x_0, y, η is feasible for (FD) with $\nu = f x_0 + y_{j_1}h_{j_1} x_0 / g x_0$. From the proof of weak Duality theorem, we know that x_0, y, η is an efficient solution for (FD) and the values of the objective function for (FP) and (FD) are equal at x_0 and x_0, y, η respectively.

Theorem 3.3 (Converse duality) : Let u_0, y, η be a feasible solution of (FD). Suppose that hypothesis of theorem (3.1) holds at u_0 with $y_{J_1}^T h_{J_1} u_0 = 0$, u_0 is an efficient solution of (FP)

Proof: Suppose u_0 is not an efficient solution (FP). Then there exist $x_0 \in X$ such that

$$\frac{f x_0}{g x_0} \le \frac{f u_0}{g u_0}$$

Since $y_{J_1}^T h_{J_1} u_0 = 0$

$$\Rightarrow \frac{\mathbf{f} \ \mathbf{x}_0}{\mathbf{g} \ \mathbf{x}_0} \leq \frac{\mathbf{f} \ \mathbf{u}_0 + \mathbf{y}_{\mathbf{J}_1} \mathbf{h}_{\mathbf{J}_1} \ \mathbf{u}_0}{\mathbf{g} \ \mathbf{u}_0}$$

Therefore by theorem 3.1 we obtain a contradiction. Hence u_0 is an efficient solution of (FP).

CONCLUSION :

ISSN: 2231-5373

International Journal of Mathematics Trends and Technology- Volume21 Number1 – May 2015

In this paper, we have established duality results for a non differentiable fractional programming problem under generalized class of d, ρ, η, θ - Type – I univex function

The duality results developed in this paper can be further extended for second order fractional programming problem.

REFERENCE:

- **1.** Bectar, C.R., Chandra, S. and Abha (2001) : On mixed symmetric duality in Mathematical programming, J. Math. Anal. Appl. 259, 346-356.
- **2.** Yu, Z. (1996) : Mixed type duality in multiobjective Programming Problems, J. Math. Anal. Appl. 198, 621-635.
- **3.** Zhou, H. and Wang, Y. (2003) : Optimality and mixed duality for nonsmooth multiobjective fractional Programming, PUMA; 14(3), 263-274.
- **4.** Mishra, S. K. and Rautela, J.S. (2009) : On nonlinear multiobjective fractional Programming involving semilocally type-1 univex function, Optim. Lett. 3, 171-185.
- 5. Hanson, M. A. and Mond, B. (1987) : Necessary and sufficient optimality condition in constraint optimization, Math. Program. 37 (1), 51-58.
- 6. Rudra, N.G., Hanson, M. A. and Sing, C. (1995) : Optimality and duality with generality convexity, J. Optim, Theory Appl., 86(2); 491-500.
- **7.** Bectar, C. R. Sunija, S. K. and Gupta, S (1992) : Univex-functions and univex nonlinear programming in : "Proceeding of the Administrative Science Association of Canada" 115-124.
- Mishra, S. K., Wang, S. Y. and Lai, K. K. (2006) : Mond-Weir type mixed symmetric first and second order duality in nondifferentiable mathematical Programming, J. Nonlinear convex Anal., 7(3), 189-198.
- 9. Nayak C., Mohapatra, R. N. (2009) : d, ρ, η, θ invexity in multiobjective optimization, Nonlinear Anal, 70, 2288-2296.