Non-Differentiable Fractional Programming Under Generalized d, ρ, η, θ - Type 1 Univex Function

\author{

* Gayatri Devi, Rashmita Mohanty
 Prof. in : CSE, ABIT College, CDA-1, Cuttack
}

Abstract

Non-differentiable fractional duality is given and its weak duality and strong duality results are established under generalized d, ρ, η, θ type- 1 univex function.

Key Words: Non differentiable fractional duality, generalized university, d, ρ, η, θ type -1 univex function.

INTRODUCTION:

Several authors have shown their interest in developing optimality conditions and duality result for minimax programming problems. Bector at al [1] and Xu [2] gave a mixed type duality for fractional programming, established some sufficient condition and obtained various duality results between the mixed dual and primal problem. Zhou and Wang [3] introduced a class of nonsmooth multiobjective fractional mixed mixed dual programming. Mishra and Rautela [4] formulated a general dual and proved the duality results under generalized semi locally type - 1 univex and related function. To relax convexity assumption imposed on the function in theorems on optimality and duality, various generalized convexity concept have been proposed. Hanson and Mond [5] defined two new classes of function called type - I and type - II function. Rueda and Hanson [6] further extened type - I function to the class of pseudo type - I and quasi type - I function. Bector et al [7] introduce univex function. Mishra et al [8] introduced type - I univex, pseudo type - I univex, quasi type - I univex function and obtained optimality results for mathematical programs under generalized type - I univex function. Recently, Nahak and Mohapatra [9] obtained duality results for multiobjective programming problems under d, ρ, η, θ invexity assumption.

In his paper, we have introduced duality problems in non-differentiable fractional programming problem and established results under generalized class of d, ρ, η, θ - type -I univex function.
2. Preliminaries and Definitions. : Let R^{n} be n-dimensional Euclidean space and R_{+}^{n} be the non negative orthant. For vectors x and y in R^{n}, we denote $x<y \Rightarrow x_{i}<y_{i}$ for $i=1,2, \ldots \ldots, n$,
$x \leqq y \Leftrightarrow x_{i} \leqq y_{i}, i=1,2, \ldots . n, \quad x \leq y \Leftrightarrow x_{i} \leq y_{i}, i=1,2, \ldots, n$. Let $D \subseteq R^{n}$ be an invex set $\eta: D \times D \rightarrow R^{n}, x_{0}$ be an arbitrary point of D and $F: D \rightarrow R, i=1,2, \ldots p, \Psi: R \rightarrow R, b: D \times D \rightarrow R_{+}$.

Definition 2.1: (Bector etal [7] A differentiable function f is said to be univex at $x_{0} \in D$ of for all $x \in D$, we have $b \mathrm{x}, \mathrm{x}_{0} \Psi\left[\mathrm{~F} \mathrm{x}-\mathrm{f} \mathrm{x}_{0}\right] \geq \mathrm{n} \mathrm{x}, \mathrm{x}_{0}{ }^{\mathrm{T}} \nabla_{\mathrm{x}} \mathrm{f} \mathrm{x}_{0}$.

Definition 2.2 : (f,h) is said to be d, ρ, η, θ - type I univex functions at $x_{0} \in D$ if for all $x \in X$.
$b_{0} x, x_{0} \psi_{0}\left[f x-f x_{0}\right] \geq f^{\prime} x_{0}, n x, x_{0}+\rho_{0}\left\|\theta x, x_{0}^{2}\right\|$,
$\mathrm{b}_{1} \mathrm{x}, \mathrm{x}_{0} \Psi\left[\mathrm{~h} \mathrm{x}_{0}\right] \geq \mathrm{h}^{\prime} \mathrm{x}_{0}$ in $\mathrm{x}, \mathrm{x}_{0} \quad+\rho_{1}\left\|\theta \mathrm{x}, \mathrm{x}_{0}\right\|^{2}$.
Definition 2.3 : (f, h) is said to be weak strictly pseudo $d, \rho, \eta, \theta-$ type $-I$ univex functions at $x_{0} \in D$ if for all $x \in X$.
$\mathrm{b}_{0} \mathrm{x}, \mathrm{x}_{0} \quad \psi_{0}\left[\mathrm{f} x-\mathrm{f} \quad \mathrm{x}_{0}\right] \leq 0 \Rightarrow \mathrm{f}^{\prime} \mathrm{x}_{0}, \mathrm{n} \mathrm{x}, \mathrm{x}_{0}<-\rho_{0}\left\|\theta \mathrm{x}, \mathrm{x}_{0}\right\|^{2}$,
$\mathrm{b}_{1} \mathrm{x}, \mathrm{x}_{0} \quad \Psi_{1}\left[\mathrm{~h} \mathrm{x}_{0}\right] \geq 0 \Rightarrow \mathrm{~h}^{\prime} \mathrm{x}_{0}, \eta \mathrm{x}, \mathrm{x}_{0}<-\rho_{1}\left\|\theta \mathrm{x}, \mathrm{x}_{0}\right\|^{2}$

PRIMAL PROBLEM

We consider the following nondifferentiable fractional programming problems.
(FP) minimize $\frac{f x}{g x}$

Subject to $\mathrm{h} \mathrm{x} \leq 0, \mathrm{x} \in \mathrm{X}$,

Where $\mathrm{f}: \mathrm{x} \rightarrow \mathrm{R}, \mathrm{g}: \mathrm{x} \rightarrow \mathrm{R}$ and $\mathrm{h}: \mathrm{x} \rightarrow \mathrm{R}^{\mathrm{m}}$

We assume that $\mathrm{f} \mathrm{x} \geq 0$ and $\mathrm{g} \mathrm{x}>0$ on R^{n}

Dual Problem (FD)

(FD) maximize $\frac{f u}{g u}+y^{T} h u=v$

Subject to $f^{\prime}+y_{J_{1}}^{T} h_{J_{1}}^{\prime} u ; \eta x, u-v g^{\prime} u ; \eta x, u \quad+\sum_{j \in J_{2}} y_{J}^{T} ; h_{j}^{1} u ; \eta x, u \geq 0$
f $u+y_{J_{1}}^{T} h u-v g u \geq 0$
$y_{j} h_{j} u \geq 0 j \in J_{2}$
$\mathrm{u} \in \mathrm{D}, \mathrm{y}_{\mathrm{j}_{1}} \geq 0, \mathrm{y}_{\mathrm{J}_{2}} \geq 0, \eta: \mathrm{x} \rightarrow \mathrm{D} \rightarrow \mathrm{R}^{\mathrm{n}}$

Theorem - 3.1 (Weak duality theorem)

Let x and u, y, η be the feasible solution for (FP) and (FD) respectively. If
(i) $\quad \mathrm{f}+\mathrm{y}_{\mathrm{J}_{1}}^{T} \mathrm{~h}_{\mathrm{J}_{1}}-v \mathrm{~g}, \mathrm{~h}_{\mathrm{j}_{2}}$ is weak strictly pseudo $\mathrm{d}, \rho, \eta, \theta$-type - I univex at u .
(ii) For any $\mathrm{a} \in \mathrm{R}, \mathrm{a} \leq 0 \Rightarrow \psi_{0} \mathrm{a} \leq 0 \& \mathrm{~b} \in \mathrm{R}, \mathrm{b} \geq 0 \Rightarrow \psi b \geq 0, \mathrm{~b}_{0} \mathrm{x}, \mathrm{u}>0, \mathrm{~b}_{1} \mathrm{x}, \mathrm{u}>0$
(iii) $\rho_{0}+\sum_{j} \rho_{1 \mathrm{j}} \geq 0, \rho_{0}, \rho_{1 \mathrm{j}} \in R, \mathrm{j} \in \mathrm{J}_{2}$

Then $\frac{f x}{g x} \Varangle v$

Proof : Suppose to the contrary that $\frac{f x}{g x} \leq v$

$$
\begin{aligned}
& \Rightarrow \mathrm{f} x-v \mathrm{~g} x \leq 0 \\
& \Rightarrow \mathrm{f} x-v \mathrm{~g} x+\mathrm{y}^{\mathrm{T}} \mathrm{~h} x \leq 0 \text { from } 3.1 \\
& \Rightarrow\left[\mathrm{f} x-v \mathrm{~g} x+\mathrm{y}^{\mathrm{T}} \mathrm{~h} x\right]-\left[\mathrm{f} u-v g \mathrm{u}+\mathrm{y}^{\mathrm{T}} \mathrm{~h} u\right] \leq 0
\end{aligned}
$$

from (3.3).
From assumption (ii) of theorem 3.1, we get

$$
\mathrm{b}_{0} \mathrm{x}, \mathrm{u} \psi_{0}\left[\mathrm{f} x-v g \mathrm{x}+\mathrm{y}^{\mathrm{T}} \mathrm{hx}-\mathrm{f} u-v g \mathrm{u}+\mathrm{y}^{\mathrm{T}} \mathrm{~h} u\right]<0 \ldots .3 .6
$$

and
$\mathrm{b}_{1} \mathrm{x}, \mathrm{u} \quad \Psi_{1}\left[\mathrm{y}_{\mathrm{j}} \mathrm{h}_{\mathrm{j}} \mathrm{u}\right] \geq 0, \mathrm{j} \in \mathrm{J}_{2} \ldots$ (3.7)
Since hypothesis (i) of weak duality theorem satisfied and from above inequation (3.6) and (3.7), we get

$$
\begin{aligned}
& f^{\prime}+y_{J_{1}}^{T}, h_{J_{1}}^{1} u ; \eta x, u-v g^{\prime} u ; \eta x, u<-\rho_{0}\|\theta x, u\|^{2} \\
& \sum_{j \in J_{2}} y_{j} h_{j}{ }^{\prime} u ; \eta x, u \quad<-\sum_{j \in J_{2}} \rho_{i j}\|\theta x, u\|^{2}, j \in J_{2}
\end{aligned}
$$

Adding above these two equations, we get

$$
\mathrm{f}^{\prime}+\mathrm{y}_{\mathrm{J}_{1}}^{\mathrm{T}} \mathrm{~h}_{\mathrm{J}_{1}}^{\prime} \quad \mathrm{u} ; \eta \mathrm{x}, \mathrm{u}-v g \mathrm{u} ; \eta \mathrm{x}, \mathrm{u}+\sum_{\mathrm{j} \in \mathrm{~J}_{2}} \mathrm{y}_{\mathrm{j}} \mathrm{~h}_{\mathrm{j}}^{1} \mathrm{u} ; \eta \mathrm{x}, \mathrm{u}
$$

$$
<-\left[\rho_{0}\|\theta \mathrm{x}, \mathrm{u}\|^{2}\right]-\sum_{\mathrm{j} \in \mathrm{I}_{2}} \rho_{\mathrm{ij}}\|\theta \mathrm{x}, \mathrm{u}\|^{2}<-\left[\rho_{0}+\rho_{\mathrm{lj}}\right]\|\theta \mathrm{x}, \mathrm{u}\|^{2}<0
$$

This is a contradiction.

Theorem 3.2 (Strong duality) :

Let x_{0} be a weakly efficient solution of (FP) and h_{j} continues at x_{0} for $j \in J_{2}$ and $f-v g ; h_{j}, j \in J_{1}$ are directionality differentiable at x_{0}. Also $f^{\prime}-v^{\prime} \mathrm{x}_{0}, \eta \mathrm{x}, \mathrm{x}_{0}, \mathrm{i}=1,2, \ldots . . \mathrm{k}$ and $\mathrm{h}_{\mathrm{j}}^{\prime} \mathrm{x}_{0} ; \eta \mathrm{x}, \mathrm{x}_{0}, \mathrm{j} \in \mathrm{J}_{\mathrm{i}}$ are pre-invex function on X. If h satisfies the generalized Slater's constraint qualification at $x_{0}, y \in R^{k}$ such that $\mathrm{x}_{0}, \mathrm{y}, \eta$ is feasible for (FD) and the objective function values of (FP) and (FD) are equal. Moreover, if theorem (3.1) holds, then x_{0}, y, η is an efficient solution of (FD).

Proof : Since x_{0} is weakly efficient solution of (FP), therefore by Karush - Kuhn Tucker constraints conditions, there exist $y \in R^{k}$ such that

$$
\begin{aligned}
& {\left[\mathrm{f}^{\prime} \mathrm{x}_{0}, \eta \mathrm{x}, \mathrm{x}_{0}-v g^{\prime} \mathrm{x}_{0}, \eta \mathrm{x}, \mathrm{x}_{0}\right]+\sum_{\mathrm{j}=1}^{\mathrm{k}} \mathrm{y}_{\mathrm{j}}, \mathrm{~h}_{\mathrm{j}}^{\prime} \mathrm{x}_{0}, \eta \mathrm{x}, \mathrm{x}_{0} \quad \geq 0, \forall \mathrm{x} \in \mathrm{X} \text { and }} \\
& \mathrm{y}_{\mathrm{j}} \mathrm{~h}_{\mathrm{j}} \mathrm{x}_{0}=0, \mathrm{j}=1,2, \ldots \mathrm{k}
\end{aligned}
$$

It follows that $\mathrm{x}_{0}, \mathrm{y}, \eta$ is feasible for (FD) with $v=\mathrm{f} \mathrm{x}_{0}+\mathrm{y}_{\mathrm{j}_{\mathrm{h}}} \mathrm{h}_{\mathrm{j}_{1}} \mathrm{x}_{0} / \mathrm{g} \mathrm{x}_{0}$. From the proof of weak Duality theorem, we know that x_{0}, y, η is an efficient solution for (FD) and the values of the objective function for (FP) and (FD) are equal at x_{0} and $\mathrm{x}_{0}, \mathrm{y}, \eta$ respectively.

Theorem 3.3 (Converse duality): Let u_{0}, y, η be a feasible solution of (FD). Suppose that hypothesis of theorem (3.1) holds at u_{0} with $y_{J_{1}}^{T} h_{\mathrm{J}_{1}}, u_{0}=0, u_{0}$ is an efficient solution of (FP)

Proof : Suppose u_{0} is not an efficient solution (FP). Then there exist $\mathrm{x}_{0} \in \mathrm{X}$ such that
$\frac{f x_{0}}{\mathrm{~g} \mathrm{x}_{0}} \leq \frac{\mathrm{f} \mathrm{u}_{0}}{\mathrm{~g} \mathrm{u} u_{0}}$
Since $y_{J_{1}}^{T} h_{J_{1}} u_{0}=0$

$$
\Rightarrow \frac{\mathrm{fr} \mathrm{x}_{0}}{\mathrm{~g} \mathrm{x}_{0}} \leq \frac{\mathrm{f} \mathrm{u}_{0}+\mathrm{y}_{\mathrm{J}_{1}} \mathrm{~h}_{\mathrm{J}_{1}} \mathrm{u}_{0}}{\mathrm{~g} \mathrm{u}}
$$

Therefore by theorem 3.1 we obtain a contradiction. Hence u_{0} is an efficient solution of (FP).

CONCLUSION :

In this paper, we have established duality results for a non differentiable fractional programming problem under generalized class of d, ρ, η, θ - Type - I univex function

The duality results developed in this paper can be further extended for second order fractional programming problem.

REFERENCE:

1. Bectar, C.R., Chandra, S. and Abha (2001) : On mixed symmetric duality in Mathematical programming, J. Math. Anal. Appl. 259, 346-356.
2. Yu, Z. (1996) : Mixed type duality in multiobjective Programming Problems, J. Math. Anal. Appl. 198, 621-635.
3. Zhou, H. and Wang, Y. (2003) : Optimality and mixed duality for nonsmooth multiobjective fractional Programming, PUMA; 14(3), 263-274.
4. Mishra, S. K. and Rautela, J.S. (2009) : On nonlinear multiobjective fractional Programming involving semilocally type-1 univex function, Optim. Lett. 3, 171-185.
5. Hanson, M. A. and Mond, B. (1987) : Necessary and sufficient optimality condition in constraint optimization, Math. Program. 37 (1), 51-58.
6. Rudra, N.G., Hanson, M. A. and Sing, C. (1995) : Optimality and duality with generality convexity, J. Optim, Theory Appl., 86(2); 491-500.
7. Bectar, C. R. Sunija, S. K. and Gupta, S (1992) : Univex-functions and univex nonlinear programming in : "Proceeding of the Administrative Science Association of Canada" 115-124.
8. Mishra, S. K., Wang, S. Y. and Lai, K. K. (2006) : Mond-Weir type mixed symmetric first and second order duality in nondifferentiable mathematical Programming, J. Nonlinear convex Anal., 7(3), 189-198.
9. Nayak C., Mohapatra, R. N. (2009) : d, ρ, η, θ invexity in multiobjective optimization, Nonlinear Anal, 70, 2288-2296.
