Degree Sequence and Clique Number of Bi-Factograph and Tri-Factograph

E. Ebin Raja Merly¹, E. Giftin Vedha Merly² and A. M. Anto³

¹Assistant Professor in Mathematics, Nesamony Memorial Christian College, Marthandam - 629165, India. ²Assistant Professor in Mathematics, Scott Christian College, Nagercoil - 629003, India.

³Research scholar in Mathematics, Nesamony Memorial Christian College, Marthandam - 629165, India.

Abstract— By the theorem of unique factorization for integers, every positive integer z can be written in the form $z = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_r^{\alpha_r}$, where $p_1, p_2, \dots p_r$ are distinct primes, $\alpha_1, \alpha_2, \dots \alpha_r$ are positive integers. We can construct a graph G which is associated with this z. Positive integral divisors of z being a vertex set V and two distinct vertices of V are adjacent in G if their product is in V. In z, when r = 1 then the corresponding graph is called the perfect factograph. Here we extend the concept to r = 2, 3 and the corresponding graphs are called Bi-factograph and Tri-factograph respectively. In this paper we attempt to find the degree sequence and clique number of Bi-factograph and Tri-factograph.

Keywords— Factograph, Perfect factograph, Bi-factograph, Tri-factograph, clique number.

I. INTRODUCTION

By a graph, we mean a finite undirected, non - trivial graph without loops and multiple edges. The order and size of a graph is denoted by p and q respectively. For terms not defined, we refer to Frank Harary [4]. The concept of factograph and perfect factograph was introduced by E. Giftin Vedha Merly and N. Gnanadhas [1],[2]. In this paper we extend the concept to Bi-factograph and Tri-factograph. For a positive integer z, we define a factograph as G = (V, E) where $V = \{v_i / v_i \text{ is a factor of } z\}$ and two distinct vertices v_i and v_i are adjacent if and only if their product is in V. A clique of a graph G is a complete subgraph of G. A clique of G is the maximal clique, if it is not properly contained in another clique of G. Number of vertices in maximal clique of G is called the clique number of G and is denoted by $\omega(G)$. For $v \in V, d(v)$ is the number of edges incident with v. A factograph G with $z = p_1^{\alpha_1}$, where p is a prime and α is any positive integer is called a perfect factograph.

II. DEGREE SEQUENCE AND CLIQUE NUMBER OF BI-FACTOGRAPH.

A. Definition

A factograph G with $z = p_1^{\alpha_1} p_2^{\alpha_2}$ where p_1, p_2 are distinct primes and α_1, α_2 are positive integers is called a Bi - factograph.

B. Theorem

Let α_1 and α_2 be two positive integers, p_1 and p_2 be two distinct primes. A Bi-factograph *G* with $z = P_1^{\alpha_1} P_2^{\alpha_2}$ has order $(\alpha_1 + 1)(\alpha_2 + 1)$ and the degree sequence of *G* is given by

i)
$$s_1: (\alpha_1 + 1)(\alpha_2 + 1) - 1, (\alpha_1 + 1)\alpha_2 - 1, ...$$

 $(\alpha_1 + 1)\frac{\alpha_2}{2}, ..., \alpha_1 + 1, \alpha_1(\alpha_2 + 1) - 1,$
 $\alpha_1\alpha_2 - 1, ..., \frac{\alpha_1\alpha_2}{2}, ..., \alpha_1,$
 $..., \frac{\alpha_1}{2}(\alpha_2 + 1), \frac{\alpha_1\alpha_2}{2}, ..., \frac{\alpha_1\alpha_2}{4}, ..., \frac{\alpha_1}{2}, ..., \alpha_2 + 1, \alpha_2, ..., \frac{\alpha_2}{2}, ..., 1,$
where α_1 and α_2 are even.
ii) $s_2: (\alpha_1 + 1)(\alpha_2 + 1) - 1,$

ISSN: 2231-5373

http://www.ijmttjournal.org

Page 47

International Journal of Mathematics Trends and Technology- Volume21 Number1 - May 2015

$$(\alpha_{1}+1)\alpha_{2} - 1, \dots (\alpha_{1}+1) \left\lfloor \frac{\alpha_{2}}{2} \right\rfloor, \dots \alpha_{1} + 1,$$

$$\alpha_{1}(\alpha_{2}+1) - 1, \alpha_{1}\alpha_{2} - 1, \dots \alpha_{1} \left\lfloor \frac{\alpha_{2}}{2} \right\rfloor, \dots \alpha_{1},$$

$$\dots \left\lfloor \frac{\alpha_{1}}{2} \right\rfloor (\alpha_{2}+1), \left\lfloor \frac{\alpha_{1}}{2} \right\rfloor \alpha_{2}, \dots \left\lfloor \frac{\alpha_{1}}{2} \right\rfloor \left\lfloor \frac{\alpha_{2}}{2} \right\rfloor,$$

$$\dots \left\lfloor \frac{\alpha_{1}}{2} \right\rfloor, \dots \alpha_{2} + 1, \alpha_{2}, \dots \left\lfloor \frac{\alpha_{2}}{2} \right\rfloor, \dots 1, \text{ where } \alpha_{1} \text{ and } \alpha_{2} \text{ are odd}$$

$$\text{iii) } s_{3} : (\alpha_{1}+1)(\alpha_{2}+1) - 1, (\alpha_{1}+1)\alpha_{2} - 1, \dots$$

$$(\alpha_1+1)\frac{\alpha_2}{2}, \dots, \alpha_1+1, \alpha_1(\alpha_2+1)-1,$$

$$\alpha_1 \alpha_2 - 1, \dots \frac{\alpha_1 \alpha_2}{2}, \dots \alpha_1, \dots$$

$$\left\lfloor \frac{\alpha_1}{2} \right\rfloor (\alpha_2 + 1), \left\lfloor \frac{\alpha_1}{2} \right\rfloor \alpha_2, \dots \left\lfloor \frac{\alpha_1}{2} \right\rfloor \frac{\alpha_2}{2}, \dots \left\lfloor \frac{\alpha_1}{2} \right\rfloor \dots \alpha_2 + 1, \alpha_2, \dots \frac{\alpha_2}{2}, \dots 1.$$
where α_1 is odd and α_2 is even.

iv)
$$s_4: (\alpha_1 + 1)(\alpha_2 + 1) - 1, (\alpha_1 + 1)\alpha_2 - 1, ...$$

 $(\alpha_1 + 1)\left\lfloor \frac{\alpha_2}{2} \right\rfloor, ... \alpha_1 + 1, \alpha_1(\alpha_2 + 1) - 1,$
 $\alpha_1\alpha_2 - 1, ... \alpha_1\left\lfloor \frac{\alpha_2}{2} \right\rfloor, ... \alpha_1, ...$
 $\frac{\alpha_1}{2}(\alpha_2 + 1), \frac{\alpha_1}{2}\alpha_2, ... \frac{\alpha_1}{2}\left\lfloor \frac{\alpha_2}{2} \right\rfloor, ... \frac{\alpha_1}{2}, ... \alpha_2 + 1, \alpha_2, ... \left\lfloor \frac{\alpha_2}{2} \right\rfloor, ... 1,$
where α_1 is even and α_2 is odd.

Proof:

i) When α_1 and α_2 are even, let G = (V, E) be a Bi-factograph. If $z = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_r^{\alpha_r}$ then the number of positive divisors of z is $\prod_{i=1}^r (\alpha_i + 1)$. Therefore, number of positive divisors of $z = p_1^{\alpha_1} p_2^{\alpha_2}$ is $(\alpha_1 + 1)(\alpha_2 + 1)$ so that the order of G is $(\alpha_1 + 1)(\alpha_2 + 1)$. Let $V = \{ p_1^0 p_2^0, p_1^0 p_2^1, \dots p_1^{\alpha_1} p_2^{\alpha_2} \}$.

This vertex set can be represented by the $(\alpha_1 + 1) \times (\alpha_2 + 1)$ array form as follows

$$\begin{pmatrix} p_1^0 p_2^0, \ p_1^0 p_2^1, \ p_1^0 p_2^2, \ \dots \ p_1^0 p_2^{\alpha_2} \\ p_1^1 p_2^0, \ p_1^1 p_2^1, p_1^1 p_2^2, \ \dots \ p_1^1 p_2^{\alpha_2} \\ \vdots & \vdots & \vdots \\ p_1^{\alpha_1} p_2^0, \ p_1^{\alpha_1} p_2^1, \ p_1^{\alpha_1} p_2^2 \ \dots \ p_1^{\alpha_1} p_2^{\alpha_2} \end{pmatrix}_{(\alpha_1 + 1) \times (\alpha_2 + 1)} .$$

In a Bi-factograph *G*, we observe that for $i \neq k$ and $j \neq l$ then the vertex $p_1^i p_2^j$ is adjacent to $p_1^k p_2^l$ in *G* if and only if $i + k \leq \alpha_1$ and $j + l \leq \alpha_2$.Consider the first $(\alpha_2 + 1)$ vertices, $p_1^0 p_2^0$, $p_1^0 p_2^1$, $p_1^0 p_2^2$, ..., $p_1^0 p_2^{\alpha_2}$. By our factograph condition, it is obvious that $p_1^0 p_2^0$ is adjacent to rest of the vertices implies $d(p_1^0 p_2^0) = (\alpha_1 + 1)(\alpha_2 + 1) - 1$. Pick the second

vertex $p_1^0 p_2^1$, exactly $(\alpha_1 + 1)\alpha_2$ combination of verities satisfy the condition and among that $p_1^0 p_2^1$ is adjacent to remaining vertices which implies $d(p_1^0 p_2^1) = (\alpha_1 + 1) \alpha_2 - 1$. Consider the vertex $p_1^0 p_2^{\frac{\alpha_2}{2}+1}$, exactly $(\alpha_1 + 1) \left(\frac{\alpha_2}{2}\right)$ combination of vertices satisfy the condition of adjacency, among that the vertex $p_1^0 p_2^{\frac{\alpha_2}{2}+1}$ is not in that combination which gives $d\left(p_1^0 p_2^{\frac{\alpha_2}{2}+1}\right) = (\alpha_1 + 1) \left(\frac{\alpha_2}{2}\right)$. Continuing this way, the vertex $p_1^0 p_2^{\alpha_2}$ is adjacent to $(\alpha_1 + 1)$ vertices and $d(p_1^0 p_2^{\alpha_2}) = (\alpha_1 + 1)$. Consider $\left(\frac{\alpha_1}{2} + 2\right)^{\text{th}}$ row of $\alpha_2 + 1$ vertices $p_1^{\frac{\alpha_2}{2}+1}p_2^0, p_1^{\frac{\alpha_2}{2}+1}p_2^1, \dots, p_1^{\frac{\alpha_2}{2}+1}p_2^{\alpha_2}$ have the degree $d\left(p_1^{\frac{\alpha_1}{2}+1}p_2^0\right) = \left(\frac{\alpha_1}{2}\right)(\alpha_2+1), d\left(p_2^{\frac{\alpha_1}{2}+1}p_2^1\right) =$ sequence $\left(\frac{\alpha_1}{2}\right)\alpha_2, \dots, d\left(p_2^{\frac{\alpha_1}{2}+1}p_2^{\alpha_2}\right) = \frac{\alpha_1}{2}$. Finally, $(\alpha_1 + 1)^{\text{th}}$ row of $(\alpha_2 + 1)$ vertices $p_1^{\alpha_1} p_2^0$, $p_1^{\alpha_1} p_2^1$, $p_1^{\alpha_1} p_2^2 \dots \dots$, $p_1^{\alpha_1} p_2^{\alpha_2}$ have degree sequence $d(p_1^{\alpha_1}p_2^0) = \alpha_2 + 1, \ d(p_1^{\alpha_1}p_2^1) = \alpha_2, \dots, d(p_1^{\alpha_1}p_2^{\alpha_2}) = 1.$

Therefore, G has $(\alpha_1 + 1)(\alpha_2 + 1)$ vertices and has the degree sequence,

$$s_{1}: (\alpha_{1} + 1)(\alpha_{2} + 1) - 1, (\alpha_{1} + 1)\alpha_{2} - 1, \dots$$
$$(\alpha_{1} + 1)\frac{\alpha_{2}}{2}, \dots, \alpha_{1} + 1, \alpha_{1}(\alpha_{2} + 1) - 1, \alpha_{1}\alpha_{2} - 1, \dots$$
$$\dots, \frac{\alpha_{1}\alpha_{2}}{2}, \dots, \alpha_{1}, \dots, \frac{\alpha_{1}}{2}(\alpha_{2} + 1), \frac{\alpha_{1}\alpha_{2}}{2}, \dots, \frac{\alpha_{1}\alpha_{2}}{4}, \dots, \frac{\alpha_{1}}{2}, \dots$$
$$\dots, \alpha_{2} + 1, \alpha_{2}, \dots, \frac{\alpha_{2}}{2}, \dots, 1.$$

Similar manner we can prove case (ii) (iii) and (iv).

C. Theorem

The clique number of a Bi-factograph G is

i)
$$\omega(G) = \left(\frac{\alpha_1}{2} + 1\right) \left(\frac{\alpha_2}{2} + 1\right)$$
 when α_1 and α_2 are even.
ii) $\omega(G) = \left(\left\lfloor\frac{\alpha_1}{2}\right\rfloor + 1\right) \left(\left\lfloor\frac{\alpha_2}{2}\right\rfloor + 1\right) + 2$
when α_1 and α_2 are odd.

Proof:

i) If α_1 and α_2 are even, let G = (V, E) be a Bifactograph and $V = \{p_1^0 p_2^0, p_1^0 p_2^1, \dots, p_1^{\alpha_1} p_2^{\alpha_2}\}$ be the vertex set of *G*. We consider the set $S = \{p_1^x p_2^y / 0 \le x \le \frac{\alpha_1}{2} \text{ and } 0 \le y \le \frac{\alpha_2}{2}\}$ which is a proper

ISSN: 2231-5373

http://www.ijmttjournal.org

International Journal of Mathematics Trends and Technology- Volume21 Number1 - May 2015

subset of V. We seek to prove that the subgraph of G induced We observe that, the degree sequence of G is by S is the maximal clique of G.

In G, we observe that for $i \neq k$ and $j \neq l$, the vertex $p_1^i p_2^j$ is adjacent to $p_1^k p_2^l$ in G if and only if $i + k \le \alpha_1$ and $j + l \leq \alpha_2$. We have to prove that every pair of distict vertices in S are adjacent. Take any two arbitrary vertices $p_1^a p_2^b$ and $p_1^c p_2^d$ in S. Since $a + c \le \alpha_1$ and $b + d \le \alpha_2$, we have $p_1^a p_2^b$ is adjacent to $p_1^c p_2^d$. Therefore each pair of distinct vertices in S are adjacent, which implies $\langle S \rangle$ is a clique of G. It remains to show that $\langle S \rangle$ is the maximal clique of G. Suppose we take any arbitrary vertex v in V which is not in S.

Since Bi-factograph, a vertex v cannot be adjacent with all vertices of S implies $(S + \{v\})$ cannot be the clique of G. Therefore $\langle S \rangle$ is the maximal clique of G and $\omega(G) = |S| =$ $\left(\frac{\alpha_1}{2}+1\right)\left(\frac{\alpha_2}{2}+1\right).$

Similarly we can prove case (ii).

D. Remark

(i) When α_1 is odd and α_2 is even, then the clique number of a Bi-factograph G is

$$\omega(G) = \left(\left\lfloor \frac{\alpha_1}{2} \right\rfloor + 1 \right) \left(\frac{\alpha_2}{2} + 1 \right) + 1.$$

(ii) When α_2 is odd and α_1 is even, then the clique number of a Bi-factograph G is

$$\omega(G) = \left(\frac{\alpha_1}{2} + 1\right) \left(\left\lfloor \frac{\alpha_2}{2} \right\rfloor + 1 \right) + 1.$$

E. Example

Consider a Bi-factograph G with $z = p_1^2 p_2^2$. Here order of G is 9.

s: 8,5,3,5,3,2,3,2,1 and $\omega(G)$ is 4.

III. DEGREE SEQUENCE AND CLIQUE NUMBER OF TRI-FACTOGRAPH

A. Definition

A factograph G with $z = p_1^{\alpha_1} p_2^{\alpha_2} p_3^{\alpha_3}$, where p_1, p_2, p_3 are distinct primes and $\alpha_1, \alpha_2, \alpha_3$ any positive integers is called a Tri-factograph.

B. Theorem

Let α_1, α_2 and α_3 be any positive integers, p_1, p_2 and p_3 be any distinct primes, G is a Tri-factograph with $z = p_1^{\alpha_1} p_2^{\alpha_2} p_3^{\alpha_3}$, then G is of order $(\alpha_1 + 1)(\alpha_2 + 1)(\alpha_3 + 1)$ and the degree sequence of G is given by,

(i) When $\alpha_1, \alpha_2, \alpha_3$ are even $s_1:(\alpha_1+1)(\alpha_2+1)(\alpha_3+1)-1$ $\alpha_1(\alpha_2 + 1)(\alpha_3 + 1) - 1, ... \frac{\alpha_1}{2}(\alpha_2 + 1)(\alpha_3 + 1), ...,$ $(\alpha_2 + 1)(\alpha_3 + 1), (\alpha_1 + 1)\alpha_2(\alpha_3 + 1) - 1,$ $\alpha_1 \alpha_2 (\alpha_3 + 1) - 1, \dots, \frac{\alpha_1}{2} \alpha_2 (\alpha_3 + 1), \dots, \alpha_2 (\alpha_3 + 1), \dots$ $(\alpha_1 + 1)\frac{\alpha_2}{2}(\alpha_3 + 1), \alpha_1\frac{\alpha_2}{2}(\alpha_3 + 1), ...,$ $\frac{\alpha_1}{2}\frac{\alpha_2}{2}(\alpha_3+1), \dots, \frac{\alpha_2}{2}(\alpha_3+1), \dots (\alpha_1+1), \alpha_1, \dots, \frac{\alpha_1}{2}, \dots, 1$ (ii) When $\alpha_1, \alpha_2, \alpha_3$ are odd $s_2: (\alpha_1 + 1)(\alpha_2 + 1)(\alpha_3 + 1) - 1,$ $\alpha_1(\alpha_2+1)(\alpha_3+1)-1, \dots, \left|\frac{\alpha_1}{2}\right|(\alpha_2+1)(\alpha_3+1), \dots,$ $(\alpha_2 + 1)(\alpha_3 + 1), (\alpha_1 + 1)\alpha_2(\alpha_3 + 1) - 1,$ $\alpha_1 \alpha_2 (\alpha_3 + 1) - 1, ..., \left| \frac{\alpha_1}{2} \right| \alpha_2 (\alpha_3 + 1), ..., \alpha_2 (\alpha_3 + 1), ...$ $(\alpha_1 + 1) \left| \frac{\alpha_2}{2} \right| (\alpha_3 + 1), \alpha_1 \left| \frac{\alpha_2}{2} \right| (\alpha_3 + 1), ...,$ $\left|\frac{\alpha_1}{2}\right| \left|\frac{\alpha_2}{2}\right| (\alpha_3 + 1), \dots, \left|\frac{\alpha_2}{2}\right| (\alpha_3 + 1),$... $(\alpha_1 + 1), \alpha_1, ..., \left|\frac{\alpha_1}{\alpha_2}\right|, ..., 1.$ (iii) When exactly one α_i is odd, where i = 1,2,3. $s_3: (\alpha_1 + 1)(\alpha_2 + 1)(\alpha_3 + 1) - 1,$ $\alpha_1(\alpha_2+1)(\alpha_3+1)-1, ..., \left|\frac{\alpha_1}{2}\right|(\alpha_2+1)(\alpha_3+1), ...,$ $(\alpha_2 + 1)(\alpha_3 + 1), (\alpha_1 + 1)\alpha_2(\alpha_3 + 1) - 1,$

ISSN: 2231-5373

http://www.ijmttjournal.org

$$\begin{aligned} &\alpha_{1}\alpha_{2}(\alpha_{3}+1)-1, \dots, \left\lfloor\frac{\alpha_{1}}{2}\right\rfloor \alpha_{2}(\alpha_{3}+1), \dots, \alpha_{2}(\alpha_{3}+1), \dots \\ &(\alpha_{1}+1)\frac{\alpha_{2}}{2}(\alpha_{3}+1), \alpha_{1}\frac{\alpha_{2}}{2}(\alpha_{3}+1), \dots, \left(\alpha_{1}+1\right), \alpha_{1}, \dots, \left\lfloor\frac{\alpha_{1}}{2}\right\rfloor, \dots, 1 \\ &\frac{\left\lfloor\frac{\alpha_{1}}{2}\right\rfloor^{\frac{\alpha_{2}}{2}}(\alpha_{3}+1), \dots, \frac{\alpha_{2}}{2}(\alpha_{3}+1), \dots, (\alpha_{1}+1), \alpha_{1}, \dots, \left\lfloor\frac{\alpha_{1}}{2}\right\rfloor, \dots, 1 \\ &\text{and here } \alpha_{1} \text{ is odd.} \\ &(\text{iv) When exactly one } \alpha_{i} \text{ is even, where } i = 1,2,3. \\ &S_{4}: (\alpha_{1}+1)(\alpha_{2}+1)(\alpha_{3}+1)-1, \\ &\alpha_{1}(\alpha_{2}+1)(\alpha_{3}+1)-1, \dots, \frac{\alpha_{1}}{2}(\alpha_{2}+1)(\alpha_{3}+1), \dots, \\ &(\alpha_{2}+1)(\alpha_{3}+1), (\alpha_{1}+1)\alpha_{2}(\alpha_{3}+1)-1, \\ &\alpha_{1}\alpha_{2}(\alpha_{3}+1)-1, \dots, \frac{\alpha_{1}}{2}\alpha_{2}(\alpha_{3}+1), \dots, \alpha_{2}(\alpha_{3}+1), \dots \\ &(\alpha_{1}+1)\left\lfloor\frac{\alpha_{2}}{2}\right\rfloor(\alpha_{3}+1), \alpha_{1}\left\lfloor\frac{\alpha_{2}}{2}\right\rfloor(\alpha_{3}+1), \dots, \\ &(\alpha_{1}+1), \alpha_{1}, \dots, \frac{\alpha_{1}}{2}, \dots, 1 \text{ and here } \alpha_{1} \text{ is even.} \end{aligned}$$

Proof:

(i) Let G = (V, E) be the Tri-factograph. We have the number of positive divisors of $p_1^{\alpha_1} p_2^{\alpha_2} p_3^{\alpha_3}$ is

 $(\alpha_1 + 1)(\alpha_2 + 1)(\alpha_3 + 1)$ and hence the order of *G* is $(\alpha_1 + 1)(\alpha_2 + 1)(\alpha_3 + 1)$.

Let $V(G) = \{ \{p_1^0 p_2^0 p_3^0, p_1^1 p_2^0 p_3^0, \dots p_1^{\alpha_1} p_2^{\alpha_2} p_3^{\alpha_3} \}$. This vertex set can be represented by the

$$(\alpha_2 + 1)(\alpha_3 + 1) \times (\alpha_1 + 1)$$
 array form as follows

$$\begin{pmatrix} p_1^0 p_2^0 p_3^0, p_1^1 p_2^0 p_3^0, \dots, p_1^{\alpha_1} p_2^0 p_3^0 \\ p_1^0 p_2^1 p_3^0, p_1^1 p_2^1 p_3^0, \dots, p_1^{\alpha_1} p_2^1 p_3^0 \\ \vdots & \vdots & \vdots \\ p_1^0 p_2^{\alpha_2} p_3^{\alpha_3}, p_1^1 p_2^{\alpha_2} p_3^{\alpha_3}, \dots, p_1^{\alpha_1} p_2^{\alpha_2} p_3^{\alpha_3} \end{pmatrix}_{(\alpha_2 + 1)(\alpha_3 + 1) \times (\alpha_1 + 1)}$$

In a Tri-factograph *G*, we observe that for $i \neq l, j \neq m$ and $k \neq n$, the vertex $p_1^i p_2^j p_3^k$ is adjacent to $p_1^l p_2^m p_3^n$ in *G* if and only if $i + l \leq \alpha_1, j + m \leq \alpha_2$ and $k + n \leq \alpha_3$. Consider the first $(\alpha_1 + 1)$ vertices $p_1^0 p_2^0 p_3^0, p_1^1 p_2^0 p_3^0, \dots, p_1^{\alpha_1} p_2^0 p_3^0$, by our definition, $p_1^0 p_2^0 p_3^0$ adjacent with rest of the vertices which implies $d(p_1^0 p_2^0 p_3^0) = (\alpha_1 + 1)(\alpha_2 + 1)(\alpha_3 + 1) - 1$. We pick the second vertex $p_1^1 p_2^0 p_3^0$, exactly $\alpha_1(\alpha_2 + 1)(\alpha_3 + 1)$ combination of vertices satisfy our condition and among that $p_1^1 p_2^0 p_3^0$ adjacent to remaining vertices, which implies $d(p_1^1 p_2^0 p_3^0) = \alpha_1(\alpha_2 + 1)(\alpha_3 + 1) - 1$. Consider $\left(\frac{\alpha_1}{2} + 2\right)^{th}$

vertex $p_1^{\frac{\alpha}{2}+1}p_2^0p_3^0$, exactly $\frac{\alpha_1}{2}(\alpha_2+1)(\alpha_3+1)$ combination of vertices satisfy our adjacency condition, also $p_1^{\frac{\alpha_1}{2}+1}p_2^0p_3^0$ adjacent to $\frac{\alpha_1}{2}(\alpha_2+1)(\alpha_3+1)$ vertices. Therefore, $d\left(p_1^{\frac{\alpha_1}{2}+1}p_2^0p_3^0\right) = \frac{\alpha_1}{2}(\alpha_2+1)(\alpha_3+1)$. Continuing like that $p_1^{\alpha_1} p_2^0 p_3^0$ adjacent with $(\alpha_2 + 1)(\alpha_3 + 1)$ vertices implies $d(p_1^{\alpha_1} p_2^0 p_3^0) = (\alpha_2 + 1)(\alpha_3 + 1)$. Consider the second $(\alpha_1 + 1)$ vertices $p_1^0 p_2^1 p_3^0$, $p_1^1 p_2^1 p_3^0$, $p_1^2 p_3^1 p_3^0$, ..., $p_1^{\alpha_1} p_3^1 p_3^0$ have degree sequence as follows $d(p_1^0 p_2^0 p_3^0) = (\alpha_1 + 1)\alpha_2(\alpha_3 + 1) - 1,$ $d (p_1^1 p_2^1 p_3^0) = \alpha_1 \alpha_2 (\alpha_3 + 1) - 1, \dots, d \left(p_1^{\frac{\alpha_1}{2} + 1} p_2^1 p_3^0 \right) =$ $\frac{\alpha_1}{2} \alpha_2 (\alpha_3 + 1), \dots, d \left(p_1^{\alpha_1} p_2^1 p_3^0 \right) = \alpha_2 (\alpha_3 + 1).$ Take $\left(\frac{\alpha_2}{2}+2\right)^{th}$ (α_1+1) vertices have degree sequence $d\left(p_1^0 p_2^{\frac{\alpha_2}{2}+1} p_3^0\right)$ $= (\alpha_1 + 1)\frac{\alpha_2}{2}(\alpha_3 + 1), d\left(p_1^1 p_2^{\frac{\alpha_2}{2} + 1} p_3^0\right)$ $= \alpha_1 \frac{\alpha_2}{2} (\alpha_3 + 1), \dots, d\left(p_1^{\alpha_1} p_2^{\frac{\alpha_2}{2} + 1} p_3^0\right) = \frac{\alpha_2}{2} (\alpha_3 + 1).$ Also $(\alpha_2 + 1)^{th}$ $(\alpha_1 + 1)$ vertices have degree sequence $d(p_1^0 p_2^{\alpha_2} p_3^0) = (\alpha_1 + 1)(\alpha_3 + 1), d(p_1^1 p_2^{\alpha_2} p_3^0) =$ $\alpha_1(\alpha_3+1), \dots, d(p_1^{\alpha_1}p_2^{\alpha_2}p_3^0) = (\alpha_3+1).$

Finally, $(\alpha_2 + 1)(\alpha_3 + 1)^{th} (\alpha_1 + 1)$ vertices have degree sequence $d(p_1^0 p_2^{\alpha_2} p_3^{\alpha_3}) = (\alpha_1 + 1), d(p_1^1 p_2^{\alpha_2} p_3^{\alpha_3}) = \alpha_1, ..., d(p_1^{\alpha_1} p_2^{\alpha_2} p_3^{\alpha_3}) = 1.$

Hence the theorem. Similarly we can prove (ii), (iii) and (iv) parts.

C. Theorem

The clique number of a Tri-factograph G is

(i)
$$\omega(G) = \left(\frac{\alpha_1}{2} + 1\right) \left(\frac{\alpha_2}{2} + 1\right) \left(\frac{\alpha_3}{2} + 1\right)$$

when $\alpha_1, \alpha_2, \alpha_3$ are even.

(ii)
$$\omega(G) = \left(\left\lfloor \frac{\alpha_1}{2} \right\rfloor + 1\right) \left(\left\lfloor \frac{\alpha_2}{2} \right\rfloor + 1\right) \left(\left\lfloor \frac{\alpha_3}{2} \right\rfloor + 1\right) + 3$$

when $\alpha_1, \alpha_2, \alpha_3$ are odd.

Proof:

Let G = (V, E) be a Tri-factograph with

ISSN: 2231-5373

http://www.ijmttjournal.org

Page 50

International Journal of Mathematics Trends and Technology- Volume21 Number1 - May 2015

 $z = p_1^{\alpha_1} p_2^{\alpha_2} p_3^{\alpha_3} \text{ and } V = \{p_1^0 p_2^0 p_3^0, p_1^1 p_2^0 p_3^0, \dots, p_1^{\alpha_1} p_2^{\alpha_2} p_3^{\alpha_3}\} \text{ be}$ the vertex set of *G*. We consider the set $S = \left\{p_1^x p_2^y p_3^z / 0 \le x \le \frac{\alpha_1}{2}, 0 \le y \le \frac{\alpha_2}{2} \text{ and } 0 \le z \le \frac{\alpha_3}{2}\right\}$ proper subset of V. We seek to prove that the subgraph

induced by S is the maximal clique of G.

Claim : $\langle S \rangle$ is a clique of *G*. In *G*, we observe that for $i \neq l, j \neq m$ and $j \neq m$, the

vertex $p_1^i p_2^j p_3^k$ is adjacent with $p_1^l p_2^m p_3^n$ in *G* if and only if $i + l \le \alpha_1, j + m \le \alpha_2$ and $k + m \le \alpha_3$. It is enough to prove that every pair of distinct vertices in *S* is adjacent. Take any two arbitrary vertices in *S* such as $p_1^a p_2^b p_3^c$ and $p_1^d p_2^e p_3^f$. Since $a + d \le \alpha_1$, $b + e \le \alpha_2$ and $c + f \le \alpha_3$ implies $p_1^a p_2^b p_3^c$ and $p_1^d p_2^e p_3^f$ are adjacent. Which gives each pair of distinct vertices in *S* is adjacent implies $\langle S \rangle$ is a clique of *G*. It remains to show that $\langle S \rangle$ is the maximal clique of *G*. Suppose we take any arbitrary vertex *v* in *V* which is not in *S*, by our factograph condition $\langle S + \{v\} \rangle$ cannot be a clique of *G*. Therefore, $\langle S \rangle$ is the maximal clique of *G*. Also $\omega(G) = |S| = (\frac{\alpha_1}{2} + 1)(\frac{\alpha_2}{2} + 1)(\frac{\alpha_3}{2} + 1)$.

(ii) When $\alpha_1, \alpha_2, \alpha_3$ are odd.

Consider the set $S = \left\{ p_1^x p_2^y p_3^z / 0 \le x \le \left\lfloor \frac{\alpha_1}{2} \right\rfloor, 0 \le y \le \alpha 22 \text{ and } 0 \le z \le \alpha 32 \cup p1\alpha 12p20p30, p10p2\alpha 22p30, p10p20p3\alpha 32 \text{ proper subset of V. We seek to prove that the subgraph of$ *G*induced by*S*is the maximal clique of*G*. To prove that every pair of distinct vertices in*S* $is adjacent, take any two arbitrary vertices <math>p_1^a p_2^b p_3^c$ and $p_1^d p_2^e p_3^f$ in S.

be Since $a + d \le \alpha_1$, $b + e \le \alpha_2$ and $c + f \le \alpha_3$ is the set condition, $p_1^a p_2^b p_3^c$ and $p_1^d p_2^e p_3^f$ are adjacent. Also, $\langle S + \{v\} \rangle$ where $v \in V \setminus S$ in not a clique of *G* implies $\langle S \rangle$ is the maximal clique of *G* and $\omega(S) = |S| =$ $\left(\left\lfloor \frac{\alpha_1}{2} \right\rfloor + 1\right) \left(\left\lfloor \frac{\alpha_2}{2} \right\rfloor + 1\right) \left(\left\lfloor \frac{\alpha_3}{2} \right\rfloor + 1\right) + 3.$

D. Remark

When exactly one of α_i is odd where i = 1,2,3, then the clique number of a Tri-factograph *G* is

$$\omega(G) = \left(\left\lfloor \frac{\alpha_1}{2} \right\rfloor + 1 \right) \left(\frac{\alpha_2}{2} + 1 \right) \left(\frac{\alpha_3}{2} + 1 \right) + 1, \text{ here } \alpha_1 \text{ is odd }.$$

E. Example

Consider G with $z = p_1^1 p_2^1 p_3^2$. Then the order of G is 12.

We observe that, the degree sequence of *G* is s: 11, 7, 4, 6, 4, 2, 6, 4, 2, 3, 2, 1 and *ω*(*G*) is 4.

REFERENCES

- [1] E. Giftin Vedha Merly and N. Gnanadhas," On Factograph", International Journal of Mathematics Research, Volume 4, Number 2(2012), P.P 125-131.
- [2] E. Giftin Vedha Merly and N. Gnanadhas, "Some more Results on Facto Graphs", International Journal of Mathematical Analysis, Volume 6, 2012, No.50, P.P 2483-2492.
- [3] "Elementary Number Theory" David. M. Burton University of New Hampshire.
- [4] Frank Harary, 1872, "Graph Theory", Addition Wesly Publishing Company.
- [5] Gary Chartrant and Ping Znank, "Introduction to Graph Theory", Tata McGraw-Hill Edition.
- [6] J.W.Archbold, "Algebra", London Sir Issac Pitman and Sons Ltd.
- [7] Zhiba Chen, "Integral Sum Graphs from Identification", Discrete Math 181 (1998), 77-90.

ISSN: 2231-5373

http://www.ijmttjournal.org