Degree Sequence and Clique Number of Bi-Factograph and Tri-Factograph

E. Ebin Raja Merly ${ }^{1}$, E. Giftin Vedha Merly ${ }^{2}$ and A. M. Anto ${ }^{3}$
${ }^{1}$ Assistant Professor in Mathematics, Nesamony Memorial Christian College, Marthandam - 629165, India.
${ }^{2}$ Assistant Professor in Mathematics, Scott Christian College, Nagercoil - 629003, India.
${ }^{3}$ Research scholar in Mathematics, Nesamony Memorial Christian College, Marthandam - 629165, India.

Abstract

By the theorem of unique factorization for integers, every positive integer z can be written in the form $z=p_{1}^{\alpha_{1}} \boldsymbol{p}_{2}^{\alpha_{2}} \ldots \boldsymbol{p}_{r}^{\alpha_{r}}$, where $p_{1}, p_{2}, \ldots p_{r}$ are distinct primes, $\alpha_{1}, \alpha_{2}, \ldots \alpha_{r}$ are positive integers. We can construct a graph G which is associated with this z. Positive integral divisors of z being a vertex set V and two distinct vertices of V are adjacent in G if their product is in V. In z, when $r=1$ then the corresponding graph is called the perfect factograph. Here we extend the concept to $r=2,3$ and the corresponding graphs are called Bi-factograph and Tri-factograph respectively. In this paper we attempt to find the degree sequence and clique number of Bi-factograph and Tri-factograph.

Keywords- Factograph, Perfect factograph, Bi-factograph, Tri-factograph, clique number.

I. INTRODUCTION

By a graph, we mean a finite undirected, non - trivial graph without loops and multiple edges. The order and size of a graph is denoted by p and q respectively. For terms not defined, we refer to Frank Harary [4]. The concept of factograph and perfect factograph was introduced by E. Giftin Vedha Merly and N. Gnanadhas [1],[2]. In this paper we extend the concept to Bi-factograph and Tri-factograph. For a positive integer z, we define a factograph as $G=(V, E)$ where $V=\left\{v_{i} / v_{i}\right.$ is a factor of $\left.z\right\}$ and two distinct vertices v_{i} and v_{j} are adjacent if and only if their product is in V. A clique of a graph G is a complete subgraph of G. A clique of G is the maximal clique, if it is not properly contained in another clique of G. Number of vertices in maximal clique of G is called the clique number of G and is denoted by $\omega(G)$. For $v \in V, d(v)$ is the number of edges incident with v. A factograph G with $z=p_{1}^{\alpha_{1}}$, where p is a prime and α is any positive integer is called a perfect factograph.

II. Degree sequence and Clique number of Bi -

FACTOGRAPH.

A. Definition

A factograph G with $z=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}$ where p_{1}, p_{2} are distinct primes and α_{1}, α_{2} are positive integers is called a Bi factograph.

B. Theorem

Let α_{1} and α_{2} be two positive integers, p_{1} and p_{2} be two distinct primes. A Bi-factograph G with $z=P_{1}^{\alpha_{1}} P_{2}^{\alpha_{2}}$ has order $\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right)$ and the degree sequence of G is given by
i) $s_{1}:\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right)-1,\left(\alpha_{1}+1\right) \alpha_{2}-1, \ldots$
$\left(\alpha_{1}+1\right) \frac{\alpha_{2}}{2}, \ldots \alpha_{1}+1, \alpha_{1}\left(\alpha_{2}+1\right)-1$,
$\alpha_{1} \alpha_{2}-1, \ldots \frac{\alpha_{1} \alpha_{2}}{2}, \ldots \alpha_{1}$,
$\ldots \frac{\alpha_{1}}{2}\left(\alpha_{2}+1\right), \frac{\alpha_{1} \alpha_{2}}{2}, \ldots \frac{\alpha_{1} \alpha_{2}}{4}, \ldots \frac{\alpha_{1}}{2}, \ldots \alpha_{2}+1, \alpha_{2}, \ldots \frac{\alpha_{2}}{2}, \ldots 1$,
where α_{1} and α_{2} are even.
ii) $s_{2}:\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right)-1$,
$\left(\alpha_{1}+1\right) \alpha_{2}-1, \ldots\left(\alpha_{1}+1\right)\left\lfloor\frac{\alpha_{2}}{2}\right\rfloor, \ldots \alpha_{1}+1$,
$\alpha_{1}\left(\alpha_{2}+1\right)-1, \alpha_{1} \alpha_{2}-1, \ldots \alpha_{1}\left\lfloor\frac{\alpha_{2}}{2}\right\rfloor, \ldots \alpha_{1}$,
$\ldots\left\lfloor\frac{\alpha_{1}}{2}\right\rfloor\left(\alpha_{2}+1\right),\left\lfloor\frac{\alpha_{1}}{2}\right\rfloor \alpha_{2}, \ldots\left\lfloor\frac{\alpha_{1}}{2}\right\rfloor\left\lfloor\frac{\alpha_{2}}{2}\right\rfloor$,
$\ldots\left\lfloor\frac{\alpha_{1}}{2}\right\rfloor, \ldots \alpha_{2}+1, \alpha_{2}, \ldots\left\lfloor\frac{\alpha_{2}}{2}\right\rfloor, \ldots 1$, where α_{1} and α_{2} are odd.
iii) $s_{3}:\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right)-1,\left(\alpha_{1}+1\right) \alpha_{2}-1, \ldots$
$\left(\alpha_{1}+1\right) \frac{\alpha_{2}}{2}, \ldots \alpha_{1}+1, \alpha_{1}\left(\alpha_{2}+1\right)-1$,
$\alpha_{1} \alpha_{2}-1, \ldots \frac{\alpha_{1} \alpha_{2}}{2}, \ldots \alpha_{1}, \ldots$
$\left\lfloor\frac{\alpha_{1}}{2}\right\rfloor\left(\alpha_{2}+1\right),\left\lfloor\frac{\alpha_{1}}{2}\right\rfloor \alpha_{2}, \ldots\left\lfloor\frac{\alpha_{1}}{2}\right\rfloor \frac{\alpha_{2}}{2}, \ldots\left\lfloor\frac{\alpha_{1}}{2}\right\rfloor \ldots \alpha_{2}+1, \alpha_{2}, \ldots \frac{\alpha_{2}}{2}, \ldots 1$.
where α_{1} is odd and α_{2} is even.
iv) $s_{4}:\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right)-1,\left(\alpha_{1}+1\right) \alpha_{2}-1, \ldots$
$\left(\alpha_{1}+1\right)\left\lfloor\frac{\alpha_{2}}{2}\right\rfloor, \ldots \alpha_{1}+1, \alpha_{1}\left(\alpha_{2}+1\right)-1$,
$\alpha_{1} \alpha_{2}-1, \ldots \alpha_{1}\left\lfloor\frac{\alpha_{2}}{2}\right\rfloor, \ldots \alpha_{1}, \ldots$
$\frac{\alpha_{1}}{2}\left(\alpha_{2}+1\right), \frac{\alpha_{1}}{2} \alpha_{2}, \ldots \frac{\alpha_{1}}{2}\left\lfloor\frac{\alpha_{2}}{2}\right\rfloor, \ldots \frac{\alpha_{1}}{2}, \ldots \alpha_{2}+1, \alpha_{2}, \ldots\left\lfloor\frac{\alpha_{2}}{2}\right\rfloor, \ldots 1$,
where α_{1} is even and α_{2} is odd.

Proof:

i) When α_{1} and α_{2} are even, let $G=(V, E)$ be a Bi-factograph. If $z=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{r}^{\alpha_{r}}$ then the number of positive divisors of z is $\prod_{i=1}^{r}\left(\alpha_{i}+1\right)$.Therefore, number of positive divisors of $z=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}$ is $\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right)$ so that the order of G is $\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right)$. Let $V=\left\{p_{1}^{0} p_{2}^{0}, p_{1}^{0} p_{2}^{1}, \ldots p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}\right\}$.

This vertex set can be represented by the $\left(\alpha_{1}+1\right) \times\left(\alpha_{2}+1\right)$ array form as follows
$\left(\begin{array}{cccccc}p_{1}^{0} p_{2}^{0}, & p_{1}^{0} p_{2}^{1}, & p_{1}^{0} p_{2}^{2}, & \ldots & p_{1}^{0} & p_{2}^{\alpha_{2}} \\ p_{1}^{1} p_{2}^{0}, & p_{1}^{1} & p_{2}^{1}, p_{1}^{1} & p_{2}^{2}, & \ldots & p_{1}^{1} p_{2}^{\alpha_{2}} \\ \vdots & & \vdots & & \vdots \\ p_{1}^{\alpha_{1}} p_{2}^{0}, & p_{1}^{\alpha_{1}} & p_{2}^{1}, & p_{1}^{\alpha_{1}} & p_{2}^{2} & \ldots\end{array} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}\right)_{\left(\alpha_{1}+1\right) \times\left(\alpha_{2}+1\right)}$.
In a Bi-factograph G, we observe that for $i \neq k$ and $j \neq l$ then the vertex $p_{1}^{i} p_{2}^{j}$ is adjacent to $p_{1}^{k} p_{2}^{l}$ in G if and only if $i+k \leq \alpha_{1}$ and $j+l \leq \alpha_{2}$. Consider the first $\left(\alpha_{2}+1\right)$ vertices, $p_{1}^{0} p_{2}^{0}, p_{1}^{0} p_{2}^{1}, p_{1}^{0} p_{2}^{2}, \ldots, p_{1}^{0} p_{2}^{\alpha_{2}}$. By our factograph condition, it is obvious that $p_{1}^{0} p_{2}^{0}$ is adjacent to rest of the vertices implies $d\left(p_{1}^{0} p_{2}^{0}\right)=\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right)-1$. Pick the second
vertex $p_{1}^{0} p_{2}^{1}$, exactly $\left(\alpha_{1}+1\right) \alpha_{2}$ combination of verities satisfy the condition and among that $p_{1}^{0} p_{2}^{1}$ is adjacent to remaining vertices which implies $d\left(p_{1}^{0} p_{2}^{1}\right)=\left(\alpha_{1}+1\right) \alpha_{2}-1$. Consider the vertex $p_{1}^{0} p_{2}^{\frac{\alpha_{2}}{2}+1}$, exactly $\left(\alpha_{1}+1\right)\left(\frac{\alpha_{2}}{2}\right)$ combination of vertices satisfy the condition of adjacency, among that the vertex $p_{1}^{0} p_{2}^{\frac{\alpha_{2}}{2}+1}$ is not in that combination which gives $d\left(p_{1}^{0} p_{2}^{\frac{\alpha_{2}}{2}+1}\right)=\left(\alpha_{1}+1\right)\left(\frac{\alpha_{2}}{2}\right)$. Continuing this way, the vertex $p_{1}^{0} p_{2}^{\alpha_{2}}$ is adjacent to $\left(\alpha_{1}+1\right)$ vertices and $d\left(p_{1}^{0} p_{2}^{\alpha_{2}}\right)=\left(\alpha_{1}+1\right)$. Consider $\left(\frac{\alpha_{1}}{2}+2\right)^{\text {th }}$ row of $\alpha_{2}+1$ vertices $p_{1}^{\frac{\alpha_{2}}{2}+1} p_{2}^{0}, p_{1}^{\frac{\alpha_{2}}{2}+1} p_{2}^{1}, \ldots \ldots \ldots p_{1}^{\frac{\alpha_{2}}{2}+1} p_{2}^{\alpha_{2}}$ have the degree sequence $\quad d\left(p_{1}^{\frac{\alpha_{1}}{2}+1} p_{2}^{0}\right)=\left(\frac{\alpha_{1}}{2}\right)\left(\alpha_{2}+1\right), d\left(p_{2}^{\frac{\alpha_{1}}{2}+1} p_{2}^{1}\right)=$ $\left(\frac{\alpha_{1}}{2}\right) \alpha_{2}, \ldots d\left(p_{2}^{\frac{\alpha_{1}}{2}+1} p_{2}^{\alpha_{2}}\right)=\frac{\alpha_{1}}{2}$. Finally, $\left(\alpha_{1}+1\right)^{\text {th }}$ row of $\left(\alpha_{2}+1\right)$ vertices $p_{1}^{\alpha_{1}} p_{2}^{0}, p_{1}^{\alpha_{1}} p_{2}^{1}, p_{1}^{\alpha_{1}} p_{2}^{2} \ldots \ldots, p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}$ have degree sequence
$d\left(p_{1}^{\alpha_{1}} p_{2}^{0}\right)=\alpha_{2}+1, d\left(p_{1}^{\alpha_{1}} p_{2}^{1}\right)=\alpha_{2}, \ldots \ldots, d\left(p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}\right)=1$.
Therefore, G has $\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right)$ vertices and has the degree sequence,
$s_{1}:\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right)-1,\left(\alpha_{1}+1\right) \alpha_{2}-1, \ldots$
$\left(\alpha_{1}+1\right) \frac{\alpha_{2}}{2}, \ldots \alpha_{1}+1, \alpha_{1}\left(\alpha_{2}+1\right)-1, \alpha_{1} \alpha_{2}-1$,
$\ldots \frac{\alpha_{1} \alpha_{2}}{2}, \ldots \alpha_{1}, \ldots \frac{\alpha_{1}}{2}\left(\alpha_{2}+1\right), \frac{\alpha_{1} \alpha_{2}}{2}, \ldots \frac{\alpha_{1} \alpha_{2}}{4}, \ldots \frac{\alpha_{1}}{2}$,
$\ldots \alpha_{2}+1, \alpha_{2}, \ldots \frac{\alpha_{2}}{2}, \ldots 1$.
Similar manner we can prove case (ii) (iii) and (iv).

C. Theorem

The clique number of a Bi -factograph G is
i) $\omega(G)=\left(\frac{\alpha_{1}}{2}+1\right)\left(\frac{\alpha_{2}}{2}+1\right)$ when α_{1} and α_{2} are even.
ii) $\omega(G)=\left(\left\lfloor\frac{\alpha_{1}}{2}\right\rfloor+1\right)\left(\left\lfloor\frac{\alpha_{2}}{2}\right\rfloor+1\right)+2$
when α_{1} and α_{2} are odd.

Proof:

i) If α_{1} and α_{2} are even, let $G=(V, E)$ be a Bi factograph and $V=\left\{p_{1}^{0} p_{2}^{0}, p_{1}^{0} p_{2}^{1}, \ldots \ldots \ldots, p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}\right\}$ be the vertex set of G. We consider the set $S=\left\{p_{1}^{x} p_{2}^{y} / 0 \leq x \leq \frac{\alpha_{1}}{2}\right.$ and $\left.0 \leq y \leq \frac{\alpha_{2}}{2}\right\}$ which is a proper
subset of V. We seek to prove that the subgraph of G induced by S is the maximal clique of G .

In G, we observe that for $i \neq k$ and $j \neq l$, the vertex $p_{1}^{i} p_{2}^{j}$ is adjacent to $p_{1}^{k} p_{2}^{l}$ in G if and only if $i+k \leq \alpha_{1}$ and $j+l \leq \alpha_{2}$. We have to prove that every pair of distict vertices in S are adjacent. Take any two arbitrary vertices $p_{1}^{a} p_{2}^{b}$ and $p_{1}^{c} p_{2}^{d}$ in S. Since $a+c \leq \alpha_{1}$ and $b+d \leq \alpha_{2}$, we have $p_{1}^{a} p_{2}^{b}$ is adjacent to $p_{1}^{c} p_{2}^{d}$. Therefore each pair of distinct vertices in S are adjacent, which implies $\langle S\rangle$ is a clique of G. It remains to show that $\langle S\rangle$ is the maximal clique of G. Suppose we take any arbitrary vertex v in V which is not in S.

Since Bi-factograph, a vertex v cannot be adjacent with all vertices of S implies $\langle S+\{v\}\rangle$ cannot be the clique of G. Therefore $\langle S\rangle$ is the maximal clique of G and $\omega(G)=|S|=$ $\left(\frac{\alpha_{1}}{2}+1\right)\left(\frac{\alpha_{2}}{2}+1\right)$.
Similarly we can prove case (ii).

D. Remark

(i) When α_{1} is odd and α_{2} is even, then the clique number of a Bi-factograph G is

$$
\omega(G)=\left(\left\lfloor\frac{\alpha_{1}}{2}\right\rfloor+1\right)\left(\frac{\alpha_{2}}{2}+1\right)+1
$$

(ii) When α_{2} is odd and α_{1} is even, then the clique number of a Bi -factograph G is

$$
\omega(G)=\left(\frac{\alpha_{1}}{2}+1\right)\left(\left\lfloor\frac{\alpha_{2}}{2}\right\rfloor+1\right)+1 .
$$

E. Example

Consider a Bi-factograph G with $z=p_{1}^{2} p_{2}^{2}$. Here order of G is 9 .

We observe that, the degree sequence of G is
s: $8,5,3,5,3,2,3,2,1$ and $\omega(G)$ is 4.

III. Degree sequence and clique number of Tri-

FACTOGRAPH

A. Definition

A factograph G with $z=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}}$, where p_{1}, p_{2}, p_{3} are distinct primes and $\alpha_{1}, \alpha_{2}, \alpha_{3}$ any positive integers is called a Tri-factograph.

B. Theorem

Let α_{1}, α_{2} and α_{3} be any positive integers, p_{1}, p_{2} and p_{3} be any distinct primes, G is a Tri-factograph with
$z=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}}$, then G is of order
$\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right)\left(\alpha_{3}+1\right)$ and the degree sequence of G is given by,
(i) When $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are even
$s_{1}:\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right)\left(\alpha_{3}+1\right)-1$,
$\alpha_{1}\left(\alpha_{2}+1\right)\left(\alpha_{3}+1\right)-1, \ldots \frac{\alpha_{1}}{2}\left(\alpha_{2}+1\right)\left(\alpha_{3}+1\right), \ldots$,
$\left(\alpha_{2}+1\right)\left(\alpha_{3}+1\right),\left(\alpha_{1}+1\right) \alpha_{2}\left(\alpha_{3}+1\right)-1$,
$\alpha_{1} \alpha_{2}\left(\alpha_{3}+1\right)-1, \ldots, \frac{\alpha_{1}}{2} \alpha_{2}\left(\alpha_{3}+1\right), \ldots, \alpha_{2}\left(\alpha_{3}+1\right), \ldots$
$\left(\alpha_{1}+1\right) \frac{\alpha_{2}}{2}\left(\alpha_{3}+1\right), \alpha_{1} \frac{\alpha_{2}}{2}\left(\alpha_{3}+1\right), \ldots$,
$\frac{\alpha_{1}}{2} \frac{\alpha_{2}}{2}\left(\alpha_{3}+1\right), \ldots, \frac{\alpha_{2}}{2}\left(\alpha_{3}+1\right), \ldots\left(\alpha_{1}+1\right), \alpha_{1}, \ldots, \frac{\alpha_{1}}{2}, \ldots, 1$
(ii) When $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are odd
$s_{2}:\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right)\left(\alpha_{3}+1\right)-1$,
$\alpha_{1}\left(\alpha_{2}+1\right)\left(\alpha_{3}+1\right)-1, \ldots,\left\lfloor\frac{\alpha_{1}}{2}\right\rfloor\left(\alpha_{2}+1\right)\left(\alpha_{3}+1\right), \ldots$,
$\left(\alpha_{2}+1\right)\left(\alpha_{3}+1\right),\left(\alpha_{1}+1\right) \alpha_{2}\left(\alpha_{3}+1\right)-1$,
$\alpha_{1} \alpha_{2}\left(\alpha_{3}+1\right)-1, \ldots,\left\lfloor\frac{\alpha_{1}}{2}\right\rfloor \alpha_{2}\left(\alpha_{3}+1\right), \ldots, \alpha_{2}\left(\alpha_{3}+1\right), \ldots$
$\left(\alpha_{1}+1\right)\left\lfloor\frac{\alpha_{2}}{2}\right\rfloor\left(\alpha_{3}+1\right), \alpha_{1}\left\lfloor\frac{\alpha_{2}}{2}\right\rfloor\left(\alpha_{3}+1\right), \ldots$,
$\left\lfloor\frac{\alpha_{1}}{2}\right\rfloor\left\lfloor\frac{\alpha_{2}}{2}\right\rfloor\left(\alpha_{3}+1\right), \ldots,\left\lfloor\frac{\alpha_{2}}{2}\right\rfloor\left(\alpha_{3}+1\right)$,
$\ldots\left(\alpha_{1}+1\right), \alpha_{1}, \ldots,\left\lfloor\frac{\alpha_{1}}{2}\right\rfloor, \ldots, 1$.
(iii) When exactly one α_{i} is odd, where $i=1,2,3$.
$s_{3}:\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right)\left(\alpha_{3}+1\right)-1$,
$\alpha_{1}\left(\alpha_{2}+1\right)\left(\alpha_{3}+1\right)-1, \ldots,\left\lfloor\frac{\alpha_{1}}{2}\right\rfloor\left(\alpha_{2}+1\right)\left(\alpha_{3}+1\right), \ldots$,
$\left(\alpha_{2}+1\right)\left(\alpha_{3}+1\right),\left(\alpha_{1}+1\right) \alpha_{2}\left(\alpha_{3}+1\right)-1$,
$\alpha_{1} \alpha_{2}\left(\alpha_{3}+1\right)-1, \ldots,\left\lfloor\frac{\alpha_{1}}{2}\right\rfloor \alpha_{2}\left(\alpha_{3}+1\right), \ldots, \alpha_{2}\left(\alpha_{3}+1\right), \ldots$
$\left(\alpha_{1}+1\right) \frac{\alpha_{2}}{2}\left(\alpha_{3}+1\right), \alpha_{1} \frac{\alpha_{2}}{2}\left(\alpha_{3}+1\right), \ldots$,
$\left\lfloor\frac{\alpha_{1}}{2}\right\rfloor \frac{\alpha_{2}}{2}\left(\alpha_{3}+1\right), \ldots, \frac{\alpha_{2}}{2}\left(\alpha_{3}+1\right), \ldots\left(\alpha_{1}+1\right), \alpha_{1}, \ldots,\left\lfloor\frac{\alpha_{1}}{2}\right\rfloor, \ldots, 1$ and here α_{1} is odd.
(iv) When exactly one α_{i} is even, where $i=1,2,3$.
$S_{4}:\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right)\left(\alpha_{3}+1\right)-1$,
$\alpha_{1}\left(\alpha_{2}+1\right)\left(\alpha_{3}+1\right)-1, \ldots, \frac{\alpha_{1}}{2}\left(\alpha_{2}+1\right)\left(\alpha_{3}+1\right), \ldots$,
$\left(\alpha_{2}+1\right)\left(\alpha_{3}+1\right),\left(\alpha_{1}+1\right) \alpha_{2}\left(\alpha_{3}+1\right)-1$,
$\alpha_{1} \alpha_{2}\left(\alpha_{3}+1\right)-1, \ldots, \frac{\alpha_{1}}{2} \alpha_{2}\left(\alpha_{3}+1\right), \ldots, \alpha_{2}\left(\alpha_{3}+1\right), \ldots$
$\left(\alpha_{1}+1\right)\left\lfloor\frac{\alpha_{2}}{2}\right\rfloor\left(\alpha_{3}+1\right), \alpha_{1}\left\lfloor\frac{\alpha_{2}}{2}\right\rfloor\left(\alpha_{3}+1\right), \ldots$,
$\frac{\alpha_{1}}{2}\left\lfloor\frac{\alpha_{2}}{2}\right\rfloor\left(\alpha_{3}+1\right), \ldots,\left\lfloor\frac{\alpha_{2}}{2}\right\rfloor\left(\alpha_{3}+1\right), \ldots$
$\left(\alpha_{1}+1\right), \alpha_{1}, \ldots, \frac{\alpha_{1}}{2}, \ldots, 1$ and here α_{1} is even.
Proof:
(i) Let $G=(V, E)$ be the Tri-factograph. We have the number of positive divisors of $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}}$ is
$\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right)\left(\alpha_{3}+1\right)$ and hence the order of G is $\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right)\left(\alpha_{3}+1\right)$.
Let $V(G)=\left\{\left\{p_{1}^{0} p_{2}^{0} p_{3}^{0}, p_{1}^{1} p_{2}^{0} p_{3}^{0}, \ldots p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}}\right\}\right.$. This vertex set can be represented by the
$\left(\alpha_{2}+1\right)\left(\alpha_{3}+1\right) \times\left(\alpha_{1}+1\right)$ array form as follows
$\left(\begin{array}{c}p_{1}^{0} p_{2}^{0} p_{3}^{0}, p_{1}^{1} p_{2}^{0} p_{3}^{0}, \ldots, p_{1}^{\alpha_{1}} p_{2}^{0} p_{3}^{0} \\ p_{1}^{0} p_{2}^{1} p_{3}^{0}, p_{1}^{1} p_{2}^{1} p_{3}^{0}, \ldots, p_{1}^{\alpha_{1}} p_{2}^{1} p_{3}^{0} \\ \vdots \\ \vdots \\ p_{1}^{0} p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}}, p_{1}^{1} p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}}, \ldots, p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}}\end{array}\right)_{\left(\alpha_{2}+1\right)\left(\alpha_{3}+1\right) \times\left(\alpha_{1}+1\right)}$
In a Tri-factograph G, we observe that for $i \neq l, j \neq m$ and $k \neq n$, the vertex $p_{1}^{i} p_{2}^{j} p_{3}^{k}$ is adjacent to $p_{1}^{l} p_{2}^{m} p_{3}^{n}$ in G if and only if $i+l \leq \alpha_{1}, j+m \leq \alpha_{2}$ and $k+n \leq \alpha_{3}$. Consider the first $\left(\alpha_{1}+1\right)$ vertices $p_{1}^{0} p_{2}^{0} p_{3}^{0}, p_{1}^{1} p_{2}^{0} p_{3}^{0}, \ldots, p_{1}^{\alpha_{1}} p_{2}^{0} p_{3}^{0}$, by our definition, $p_{1}^{0} p_{2}^{0} p_{3}^{0}$ adjacent with rest of the vertices which implies $\quad d\left(p_{1}^{0} p_{2}^{0} p_{3}^{0}\right)=\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right)\left(\alpha_{3}+1\right)-1$. We pick the second vertex $p_{1}^{1} p_{2}^{0} p_{3}^{0}$, exactly $\alpha_{1}\left(\alpha_{2}+1\right)\left(\alpha_{3}+1\right)$ combination of vertices satisfy our condition and among that $p_{1}^{1} p_{2}^{0} p_{3}^{0}$ adjacent to remaining vertices, which implies $d\left(p_{1}^{1} p_{2}^{0} p_{3}^{0}\right)=\alpha_{1}\left(\alpha_{2}+1\right)\left(\alpha_{3}+1\right)-1$. Consider $\left(\frac{\alpha_{1}}{2}+2\right)^{t h}$
vertex $p_{1}^{\frac{\alpha}{2}+1} p_{2}^{0} p_{3}^{0}$, exactly $\frac{\alpha_{1}}{2}\left(\alpha_{2}+1\right)\left(\alpha_{3}+1\right)$ combination of vertices satisfy our adjacency condition, also $p_{1}^{\frac{\alpha_{1}}{2}+1} p_{2}^{0} p_{3}^{0}$ adjacent to $\frac{\alpha_{1}}{2}\left(\alpha_{2}+1\right)\left(\alpha_{3}+1\right)$ vertices. Therefore, $d\left(p_{1}^{\frac{\alpha_{1}}{2}+1} p_{2}^{0} p_{3}^{0}\right)=\frac{\alpha_{1}}{2}\left(\alpha_{2}+1\right)\left(\alpha_{3}+1\right)$. Continuing like that $p_{1}^{\alpha_{1}} p_{2}^{0} p_{3}^{0}$ adjacent with $\left(\alpha_{2}+1\right)\left(\alpha_{3}+1\right)$ vertices implies $d\left(p_{1}^{\alpha_{1}} p_{2}^{0} p_{3}^{0}\right)=\left(\alpha_{2}+1\right)\left(\alpha_{3}+1\right)$. Consider the second $\left(\alpha_{1}+1\right) \quad$ vertices $p_{1}^{0} p_{2}^{1} p_{3}^{0}, p_{1}^{1} p_{2}^{1} p_{3}^{0}, p_{1}^{2} p_{3}^{1} p_{3}^{0}, \ldots, p_{1}^{\alpha_{1}} p_{3}^{1} p_{3}^{0}$ have degree sequence as follows
$d\left(p_{1}^{0} p_{2}^{0} p_{3}^{0}\right)=\left(\alpha_{1}+1\right) \alpha_{2}\left(\alpha_{3}+1\right)-1$,
$d\left(p_{1}^{1} p_{2}^{1} p_{3}^{0}\right)=\alpha_{1} \alpha_{2}\left(\alpha_{3}+1\right)-1, \ldots, d\left(p_{1}^{\frac{\alpha_{1}}{2}+1} p_{2}^{1} p_{3}^{0}\right)=$
$\frac{\alpha_{1}}{2} \alpha_{2}\left(\alpha_{3}+1\right), \ldots, d\left(p_{1}^{\alpha_{1}} p_{2}^{1} p_{3}^{0}\right)=\alpha_{2}\left(\alpha_{3}+1\right)$.
Take $\left(\frac{\alpha_{2}}{2}+2\right)^{t h}\left(\alpha_{1}+1\right) \quad$ vertices have degree sequence $d\left(p_{1}^{0} p_{2}^{\frac{\alpha_{2}}{2}+1} p_{3}^{0}\right)$
$=\left(\alpha_{1}+1\right) \frac{\alpha_{2}}{2}\left(\alpha_{3}+1\right), d\left(p_{1}^{1} p_{2}^{\frac{\alpha_{2}}{2}+1} p_{3}^{0}\right)$
$=\alpha_{1} \frac{\alpha_{2}}{2}\left(\alpha_{3}+1\right), \ldots, d\left(p_{1}^{\alpha_{1}} p_{2}^{\frac{\alpha_{2}}{2}+1} p_{3}^{0}\right)=\frac{\alpha_{2}}{2}\left(\alpha_{3}+1\right)$.
Also $\left(\alpha_{2}+1\right)^{\text {th }}\left(\alpha_{1}+1\right)$ vertices have degree sequence $\quad d\left(p_{1}^{0} p_{2}^{\alpha_{2}} p_{3}^{0}\right)=\left(\alpha_{1}+1\right)\left(\alpha_{3}+1\right), d\left(p_{1}^{1} p_{2}^{\alpha_{2}} p_{3}^{0}\right)=$ $\alpha_{1}\left(\alpha_{3}+1\right), \ldots, d\left(p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} p_{3}^{0}\right)=\left(\alpha_{3}+1\right)$.
Finally, $\left(\alpha_{2}+1\right)\left(\alpha_{3}+1\right)^{\text {th }}\left(\alpha_{1}+1\right)$ vertices have degree sequence $d\left(p_{1}^{0} p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}}\right)=\left(\alpha_{1}+1\right), d\left(p_{1}^{1} p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}}\right)=\alpha_{1}, \ldots$, $d\left(p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}}\right)=1$.
Hence the theorem. Similarly we can prove (ii), (iii) and (iv) parts.

C. Theorem

The clique number of a Tri-factograph G is
(i) $\omega(G)=\left(\frac{\alpha_{1}}{2}+1\right)\left(\frac{\alpha_{2}}{2}+1\right)\left(\frac{\alpha_{3}}{2}+1\right)$
when $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are even.
(ii) $\omega(G)=\left(\left\lfloor\frac{\alpha_{1}}{2}\right\rfloor+1\right)\left(\left\lfloor\frac{\alpha_{2}}{2}\right\rfloor+1\right)\left(\left\lfloor\frac{\alpha_{3}}{2}\right\rfloor+1\right)+3$ when $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are odd.

Proof:

Let $G=(V, E)$ be a Tri-factograph with
$z=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}}$ and $V=\left\{p_{1}^{0} p_{2}^{0} p_{3}^{0}, p_{1}^{1} p_{2}^{0} p_{3}^{0}, \ldots, p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}}\right\}$ be the vertex set of G. We consider the set $S=\left\{p_{1}^{x} p_{2}^{y} p_{3}^{z} / 0 \leq x \leq \frac{\alpha_{1}}{2}, 0 \leq y \leq \frac{\alpha_{2}}{2}\right.$ and $\left.0 \leq z \leq \frac{\alpha_{3}}{2}\right\}$ proper subset of V . We seek to prove that the subgraph induced by S is the maximal clique of G.

Claim : $\langle S\rangle$ is a clique of G.
In G, we observe that for $i \neq l, j \neq m$ and $j \neq m$, the vertex $p_{1}^{i} p_{2}^{j} p_{3}^{k}$ is adjacent with $p_{1}^{l} p_{2}^{m} p_{3}^{n}$ in G if and only if $i+l \leq \alpha_{1}, j+m \leq \alpha_{2}$ and $k+m \leq \alpha_{3}$. It is enough to prove that every pair of distinct vertices in S is adjacent. Take any two arbitrary vertices in S such as $p_{1}^{a} p_{2}^{b} p_{3}^{c}$ and $p_{1}^{d} p_{2}^{e} p_{3}^{f}$. Since $a+d \leq \alpha_{1}, b+e \leq \alpha_{2}$ and $c+f \leq \alpha_{3}$ implies $p_{1}^{a} p_{2}^{b} p_{3}^{c}$ and $p_{1}^{d} p_{2}^{e} p_{3}^{f}$ are adjacent. Which gives each pair of distinct vertices in S is adjacent implies $\langle S\rangle$ is a clique of G. It remains to show that $\langle S\rangle$ is the maximal clique of G. Suppose we take any arbitrary vertex v in V which is not in S, by our factograph condition $\langle S+\{v\}\rangle$ cannot be a clique of G. Therefore, $\langle S\rangle$ is the maximal clique of G. Also $\omega(G)=|S|=$ $\left(\frac{\alpha_{1}}{2}+1\right)\left(\frac{\alpha_{2}}{2}+1\right)\left(\frac{\alpha_{3}}{2}+1\right)$.
(ii) When $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are odd.

Consider the set $S=\left\{p_{1}^{x} p_{2}^{y} p_{3}^{z} / 0 \leq x \leq\left\lfloor\frac{\alpha_{1}}{2}\right\rfloor, 0 \leq y \leq\right.$ $\alpha 22$ and $0 \leq z \leq \alpha 32 \cup p 1 \alpha 12 p 20 p 30, p 10 p 2 \alpha 22 p 30$, $p 10 p 20 p 3 \alpha 32$ proper subset of V . We seek to prove that the subgraph of G induced by S is the maximal clique of G. To prove that every pair of distinct vertices in S is adjacent, take any two arbitrary vertices $p_{1}^{a} p_{2}^{b} p_{3}^{c}$ and $p_{1}^{d} p_{2}^{e} p_{3}^{f}$ in S .

Since $a+d \leq \alpha_{1}, b+e \leq \alpha_{2} \quad$ and $\quad c+f \leq \alpha_{3} \quad$ is the condition, $p_{1}^{a} p_{2}^{b} p_{3}^{c}$ and $p_{1}^{d} p_{2}^{e} p_{3}^{f}$ are adjacent.

Also, $<S+\{v\}>$ where $v \in V \backslash S$ in not a clique of G implies $<S>$ is the maximal clique of G and $\omega(S)=|S|=$ $\left(\left\lfloor\frac{\alpha_{1}}{2}\right\rfloor+1\right)\left(\left\lfloor\frac{\alpha_{2}}{2}\right\rfloor+1\right)\left(\left\lfloor\frac{\alpha_{3}}{2}\right\rfloor+1\right)+3$.

D. Remark

When exactly one of α_{i} is odd where $i=1,2,3$, then the clique number of a Tri-factograph G is $\omega(G)=\left(\left\lfloor\frac{\alpha_{1}}{2}\right\rfloor+1\right)\left(\frac{\alpha_{2}}{2}+1\right)\left(\frac{\alpha_{3}}{2}+1\right)+1$, here α_{1} is odd.

E. Example

Consider G with $z=p_{1}^{1} p_{2}^{1} p_{3}^{2}$. Then the order of G is 12.
$G:$

Figure:2
We observe that, the degree sequence of G is $\mathrm{s}: 11,7,4,6,4,2$, $6,4,2,3,2,1$ and $\omega(G)$ is 4 .

References

[1] E. Giftin Vedha Merly and N. Gnanadhas," On Factograph", International Journal of Mathematics Research, Volume 4, Number 2(2012), P.P 125-131.
[2] E. Giftin Vedha Merly and N. Gnanadhas, "Some more Results on Facto Graphs", International Journal of Mathematical Analysis, Volume 6, 2012, No.50, P.P 2483-2492.
[3] "Elementary Number Theory" - David. M. Burton University of New Hampshire.
[4] Frank Harary, 1872, "Graph Theory", Addition - Wesly Publishing Company.
[5] Gary Chartrant and Ping Znank, "Introduction to Graph Theory", Tata McGraw-Hill Edition.
[6] J.W.Archbold, "Algebra", London Sir Issac Pitman and Sons Ltd.
[7] Zhiba Chen, "Integral Sum Graphs from Identification", Discrete Math 181 (1998), 77-90.

