The (A,D) - Ascending Subgraph Decomposition of Cartesian Product of

 some Simple GraphsS. Asha
Assistant Professor, Research Department of Mathematics, Nesamony Memorial
Christian College, Marthandam, Kanyakumari District, Tamil Nadu, India.

Abstract

Alavi et al[1] defined Ascending Subgraph Decomposition(ASD) as decomposition of G with size $\binom{n+1}{2}$ into n subgraphs $G_{1}, G_{2}, G_{3}, \ldots, G_{n}$ without isolated

 vertices such that each G_{i} is isomorphic to a proper subgraph of G_{i+1} for $1 \leq \mathrm{i} \leq \mathrm{n}-1$ and $\left|\mathrm{E}\left(\mathrm{G}_{\mathrm{i}}\right)\right|=\mathrm{i}$ for $1 \leq \mathrm{i} \leq \mathrm{n}$. Let G be a graph of size $\frac{\mathrm{n}}{2}(2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d})$ where $\mathrm{a}, \mathrm{n}, \mathrm{d}$ are positive integers. Then G is said to have (a,d) - Ascending Subgraph Decomposition ((a,d) -ASD) into n parts if the edge set of G can be partitioned into n non-empty sets generating subgraphs $G_{1}, G_{2}, \ldots, G_{n}$ without isolated vertices such that each G_{i} is isomorphic to a proper subgraph of $\mathrm{G}_{\mathrm{i}+1}$ for $1 \leq \mathrm{i} \leq \mathrm{n}-1$ and $\left|\mathrm{E}\left(\mathrm{G}_{\mathrm{i}}\right)\right|=\mathrm{a}+(\mathrm{i}-1) \mathrm{d}$ for $1 \leq \mathrm{i} \leq \mathrm{n}$. The cartesian product $G_{1} \times G_{2}$ of two graphs G_{1} and G_{2} is defined to be the graph whose vertex set is V_{1} $x V_{2}$ and two vertices $u=\left(u_{1}, u_{2}\right)$ and $v=\left(v_{1}, v_{2}\right)$ in $V=V_{1} \times V_{2}$ are adjacent in $G_{1} \times G_{2}$ if either $u_{1}=v_{1}$ and u_{2} is adjacent to v_{2} or $u_{2}=v_{2}$ and u_{1} is adjacent to v_{1}. In this paper, I investigate the (a,d) - Ascending Subgraph Decomposition of $\mathrm{P}_{\mathrm{n}+1} \times \mathrm{K}_{2}$.Keywords: Ascending Subgraph Decomposition, cartesian product.

1. INTRODUCTION

By a graph we mean a finite undirected graph without loops or multiple edges. Terms not defined here are used in the sense of Harary[3].

Definition 1.1. Let $G=(V, E)$ be a simple graph of order p and size q. If $G_{1}, G_{2}, \ldots, G_{n}$ are edge disjoint subgraphs of G such that $\mathrm{E}(\mathrm{G})=\mathrm{E}\left(\mathrm{G}_{1}\right) \cup \mathrm{E}\left(\mathrm{G}_{2}\right) \cup \ldots \cup \mathrm{E}\left(\mathrm{G}_{\mathrm{n}}\right)$ then $\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ is said to be a decomposition of G.

Definition 1.2. Alavi et al[1] defined Ascending Subgraph Decomposition(ASD) as decomposition of G with size $\binom{n+1}{2}$ into n-subgraphs $G_{1}, G_{2}, \ldots, G_{n}$ without isolated vertices such that each G_{i} is isomorphic to a proper subgraph of $\mathrm{G}_{\mathrm{i}+1}$ for $1 \leq \mathrm{i} \leq \mathrm{n}-1$ and $\left|\mathrm{E}\left(\mathrm{G}_{\mathrm{i}}\right)\right|=\mathrm{i}$ for $1 \leq \mathrm{i} \leq \mathrm{n}$.

Definition 1.3. Let G be a graph of size $\frac{n}{2}(2 a+(n-1) d)$, where a, n, d are positive integers. Then G is said to have (a,d) - Ascending Subgraph Decomposition ((a,d) - ASD) into n parts if the edge set of G can be partitioned into n non-empty sets generating subgraphs $G_{1}, G_{2}, \ldots, G_{n}$ without isolated vertices such that each G_{i} is isomorphic to a proper subgraph of $\mathrm{G}_{\mathrm{i}+1}$ for $1 \leq \mathrm{i} \leq \mathrm{n}-1$ and $\left|\mathrm{E}\left(\mathrm{G}_{\mathrm{i}}\right)\right|=\mathrm{a}+(\mathrm{i}-1) \mathrm{d}$ for $1 \leq \mathrm{i} \leq \mathrm{n}$.

Definition 1.4. The cartesian product $G_{1} \times G_{2}$ of two graphs G_{1} and G_{2} is defined to be the graph whose vertex set is $V_{1} \times V_{2}$ and two vertices $u=\left(u_{1}, u_{2}\right)$ and $v=\left(v_{1}, v_{2}\right)$ in $V=V_{1} \times V_{2}$ are adjacent in $G_{1} \times G_{2}$ if either $u_{1}=v_{1}$ and u_{2} is adjacent to v_{2} or $u_{2}=v_{2}$ and u_{1} is adjacent to v_{1}.

2. The (a,d) - ASD of $\mathbf{P}_{\mathrm{n}+1} \times \mathrm{K}_{\mathbf{2}}$.

Here, I investigate under what conditions $\mathrm{P}_{\mathrm{n}+1} \times \mathrm{K}_{2}$ admits (a, d) - ASD.
Theorem 2.1. If $\mathrm{k} \equiv 0,3(\bmod 6)$, then $\mathrm{P}_{\mathrm{n}+1} \times \mathrm{K}_{2}$ does not admit (a, d) - ASD into k parts.
Proof. Suppose $\mathrm{P}_{\mathrm{n}+1} \times \mathrm{K}_{2}$ admits (a,d) - ASD into k parts then we have

$$
\begin{equation*}
\mathrm{a}+(\mathrm{a}+\mathrm{d})+(\mathrm{a}+2 \mathrm{~d})+\ldots+(\mathrm{a}+(\mathrm{k}-1) \mathrm{d})=\mathrm{q} . \tag{1}
\end{equation*}
$$

Since $\mathrm{q}=3 \mathrm{n}+1, \frac{\mathrm{k}}{2}(2 \mathrm{a}+(\mathrm{k}-1) \mathrm{d})=3 \mathrm{n}+1$.
Case (i) : Suppose $\mathrm{k} \equiv 0(\bmod 6)$.
Let $\mathrm{k}=6 \mathrm{r}, \mathrm{r} \in \mathrm{Z}^{+}$.
From (1) we have,

$$
\begin{array}{r}
\frac{6 r}{2}(2 a+(6 r-1) d)=3 n+1 \\
3 r(2 a+(6 r-1) d=3 n+1
\end{array}
$$

This is not possible. Hence, $\mathrm{P}_{\mathrm{n}+1} \times \mathrm{K}_{2}$ does not admit (a, d) - ASD into k parts.
Case (ii) : Suppose $\mathrm{k} \equiv 3(\bmod 6)$.

$$
\text { Let } \mathrm{k}=6 \mathrm{r}+3, \mathrm{r} \in\{0\} \cup \mathrm{Z}^{+} .
$$

Using (1) we have,

$$
\begin{aligned}
\frac{6 r+3}{2}(2 a+(6 r+2) d) & =3 n+1 \\
(6 r+3)(a+(3 r+1) d) & =3 n+1 \\
3(2 r+1)(a+(3 r+1) d) & =3 n+1
\end{aligned}
$$

This is also not possible. Hence $\mathrm{P}_{\mathrm{n}+1} \times \mathrm{K}_{2}$ does not admit (a,d) - ASD into k parts.

Theorem 2.2. If $\mathrm{P}_{\mathrm{n}+1} \times \mathrm{K}_{2}$ admits (a,d) - ASD into k parts, then
(a) For $\mathrm{k} \equiv 1(\bmod 6)$,
(i) $3 \mathrm{n}+1 \equiv 0(\bmod \mathrm{k})$
(ii) $\mathrm{a} \equiv 1(\bmod 3)$ and (iii) $\mathrm{n} \geq \frac{\mathrm{k}(\mathrm{k}+1)-2}{6}$.
(b) For $\mathrm{k} \equiv 2(\bmod 6)$,
(i) $3 \mathrm{n}+1 \equiv 0\left(\bmod \frac{\mathrm{k}}{2}\right) \quad$ (ii) $\mathrm{a} \equiv 0(\bmod 3)$ and $\mathrm{d} \equiv 1(\bmod 3) ; \mathrm{a} \equiv 1(\bmod 3)$ and $\mathrm{d} \equiv 2(\bmod 3) ; \mathrm{a} \equiv 2(\bmod 3)$ and $\mathrm{d} \equiv 0(\bmod 3)$ and $\left(\right.$ iii) $\mathrm{n} \geq \frac{\mathrm{k}(\mathrm{k}+5)-2}{6}$.
(c) For $\mathrm{k} \equiv 4(\bmod 6)$,
(i) $3 \mathrm{n}+1 \equiv 0\left(\bmod \frac{\mathrm{k}}{2}\right)($ ii $) \mathrm{a} \equiv 1(\bmod 3)$ and
(iii) $\mathrm{n} \geq \frac{\mathrm{k}(\mathrm{k}+1)-2}{6}$ except $\mathrm{n}=\frac{\mathrm{k}(\mathrm{k}+1)}{6}+\frac{\mathrm{k}}{2} l$ where $l=1,3,5, \ldots, 2 \mathrm{r}-1$.
(d) For $\mathrm{k} \equiv 5(\bmod 6)$,
(i) $3 \mathrm{n}+1 \equiv 0(\bmod \mathrm{k})$
(ii) $\mathrm{a} \equiv 0(\bmod 3)$ and $\mathrm{d} \equiv 1(\bmod 3) ; \mathrm{a} \equiv 1(\bmod 3)$ and $\mathrm{d} \equiv 2(\bmod 3) ; \mathrm{a} \equiv 2(\bmod 3)$ and $d \equiv 0(\bmod 3)$ and
(iii) $\mathrm{n} \geq \frac{\mathrm{k}(\mathrm{k}+5)-2}{6}$.

Proof. Suppose $\mathrm{P}_{\mathrm{n}+1} \times \mathrm{K}_{2}$ admits (a,d) - ASD into k parts, then we have

$$
\begin{equation*}
a+(a+d)+(a+2 d)+\ldots+(a+(k-1) d)=q \tag{1}
\end{equation*}
$$

Since $q=3 n+1, \frac{k}{2}(2 a+(k-1) d)=3 n+1$
Case (a): Suppose $\mathrm{k} \equiv 1(\bmod 6)$.
Let $\mathrm{k}=6 \mathrm{r}+1, \mathrm{r} \in \mathrm{Z}^{+}$.

Using (1) we have,

$$
\begin{align*}
\frac{(6 r+1)}{2}(2 a+6 r d) & =3 n+1 \\
(6 r+1)(a+3 r d) & =3 n+1 \\
\text { That is, } k(a+3 r d) & =3 n+1 . \tag{2}
\end{align*}
$$

Therefore, $3 \mathrm{n}+1 \equiv 0(\bmod \mathrm{k})$.
Also from $(2), \mathrm{a} \equiv 1(\bmod 3)$.
If $\mathrm{a}, \mathrm{d}=1$ then using (1) we get,

$$
\begin{aligned}
\frac{k}{2}(2+(k-1)) & =3 n+1 \\
k(k+1) & =6 n+2 \\
\frac{k(k+1)-2}{6} & =n .
\end{aligned}
$$

Since $\mathrm{a} \geq 1, \mathrm{~d} \geq 1$ using (1), we get

$$
\mathrm{n} \geq \frac{\mathrm{k}(\mathrm{k}+1)-2}{6}
$$

Case (b) : Suppose $k \equiv 2(\bmod 6)$.
Let $\mathrm{k}=6 \mathrm{r}+2, \mathrm{r} \in \mathrm{Z}^{+}$.
Using (1) we get,

$$
\begin{align*}
\frac{(6 r+2)}{2}(2 a+(6 r+1) d) & =3 n+1 \\
(3 r+1)(2 a+(6 r+1) d) & =3 n+1 \\
\frac{k}{2}(2 a+(6 r+1) d) & =3 n+1 \tag{3}
\end{align*}
$$

Therefore, $3 \mathrm{n}+1 \equiv 0\left(\bmod \frac{\mathrm{k}}{2}\right)$.
Also, from (3) we have

$$
\begin{aligned}
& a \equiv 0(\bmod 3) \text { and } d \equiv 1(\bmod 3) ; \\
& a \equiv 1(\bmod 3) \text { and } d \equiv 2(\bmod 3) ; \text { and } \\
& a \equiv 2(\bmod 3) \text { and } d \equiv 0(\bmod 3),
\end{aligned}
$$

Since $\mathrm{a} \geq 3, \mathrm{~d} \geq 1$ and using (1), we get $\mathrm{n} \geq \frac{\mathrm{k}(\mathrm{k}+5)-2}{6}$.
Case (c) : Suppose $k \equiv 4(\bmod 6)$.
Let $k=6 r+4, r \in\{0\} \cup Z^{+}$.

Using (1) we have,

$$
\begin{align*}
\frac{(6 r+4)}{2}(2 a+(6 r+3) d) & =3 n+1 \\
(3 r+2)(2 a+(6 r+3) d) & =3 n+1 \\
\frac{k}{2}(2 a+(6 r+3) d) & =3 n+1 \tag{4}
\end{align*}
$$

Therefore, $3 \mathrm{n}+1 \equiv 0\left(\bmod \frac{\mathrm{k}}{2}\right)$.
Also, from (4) we have $\mathrm{a} \equiv 1(\bmod 3)$.
Since $\mathrm{a} \geq 1, \mathrm{~d} \geq 1$ and using (1), we get

$$
\begin{aligned}
n & \geq \frac{k(k+1)-2}{6} \\
6 n+2 & \geq k(k+1) \\
3 n+1 & \geq \frac{k(k+1)}{2}
\end{aligned}
$$

Since $3 n+1 \equiv 0\left(\bmod \frac{k}{2}\right)$,

$$
\begin{aligned}
& 3 \mathrm{n}+1-\frac{\mathrm{k}(\mathrm{k}+1)}{2}=\frac{\mathrm{k}}{2} l, l \in \mathrm{Z}^{+} . \\
& 3 \mathrm{n}+1=\frac{\mathrm{k}(\mathrm{k}+1)}{2}+\frac{\mathrm{k}}{2} l, l \in \mathrm{Z}^{+} .
\end{aligned}
$$

Using (1), we get $\frac{\mathrm{k}}{2}(2 \mathrm{a}+(\mathrm{k}-1) \mathrm{d})=\frac{\mathrm{k}(\mathrm{k}+1)}{2}+\frac{\mathrm{k}}{2} l, l \in \mathrm{Z}^{+}$.
That is, $2 \mathrm{a}+(\mathrm{k}-1) \mathrm{d}=(\mathrm{k}+1)+l, l \in \mathrm{Z}^{+}$.
Suppose $l=6 \mathrm{~s}-3$ where $\mathrm{s}=1,2, \ldots, \mathrm{r}$.

$$
\begin{aligned}
& 2 a+(6 r+3) d=6 r+5+6 s-3 \\
& 2 a+(6 r+3) d=6 r+6 s+2 .
\end{aligned}
$$

Suppose $\mathrm{a}=1, \mathrm{~d}=1$, then $\mathrm{s}=\frac{1}{2}$.
Using (1), a and d should be $a \geq 4, d \geq 1$.
Suppose $\mathrm{a}=4, \mathrm{~d}=1$, then

$$
11+6 r=6 r+6 s+2 \text { and } s=\frac{3}{2}
$$

Suppose $\mathrm{a} \geq 4$ and $\mathrm{d} \geq 2$, then

$$
14+12 r \leq 2 a+(6 r+3) d=6 r+6 s+2
$$

$$
14+12 \mathrm{r} \leq 12 \mathrm{r}+2 \text { as } \mathrm{s} \leq \mathrm{r} .
$$

From the above arguments, we get a contradiction when $l=3,9,15, \ldots, 6 \mathrm{r}-3$.
Case(d) : Suppose $\mathrm{k} \equiv 5(\bmod 6)$.
Let $\mathrm{k}=6 \mathrm{r}+5, \mathrm{r} \in\{0\} \cup \mathrm{Z}^{+}$.
Using (1) we have,

$$
\begin{align*}
\frac{(6 r+5)}{2}(2 a+(6 r+4) d) & =3 n+1 \\
(6 r+5)(a+(3 r+2) d) & =3 n+1 \\
k(a+(3 r+2) d) & =3 n+1 . \tag{6}
\end{align*}
$$

Therefore, $3 \mathrm{n}+1 \equiv 0(\bmod \mathrm{k})$
Also, from (6), we have
$\mathrm{a} \equiv 0(\bmod 3)$ and $\mathrm{d} \equiv 1(\bmod 3)$;
$\mathrm{a} \equiv 1(\bmod 3)$ and $\mathrm{d} \equiv 2(\bmod 3) ;$ and
$a \equiv 2(\bmod 3)$ and $d \equiv 0(\bmod 3)$.
Since $\mathrm{a} \geq 3, \mathrm{~d} \geq 1$ and using (1), we obtain

$$
\mathrm{n} \geq \frac{\mathrm{k}(\mathrm{k}+5)-2}{6}
$$

REFERENCES

[1] Y. Alavi, A.J. Boals, G. Chartrand, P. Erdos and O.R. Oellerman, The ascending subgraph decomposition problem, Congressus Numerantium, 58 (1987), 7-14.
[2] S. Asha, R. Kala, Continuous Monotonic Decomposition of Tensor Product of Some Simple Graphs, Asian Journal of Current Engineering and Maths, 4 Jul-Aug(2012), 177-184.
[3] F. Harary, Graph Theory, Addition - Wesley Publishing Company Inc, USA, 1969, pp 286.
[4] Huang-Lin Fu, A note on the Ascending Subgraph Decomposition, Discrete Mathematics, 84(1990), 315-318.
[5] A. Nagarajan and S. Navaneethakrishnan, The (a,d) - Ascending subgraph Decomposition, Tamkang Journal of Mathematics, Vol. 37 (2006), No. 4.
[6] A. Nagarajan and S. Navaneethakrishnan, The (a,d) - Ascending subgraph Decomposition of $\mathrm{K}_{1, \mathrm{~m}} \mathrm{x} \mathrm{K}_{2}$, Acta Ciencia Indica, Vol XXXII M, No. 3 (2006), 1341-1356.
[7] S.G. Telang, Number Theory, Tata Mcgraw-Hill Publishing Company, pp 660.

