International Journal of Mathematics Trends and Technology- Volume21 Number1 – May 2015 The (A,D) - Ascending Subgraph Decomposition of Cartesian Product of

some Simple Graphs

S. Asha

Assistant Professor, Research Department of Mathematics, Nesamony Memorial Christian College, Marthandam, Kanyakumari District, Tamil Nadu, India.

Abstract - Alavi et al[1] defined Ascending Subgraph Decomposition(ASD) as decomposition of G with size $\binom{n+1}{2}$ into n subgraphs $G_1, G_2, G_3, \ldots, G_n$ without isolated vertices such that each G_i is isomorphic to a proper subgraph of G_{i+1} for $1 \le i \le n-1$ and $|E(G_i)| = i$ for $1 \le i \le n$. Let G be a graph of size $\frac{n}{2}(2a + (n-1)d)$ where a, n, d are positive integers. Then G is said to have (a,d) - Ascending Subgraph Decomposition ((a,d) -ASD) into n parts if the edge set of G can be partitioned into n non-empty sets generating subgraphs G_1, G_2, \ldots, G_n without isolated vertices such that each G_i is isomorphic to a proper subgraph of G_{i+1} for $1 \le i \le n-1$ and $|E(G_i)| = a + (i-1)d$ for $1 \le i \le n$. The cartesian product $G_1 \ge G_2$ of two graphs G_1 and G_2 is defined to be the graph whose vertex set is V_1 $\ge V_2$ and two vertices $u = (u_1, u_2)$ and $v = (v_1, v_2)$ in $V = V_1 \ge V_2$ are adjacent in $G_1 \ge G_2$ if either $u_1 = v_1$ and u_2 is adjacent to v_2 or $u_2 = v_2$ and u_1 is adjacent to v_1 . In this paper, I investigate the (a,d) - Ascending Subgraph Decomposition of $P_{n+1} \ge K_2$.

Keywords: Ascending Subgraph Decomposition, cartesian product.

1. INTRODUCTION

By a graph we mean a finite undirected graph without loops or multiple edges. Terms not defined here are used in the sense of Harary[3].

Definition 1.1. Let G = (V,E) be a simple graph of order p and size q. If G_1, G_2, \ldots, G_n are edge disjoint subgraphs of G such that $E(G) = E(G_1) \cup E(G_2) \cup \ldots \cup E(G_n)$ then $\{G_1, G_2, \ldots, G_n\}$ is said to be a decomposition of G.

International Journal of Mathematics Trends and Technology- Volume21 Number1 – May 2015 Definition 1.2. Alavi et al[1] defined Ascending Subgraph Decomposition(ASD) as

decomposition of G with size $\binom{n+1}{2}$ into n-subgraphs G_1, G_2, \ldots, G_n without isolated vertices such that each G_i is isomorphic to a proper subgraph of G_{i+1} for $1 \le i \le n - 1$ and $|E(G_i)| = i$ for $1 \le i \le n$.

Definition 1.3. Let G be a graph of size $\frac{n}{2}(2a + (n-1)d)$, where a, n, d are positive integers. Then G is said to have (a,d) - Ascending Subgraph Decomposition ((a,d) – ASD) into n parts if the edge set of G can be partitioned into n non-empty sets generating subgraphs G_1, G_2, \ldots, G_n without isolated vertices such that each G_i is isomorphic to a proper subgraph of G_{i+1} for $1 \le i \le n - 1$ and $|E(G_i)| = a + (i-1)d$ for $1 \le i \le n$.

Definition 1.4. The cartesian product $G_1 \times G_2$ of two graphs G_1 and G_2 is defined to be the graph whose vertex set is $V_1 \times V_2$ and two vertices $u = (u_1, u_2)$ and $v = (v_1, v_2)$ in $V=V_1 \times V_2$ are adjacent in $G_1 \times G_2$ if either $u_1 = v_1$ and u_2 is adjacent to v_2 or $u_2 = v_2$ and u_1 is adjacent to v_1 .

2. The (a,d) - ASD of $P_{n+1} \times K_2$.

Here, I investigate under what conditions $P_{n+1} \times K_2$ admits (a,d) - ASD.

Theorem 2.1. If $k \equiv 0,3 \pmod{6}$, then $P_{n+1} \ge K_2$ does not admit (a,d) - ASD into k parts. *Proof.* Suppose $P_{n+1} \ge K_2$ admits (a,d) - ASD into k parts then we have

 $a + (a + d) + (a + 2d) + \ldots + (a + (k - 1)d) = q.$

Since
$$q = 3n + 1$$
, $\frac{k}{2} (2a + (k - 1)d) = 3n + 1$. -----(1)

Case (i) : Suppose $k \equiv 0 \pmod{6}$.

Let $k = 6r, r \in Z^+$.

From (1) we have,

$$\frac{6r}{2} (2a + (6r - 1)d) = 3n + 1$$

3r (2a + (6r - 1)d = 3n + 1

This is not possible. Hence, $P_{n+1} \ge K_2$ does not admit (a,d) - ASD into k parts.

Case (ii) : Suppose $k \equiv 3 \pmod{6}$.

Let k = 6r + 3, $r \in \{0\} \cup Z^+$.

Using (1) we have,

$$\frac{6r+3}{2} (2a + (6r + 2)d) = 3n + 1$$

(6r + 3) (a + (3r + 1)d) = 3n + 1
3 (2r + 1) (a + (3r + 1)d) = 3n + 1.

This is also not possible. Hence $P_{n+1} \ge K_2$ does not admit (a,d) - ASD into k parts.

Theorem 2.2. If $P_{n+1} \ge K_2$ admits (a,d) - ASD into k parts, then (a) For $k \equiv 1 \pmod{6}$,

(i)
$$3n + 1 \equiv 0 \pmod{k}$$
 (ii) $a \equiv 1 \pmod{3}$ and (iii) $n \ge \frac{k(k+1) - 2}{6}$

(b) For $k \equiv 2 \pmod{6}$,

(i)
$$3n + 1 \equiv 0 \pmod{\frac{k}{2}}$$
 (ii) $a \equiv 0 \pmod{3}$ and $d \equiv 1 \pmod{3}$; $a \equiv 1 \pmod{3}$ and $d \equiv 2 \pmod{3}$; $a \equiv 2 \pmod{3}$ and $d \equiv 0 \pmod{3}$ and (iii) $n \ge \frac{k(k+5)-2}{6}$.

(c) For
$$k \equiv 4 \pmod{6}$$
,

(i)
$$3n + 1 \equiv 0 \pmod{\frac{k}{2}}$$
 (ii) $a \equiv 1 \pmod{3}$ and
(iii) $n \ge \frac{k(k+1)-2}{6}$ except $n = \frac{k(k+1)}{6} + \frac{k}{2}l$ where $l = 1,3,5,...,2r - 1$.

(d) For $k \equiv 5 \pmod{6}$,

(i)
$$3n + 1 \equiv 0 \pmod{k}$$

(ii) $a \equiv 0 \pmod{3}$ and $d \equiv 1 \pmod{3}$; $a \equiv 1 \pmod{3}$ and $d \equiv 2 \pmod{3}$; $a \equiv 2 \pmod{3}$ and $d \equiv 0 \pmod{3}$ and $d \equiv 0 \pmod{3}$ and

$$\text{(iii)} \ n \ \geq \ \frac{k(k+5)-2}{6} \, .$$

Proof . Suppose $P_{n+1} \times K_2$ admits (a,d) - ASD into k parts, then we have

$$a + (a + d) + (a + 2d) + \ldots + (a + (k - 1)d) = q$$

Since q = 3n + 1, $\frac{k}{2}(2a + (k - 1)d) = 3n + 1$

----- (1)

Case (a) : Suppose $k \equiv 1 \pmod{6}$.

Let $k = 6r + 1, r \in Z^+$.

Using (1) we have,

$$\frac{(6r + 1)}{2} (2a + 6rd) = 3n + 1$$

(6r + 1) (a + 3rd) = 3n + 1
That is, k (a + 3rd) = 3n + 1.
Therefore, 3n + 1 = 0(mod k).

Also from (2), $a \equiv 1 \pmod{3}$.

If a, d = 1 then using (1) we get,

$$\frac{k}{2} (2 + (k - 1)) = 3n + 1$$
$$k(k + 1) = 6n + 2$$
$$\frac{k(k + 1) - 2}{6} = n.$$

Since $a \ge 1$, $d \ge 1$ using (1), we get

$$n \ge \frac{k(k+1)-2}{6}.$$

Case (b) : Suppose $k \equiv 2 \pmod{6}$.

Let k = 6r + 2, $r \in Z^+$.

Using (1) we get,

$$\frac{(6r+2)}{2} (2a + (6r + 1)d) = 3n + 1$$
$$(3r + 1) (2a + (6r + 1)d) = 3n + 1$$
$$\frac{k}{2} (2a + (6r + 1)d) = 3n + 1.$$

Therefore, $3n + 1 \equiv 0 \pmod{\frac{k}{2}}$.

Also, from (3) we have

 $a \equiv 0 \pmod{3} \text{ and } d \equiv 1 \pmod{3};$ $a \equiv 1 \pmod{3} \text{ and } d \equiv 2 \pmod{3}; \text{ and } a \equiv 2 \pmod{3} \text{ and } d \equiv 0 \pmod{3}.$

Since $a \ge 3$, $d \ge 1$ and using (1), we get $n \ge \frac{k(k+5)-2}{6}$.

Case (c) : Suppose $k \equiv 4 \pmod{6}$.

Let $k = 6r + 4, r \in \{0\} \cup Z^+$.

-----(3)

Using (1) we have,

$$\frac{(6r+4)}{2} (2a + (6r + 3)d) = 3n + 1$$

$$(3r+2) (2a + (6r + 3)d) = 3n + 1$$

$$\frac{k}{2} (2a + (6r + 3)d) = 3n + 1.$$
------(4)

Therefore,
$$3n + 1 \equiv 0 \pmod{\frac{k}{2}}$$
.

Also, from (4) we have $a \equiv 1 \pmod{3}$.

Since $a \ge 1$, $d \ge 1$ and using (1), we get

$$n \ge \frac{k(k+1)-2}{6}$$

$$6n+2 \ge k(k+1)$$

$$3n+1 \ge \frac{k(k+1)}{2}$$

Since
$$3n + 1 \equiv 0 \pmod{\frac{k}{2}}$$
,
 $3n + 1 - \frac{k(k+1)}{2} = \frac{k}{2}l, l \in \mathbb{Z}^+$.
 $3n + 1 = \frac{k(k+1)}{2} + \frac{k}{2}l, l \in \mathbb{Z}^+$.

Using (1), we get $\frac{k}{2}(2a + (k-1)d) = \frac{k(k+1)}{2} + \frac{k}{2}l, l \in \mathbb{Z}^+$.

That is, $2a + (k - 1)d = (k + 1) + l, l \in \mathbb{Z}^+$.

Suppose l = 6s - 3 where s = 1, 2, ..., r.

$$2a + (6r + 3)d = 6r + 5 + 6s - 3$$

 $2a + (6r + 3)d = 6r + 6s + 2.$

Suppose a = 1, d = 1, then $s = \frac{1}{2}$.

Using (1), a and d should be $a \ge 4$, $d \ge 1$.

Suppose a = 4, d = 1, then

$$11 + 6r = 6r + 6s + 2$$
 and $s = \frac{3}{2}$.

Suppose $a \ge 4$ and $d \ge 2$, then

 $14 + 12 r \le 2a + (6r + 3) d = 6r + 6s + 2.$

-----(5)

International Journal of Mathematics Trends and Technology- Volume21 Number1 – May 2015 $14 + 12r \le 12r + 2$ as $s \le r$.

From the above arguments, we get a contradiction when $l = 3, 9, 15, \ldots, 6r - 3$.

Case(d) : Suppose $k \equiv 5 \pmod{6}$.

Let
$$k = 6r + 5, r \in \{0\} \cup Z^{-}$$
.

Using (1) we have,

$$\frac{(6r+5)}{2} (2a + (6r+4)d) = 3n + 1$$

(6r+5) (a + (3r+2)d) = 3n + 1
k(a + (3r+2)d) = 3n + 1.

-----(6)

Also, from (6), we have

$$a \equiv 0 \pmod{3}$$
 and $d \equiv 1 \pmod{3}$;

Therefore, $3n + 1 \equiv 0 \pmod{k}$

$$a \equiv 1 \pmod{3}$$
 and $d \equiv 2 \pmod{3}$; and

$$a \equiv 2 \pmod{3}$$
 and $d \equiv 0 \pmod{3}$.

Since $a \ge 3$, $d \ge 1$ and using (1), we obtain

$$n \ge \frac{k(k+5)-2}{6}.$$

REFERENCES

- Y. Alavi, A.J. Boals, G. Chartrand, P. Erdos and O.R. Oellerman, The ascending subgraph decomposition problem, Congressus Numerantium, 58 (1987), 7-14.
- [2] S. Asha, R. Kala, Continuous Monotonic Decomposition of Tensor Product of Some Simple Graphs, Asian Journal of Current Engineering and Maths, 4 Jul-Aug(2012), 177-184.
- [3] F. Harary, Graph Theory, Addition Wesley Publishing Company Inc, USA, 1969, pp 286.
- [4] Huang-Lin Fu, A note on the Ascending Subgraph Decomposition, Discrete Mathematics, 84(1990), 315-318.
- [5] A. Nagarajan and S. Navaneethakrishnan, The (a,d) Ascending subgraph Decomposition, Tamkang Journal of Mathematics, Vol. 37 (2006), No. 4.
- [6] A. Nagarajan and S. Navaneethakrishnan, The (a,d) Ascending subgraph Decomposition of K_{1,m} x K₂, Acta Ciencia Indica, Vol XXXII M, No.3 (2006), 1341-1356.
- [7] S.G. Telang, Number Theory, Tata Mcgraw-Hill Publishing Company, pp 660.