τ_s^* -sg closed sets in Topological spaces

Dr. T. Indira¹ and S. Geetha² 1. PG and Research Department of Mathematics, Seethalakshmi Ramaswami College, Trichy-2. 2. Department of Mathematics, Seethalakshmi Ramaswami College, Trichy-2.

Abstract

The aim of this paper is to introduce a new class of sets called τ_s^* -sg closed sets and τ_s^* -sg open sets in topological spaces and study some of their properties.

AMS Mathematics Subject Classification(2010):54A05,54D05

Key Words:scl^{**}- operator, τ_s^* - topology, τ_s^* -sg closed sets and τ_s^* -sg open sets.

1.Introduction

In 1970, Levine[6] introduced the concepts of generalized closed sets as a generalization of closed sets in topological spaces. Using generalized closed sets, Dunham[5] introduced the concept of the closure operator cl* and a new topology τ^* and studied some of their properties. P. Bhattacharya and B.K. Lahiri[3] introduced the concept of semi generalized closed sets in topological spaces. J. Dontchev[4] introduced generalized semi-open sets, H. Maki, R. Devi and K. Balachandran[9] introduced generalized α -closed sets in topological spaces.

In this paper, we obtain a new semi generalization of closed sets in the topological space (X,τ_s^*) . Throughout this paper X and Y are topological spaces in which no separation axioms areassumed unless otherwise explicitly stated. For a subset A of a topological space X, int(A), cl(A), scl**(A) and A^c denote the interior, closure, semi generalized closureand complement of A respectively.

2. Preliminaries

Definition: 2.1

A subset A of a topological space (X, τ) is called

(i) Generalized closed(briefly g-closed)[6] if $cl(A) \subseteq G$ whenever $A \subseteq G$ and G is open in X.

(ii) Semi-generalized closed(briefly sg-closed)[3] if $scl(A) \subseteq G$ whenever $A \subseteq G$ and G is semi-open in X.

(iii)Generalized semi-closed(briefly gs-closed)[2] if scl(A)⊆ G whenever A⊆G and G is openin X.

 $(iv)\alpha$ -closed[8] if cl(int(cl(A))) \subseteq A.

- (v) α generalized closed(briefly α g-closed)[9] if α cl(A) \subseteq G whenever A \subseteq G and G is open inX.
- (vi) Generalized α closed(briefly $g\alpha$ –closed)[12]if α cl(A) \subseteq G whenever A \subseteq G and G is α -open in X.
- (vii) Generalized semi-pre closed(briefly gsp-closed)[2] if $spcl(A) \subseteq G$ whenever $A \subseteq G$

and Gis open in X.

(viii) Pre closed[11] if $cl(int(A)) \subseteq A$.

- (ix) Semi-closed[7] if $int(cl(A)) \subseteq A$.
- (x) Semi-pre closed(briefly sp-closed)[1] if $int(cl(int(A))) \subseteq A$.

The complements of the above mentioned sets are called their respective open sets.

Definition: 2.2

For the subset A of a topological space X, the semi generalized closure operator scl**(A) is defined by the intersection of all sg-closed sets containing A.

Definition: 2.3

For a topological space X, the topology τ_s^* is defined by

 $\tau_{s}^{*} = \{G : scl^{**}(G^{c}) = G^{c} \}$

Example:

Let $X=\{a,b,c\}$ and $\tau=\{X,\Phi,\{a\},\{b\},\{a,b\}\}$. Then the collection of subsets $\{X,\Phi,\{a\},\{b\},\{a,b\}\}$ is a τ_s^* - topology on X.

3. τ_s^* - sg closed sets in topological spaces

In this section, we introduce the concept of τ_s^* -sg closed sets in topological spaces.

Definition: 3.1

A subset A of a topological space X is called τ_s^* - semi generalized closed set(briefly

 τ_s^* -sgclosed) if scl**(A) \subseteq G whenever A \subseteq G and G is τ_s^* - semi open.

The complement of τ_s^* - semi generalized closed set is called the τ_s^* - semi generalized open set(briefly τ_s^* -sg-open).

Example:

Let $X = \{a,b,c\}$ and $\tau = \{X,\Phi,\{a\},\{b\},\{a,b\}\}$. Then τ_s^* -sg-closed sets are $\{X,\Phi,\{a\},\{b\},\{a,b\}\}$.

Theorem: 3.2

Every closed set in X is τ_s^* -sg closed.

Proof:

Let A be a closed set.

Let $A \subseteq G$,since A is closed,

 $Cl(A) = A \subseteq G$, where G is τ_s^* - semi open.

But $scl^{**}(A) \subseteq cl(A) \subseteq G$

International Journal of Mathematics Trends and Technology- Volume21 Number1 – May 2015 Then $scl^{**}(A) \subseteq G$, whenever $A \subseteq G$ and G is τ_s^{*-} semi open.

Hence A is τ_s^* - sg closed.

Theorem: 3.3

Every τ_s^* - closed set in Xis τ_s^* - sg closed.

Proof:

Let A be a τ_s^* - closed set.

Let $A \subseteq G$, where G is τ_s^* - semi open.

Since A is τ_s^* - closed, scl**(A) = A \subseteq G

 $scl^{**}(A) \subseteq G.$

Hence A is τ_s^* - sg closed.

Theorem: 3.4

Every sg - closed set in X is τ_s^* - sg closed but not conversely.

Proof:

Let A be a sg - closed set.

Assume that A \subseteq G, G is τ_s^* - semi open in X,

Since A is sg-closed, $scl(A) \subseteq G$.

But $scl^{**}(A) \subseteq scl(A) \subseteq G$

 \Rightarrow scl**(A) \subseteq G.

Hence A is τ_s^* - sg-closed.

The converse of the above theorem need not be true as seen from the following example.

Example: 3.6

Let $X = \{a,b,c\}$ and $Y = \{a,b,c,d\}$ be the two non-empty sets.

(i) Consider the topology $\tau = \{X, \Phi\}$. Then the sets $\{\{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\}$ are τ_s^* -sg- closed but not closed.

(ii) Consider the topology $\tau = \{X, \Phi\}$. Then the sets $\{\{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\}$ are τ_s^* -sg- closed but not α -closed.

(iii) Consider the topology $\tau = \{X, \Phi, \{a\}\}\)$. Then the sets $\{\{a\}, \{a, b\}, \{a, c\}\}\)$ are not sp-closed but τ_s^* -sg- closed.

(iv) Consider the topology $\tau = \{X, \Phi, \{a\}\}\)$. Then the set $\{a\}$ is not gsp-closed but τ_s^* - sg- closed.

- (v) Consider the topology $\tau = \{X, \Phi, \{a\}\}\)$. Then the set $\{a\}$ is not g- closed but τ_s^* -sg- closed.
- (vi) Consider the topology $\tau = \{X, \Phi, \{a\}\}\)$. Then the set $\{a\}$ is not gs- closed but τ_s^* -sg- closed.

(vii) Consider the topology $\tau = \{X, \Phi, \{b\}, \{a, b\}\}$. Then the sets $\{\{c\}, \{b, c\}, \{a, c\}\}$ arenot pre-closed but τ_s^* - sg- closed.

(viii) Consider the topology $\tau = \{X, \Phi, \{a\}\}$. Then the sets $\{\{a, b\}, \{a, c\}\}$ are not g α -closed but τ_s^* -sg- closed.

(ix) Consider the topology $\tau = \{X, \Phi, \{a\}, \{b\}, \{a, b\}\}$. Then the set $\{\{a\}, \{b\}\}$ are both sg-closed and τ_s^* -sg- closed.

(x)Consider the topology $\tau = \{X, \Phi, \{b\}, \{a, b\}\}$. Then the set $\{a\}$ is pre-closed but not τ_s^* -sg- closed.

Remark: 3.7

From the above discussion, we obtain the following implications.

Theorem: 3.8

For any two sets A and B,

 $Scl^{**}(A\cup B) = scl^{**}(A)\cup scl^{**}(B).$

Proof:

Since $A \subseteq A \cup B$ and $B \subseteq A \cup B$ then

 $scl^{**}(A) \subseteq scl^{**}(A \cup B)$ and

International Journal of Mathematics Trends and Technology- Volume21 Number1 – May 2015 scl**(B) ⊆scl**(A∪B)

Hence $scl^{**}(A) \cup scl^{**}(B) \subseteq scl^{**}(A \cup B) \longrightarrow (1)$

scl**(A) and scl**(B) are sg- closed sets.

 \Rightarrow scl**(A) Uscl**(B) is alsosg-closed set.

Again, $A \subseteq scl^{**}(A)$ and $B \subseteq scl^{**}(B)$

 $\Rightarrow A \cup B \subseteq scl^{**}(A) \cup scl^{**}(B).$

Thus $scl^{**}(A) Uscl^{**}(B)$ is a sg - closed set containing AUB.

Since $scl^{**}(A \cup B)$ is the smallest sg - closed set containing $A \cup B$

We have $scl^{**}(A \cup B) \subseteq scl^{**}(A) \cup scl^{**}(B) \rightarrow (2)$

From (1) and (2), $scl^{**}(A \cup B) = scl^{**}(A) \cup scl^{**}(B)$.

Theorem: 3.9

Union of two τ_s^* - sg closed sets in X is a τ_s^* -sg- closed set in X.

Proof:

Let A and B be two τ_s^* -sg closed sets.

Let $A \cup B \subseteq G$, where G is $\tau_s *$ - semi open.

Since A and B are τ_s^* -sg- closed sets,

then $scl^{**}(A) \subseteq G$ and $scl^{**}(B) \subseteq G$.

 $scl^{**}(A) Uscl^{**}(B) \subseteq G.$

But by the above theorem,

 $scl^{**}(A)Uacl^{*}(B) = scl^{**}(A\cup B)$

 $scl^{**}(A \cup B) \subseteq G$, where G is τ_s *- semi open.

Hence AUB isa τ_s^* -sg closed set.

Theorem: 3.10

A subset A of X is τ_s *-sg-closed if and only if scl**(A)-A contains no non-empty

 τ_s^* - closed set in X.

Proof:

Let A be a τ_s^* - sg- closed set.

International Journal of Mathematics Trends and Technology- Volume21 Number1 – May 2015 Suppose that F is a non-empty τ_s^* - closed subset of scl**(A) – A.

Now, $F \subseteq scl^{**}(A) - A$. Then $F \subseteq scl^{**}(A) \cap A^{c}$ Since $scl^{**}(A) - A = scl^{**}(A) \cap A^{c}$ $F \subseteq scl^{**}(A)$ and $F \subseteq A^{c}$ $A \subseteq F^{c}$ Since F^{c} is a τ_{s}^{*} - open set and A is τ_{s}^{*} -sg- closed. $scl^{**}(A) \subseteq F^{c}$ (i.e.,) $F \subseteq [scl^{**}(A)]^{c}$.

Hence, $F \subseteq scl^{**}(A) \cap [scl^{**}(A)]^c = \Phi$

(i.e.,) $F = \Phi$

Which is a contradiction.

 $scl^{**}(A)$ -A contains no non-empty τ_s^* - closed set in X.

Conversely, assume that $scl^{**}(A) - A$ contains no non-empty τ_s^* - closed set.

Let $A \subseteq G$, G is τ_s^* - open.

Suppose that $scl^{**}(A)$ is not contained in G then $scl^{**}(A)\cap G^c$ is a non-empty τ_s^* - closed set of $scl^{**}(A) - A$, which is a contradiction.

 $scl^{**}(A) \subseteq G$, G is τ_s^* - semi open.

Hence A is τ_s^* - sg closed.

Corollary: 3.11

A subset A of X is τ_s^* - sg- closed if and only if scl**(A) – A contain no non-empty closed set in X.

Proof:

The proof follows from the theorem 3.10 and the fact that every closed set is τ_s^* -sg- closed set in X.

Theorem: 3.12

If a subset A of X is τ_s^* - sg- closed and A \subseteq B \subseteq scl**(A) then B is τ_s^* -sg- closed set in X.

Let A be a τ_s^* -sg- closed set such that $A \subseteq B \subseteq scl^{**}(A)$. Let U be a τ_s^* - semi open set of X such that $B \subseteq U$.

Since A is τ_s^* - sg- closed,

We have $scl^{**}(A) \subseteq U$.

Now, $scl^{**}(A) \subseteq scl^{**}(B) \subseteq scl^{**}(scl^{**}(A)) = scl^{**}(A) \subseteq U$.

 $scl^{**}(B) \subseteq U, U \text{ is } \tau_s^* \text{ - semi open set.}$

B is $\tau_s{}^*$ - sg- closed set in X.

Theorem: 3.13

Let A be a τ_s^* - sg- closed set in (X, τ_s^*) . Then A is sg- closed if and onlyifscl**(A) is

τ_s^* - open.

Proof:

Suppose A is sg – closed in X.

Then $scl^{**}(A) = A$ and so $scl^{**}(A) - A = \Phi$ which is τ_s^* - open in X.

Conversely, suppose $scl^{**}(A) - A$ is τ_s^* - open in X.

Since A is τ_s^* -sg-closed, by theorem: 3.10, scl**(A) – A contains no non-empty τ_s^* - closed set in X.

Then $scl^{**}(A) - A = \Phi$.

Hence A is sg - closed.

Theorem: 3.14

For x \in X, the set X-{x} is τ_s^* -sg-closed or τ_s^* - open.

Proof:

Suppose $X - \{x\}$ is not τ_s^* - open. Then X is the only τ_s^* - open set containing $X - \{x\}$. This implies $scl^{**}(X - \{x\}) \subseteq X$.

Hence $X - \{x\}$ is a τ_s^* - sg-closed in X.

References

[1]D. Andrijevic, Semi-preopen sets, Mat.Vensi, 36(1986), 24-32.

[2] S.P. Arya and T.Nour, characterizations of s-normal spaces, Indian J.Pure Appl. Math., 21(1990)717-719.

[3] P. Bhattacharyya and B.K. Lahiri, Semi generalized closed sets in topology, Indian J.Math., 29(1987), 375-382.

[4] J. Dontchev, On generalizing semi pre-open sets, Mem.Fac.Sci.KochiUni.Ser A,Math.,16(1995),35-48.

[5] W. Dunham, A new closure operator for non-T topologies, KyungpookMath.J.22(1982),55-60.

[6] N. Levine, generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19, (2)(1970), 89-96.

[7] N.Levine, semi-open sets and semi-continuity in topological spaces, Amer.Math.Monthly;70(1963),36-41.

[8] S.N. Maheswari and P.C. Jain, Some new mappings, Mathematica, Vol.24(47)91-2)(1982),53-55.

[9]H. Maki, R.Devi and K.Balachandran, Associated topologies of generalized α -closed sets and α -generalized closed sets, Mem. Fac.Sci. Kochi Univ.(Math.)15(1994),51-63.

[10] H. Maki, R. Devi and K. Balachandran, Generalized α-closed sets in topology, Bull. Fukuoka Uni..Ed.Part III,42(1993),13-21.

[11] A.S. Mashhour, M.E. Abd El-Monsef and S.N.El—Deeb, On precontinuous and weak precontinuous functions, Proc. Math. Phys. Soc. Egypt 53(1982), 47-53.

[12] A. Pushpalatha, S.Eswaran and P. Rajarubi, τ^* - Generalized closed sets in Topological spaces, Proceedings of the world Congress on Engineering 2009 Vol II.

[13] P. Sundram, A. Pushpalatha, Strongly generalized closed sets in topological spaces, Far East J. Math. Sci.(FJMS) 3(4) (2001),563-575.