New Classes of Harmonic Mean Graphs

S.S.Sandhya and S. Somasundaram

1. Department of Mathematics, Sree Ayyappa College for Women, Chunkankadai – 629003, 2. Department of Mathematics, M.S University, Thirunelveli – 627012

ABSTRACT

A Graph G = (V, E) with p vertices and q edges is said to be Geometric mean graph if it is possible to label the vertices $x \in V$ with distinct labels f(x) from 1,2,...,q+1 in such a way that when each edge e=uv is labeled with $f(e=uv) = \left[\frac{2f(u)f(v)}{f(u)+f(v)}\right]$ (or) $\left[\frac{2f(u)f(v)}{f(u)+f(v)}\right]$, then the resulting edge labels are distinct. In this case f is called Harmonic mean labeling of G. In this paper, we investigate Harmonic mean labeling for path and cycle related graphs.

Keywords: Graph, Path, Cycle, Harmonic mean labeling, Shadow graph, Splitting graph, Middle graph and Total graph.

1. INTRODUCTION

The graphs considered here are finite, undirected and simple. The vertex set and edge set of a graph G are denoted by V(G) and E(G) respectively. A path of length n is denoted by P_n . A cycle of length n is denoted by C_n . For standard terminology and notations we follow Harary [2] and for the detailed survey of Graph labeling we follow J.A Gallian [1]. S.Somasundaram and R. Ponraj introduced the concept of mean labeling of graphs in [3]. S. Somasundram and S.S.Sandhya introduced the concept of Harmonic mean labeling of graphs in [4]. and its basic results was proved in [4]. In this paper we investigate Harmonic mean labeling behavior of some standard new graphs. The following definitions are used here.

Definition 1.1: A Graph G=(V, E) with p vertices and q edges is said to be a Geometric mean if it is possible to label the vertices $x \in V$ with distinct labels f(x) from 1,2,..., q+1 in such a way that when each edge e=uv is labeled with $f(e=uv) = \left[\frac{2f(u)f(v)}{f(u)+f(v)}\right]$ (or) $\left[\frac{2f(u)f(v)}{f(u)+f(v)}\right]$, then the resulting edge labels are distinct. In this case f, is called a Harmonic mean labeling of G.

Definition 1.2: Let G be connected graph and G' be the copy of G then *shadow graph* $D_2(G)$ is obtained by joining each vertex u in G to the neighbours of the corresponding vertex u' in G'.

Definition 1.3: The *middle graph* M(G) of a graph G is the graph whose vertex set is $V(G) \cup E(G)$ and in which two vertices are adjacent if and only if either they are adjacent edges of G or one is a vertex of G and the other is an edge incident on it

Definition 1.4: The *total graph* T(G) of graph G is the graph whose vertex set is $V(G) \cup E(G)$ and two vertices are adjacent whenever they are either adjacent or incident in G.

Definition 1.5: The *splitting graph* S'(G) is obtained by adding new vertex v' corresponding to each vertex v of G such that N(v) = N(v') where N(v) and N(v') are the neighbourhood sets of v and v' respectively.

Definition 1.6: Duplication of a vertex v_k by a new edge $e=v_k'$ v_k'' in a graph G produces a new graph G' such that $N(v') \cap N(v_k'') = v_k$.

Definition 1.7: The *prism* D_n , $n \ge 3$ is a trivalent graph which can be defined as the Cartesian product P_2xC_n of a path on two vertices with a cycle on n vertices.

2. Results

Theorem 2.1: The graph $D_2(P_n)$ is a Harmonic mean graph

Proof: Let $u_1, u_2, \dots u_n$ be the vertices of path P_n and v_1, v_2, \dots, v_n be the newly added vertices corresponding to the vertices u_1, u_2, \dots, u_n in order to obtain $D_2(P_n)$. Denoting $G = D_2(P_n)$ then |V(G)| = 2n and |E(G)| = 4(n-1)

We define f: $V(G) \rightarrow \{1,2,\ldots,q+1\}$

$$f(u_1) = 1$$

$$f(u_i) = 4(i-1), 2 \le i \le n$$

$$f(v_1) = 3$$

$$f(v_i) = \begin{cases} 4i - 2, & 2 \le i \le n - 1 \\ 4i - 3, & i = n \end{cases}$$

Edges are labeled with

$$f(u_i u_{i+1}) = 4i-3, \quad 1 \le i \le n-1$$

$$f(v_i \ v_{i+1}) = 4i, \qquad 1 \le i \le n-1$$

$$f(u_i v_{i+1}) = 4i-2, \quad 1 \le i \le n-1$$

$$f(v_i u_{i+1}) = 4i-1, \quad 1 \le i \le n-1$$

The above defined function f provides a Harmonic mean labeling for $D_2(P_n)$. That is, $D_2(P_n)$ is a Harmonic mean graph.

Example 2.2: Shadow graph of path P₅ and its Harmonic mean labeling is shown in the following figure

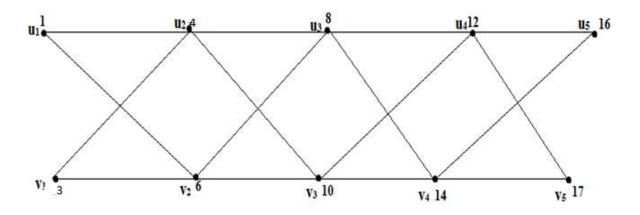


Figure: 1

Theorem 2.3: Middle graph of path P_n is a Harmonic mean graph

Proof: Let $u_1, u_2, ..., u_n$ be the vertices and $e_1, e_2, ..., e_{n-1}$ be the edges of path P_n and G = M (P_n) be the middle graph of path P_n . According to the definition of middle graph $V(M(P_n)) = V(P_n) \cup E(P_n)$ and whose edge set is

$$E(M(P_n)) = \{u_i e_i ; 1 \le i \le n-1, u_i e_{i-1} ; 2 \le i \le n, e_i e_{i+1} ; 1 \le i \le n-2\}$$

Here |V(G)| = 2n-1 and |(E(G))| = 3n-4

we define f: $V(G) \rightarrow \{1,2,...,q+1\}$ by

 $f(u_1) = 1$

 $f(u_i) = 3i, 2 \le i \le n$

 $f(e_i) = 3i-1,$ $1 \le i \le n-1$

Edges are labeled with

 $f(u_i e_i) = 3i-2, \quad 1 \le i \le n-1$

 $f(u_i e_{i-1}) = 3i-1, \quad 2 \le i \le n-1$

 $f(e_i e_{i+1}) = 3i$, $1 \le i \le n-2$

The above defined function f provides an Harmonic mean labeling for $M(P_n)$. Hence, $M(P_n)$ is a Harmonic mean graph.

Example 2.4: M(P₅) and its Harmonic mean labeling is shown is Figure 2.

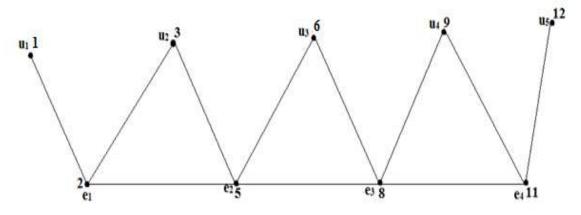


Figure: 2

Theorem 2.5: Total graph of path P_n is a Harmonic mean graph

Proof: Let u_1, u_2, \ldots, u_n be the vertices and $e_1, e_2, \ldots, e_{n-1}$ be the edges of path P_n and $G = T(P_n)$ be the total graph of path P_n with $V(T(P_n)) = V(P_n) \cup E(P_n)$ and

$$E[T(P_n)] = \{u_iu_{i+1} \; ; 1 \leq i \leq n-1, \; \; u_ie_i \; ; \; 1 \leq i \leq n-1, \; \; e_ie_{i+1} \; ; \; 1 \leq i \leq n-2 \; , \; \; u_ie_{i-1}; \; 2 \leq i \leq n \}$$

Here |V(G)| = 2n-1 and |E(G)| = 4n-5

Define $f:V(G) \rightarrow \{1,2,\dots,q+1\}$ as follows

 $f(u_1) = 1$

 $f(u_i) = 4i, 2 \le i \le n$

 $f(e_1) = 3$

 $f(e_i) = 4i-2,$ $2 \le i \le n-1$

Edges are labeled with

ISSN: 2231-5373

 $f(u_iu_{i+1}) = 4i-2, \quad 1 \le i \le n-1$

 $f(u_i e_i) = 4i-3, \quad 1 \le i \le n-1$

 $f(e_i e_{i+1}) = 4i, \qquad 1 \le i \le n-2$

 $f(u_i e_{i-1}) = 4i-1, \quad 2 \le i \le n$

The above defined function f provides an Harmonic mean labeling for $T(P_n)$. Hence $T(P_n)$ is a Harmonic mean graph.

Example: 2.6 T(P₆) and its Harmonic mean labeling is shown below.

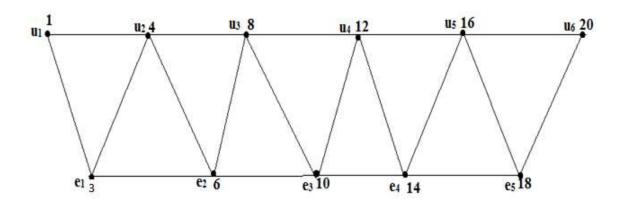


Figure: 3

Theorem 2.7: Splitting graph of path P_n is a Harmonic mean graph

Proof: Let $u_1, u_2, ..., u_n$ be the vertices and $e_1, e_2, ..., e_{n-1}$ be the edges of path P_n . Let $v_1, v_2, ..., v_n$ be the newly added vertices to form the splitting graph of path P_n . Let $G = S'(P_n)$ be the splitting graph of path P_n . $V(S'(P_n)) = \{u_i\} \cup \{v_i\}$, $1 \le i \le n$ and

$$E\left(S'(P_n)\right) = \left\{ \ v_i u_{i+1} \ ; 1 \leq i \leq n-1 \ , \ v_i u_{i-1} \ ; \ 2 \leq i \leq n \ , \ v_i \ v_{i+1} \ ; \ 1 \leq i \leq n-1 \right\}$$

Here |V(G)| = 2n and |E(G)| = 3n-3

we define f: $V(G) \rightarrow \{1,2,...,q+1\}$ as follows

 $f(u_1) = 2$

 $f(u_i) = 3i, 2 \le i \le n$

 $f(v_1) = 1$

 $f(v_i) = 3i-2,$ $2 \le i \le n$

Edges are labeled with

$$f(v_1u_2) = 1,$$
 $f(v_iu_{i+1}) = 3i-1,$ $2 \le i \le n-1$

$$f(v_2u_1) = 3,$$
 $f(v_i u_{i-1}) = 3i-2,$ $3 \le i \le n-1$

$$f(v_1v_2) = 3,$$
 $f(v_iv_{i+1}) = 3i,$ $2 \le i \le n-1$

The above defined function f provides an Harmonic mean labeling for $S'(P_n)$. Hence $S'(P_n)$ is a Geometric mean graph.

Example 2.8: $S'(P_6)$ and its Harmonic mean labeling is shown below.

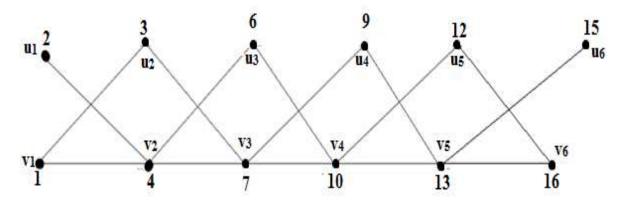


Figure: 4

Theorem 2.9: Duplicating each vertex by an edge in path P_n is a Harmonic mean graph.

Proof: Let u_1 , u_2 , u_3 ,..., u_n be the vertices of path P_n Let G be the graph obtained by duplicating each vertex v_i of P_n by an edge v_i' , v_i'' at a time, where $1 \le i \le n$. Note that |V(G)| = 3n and |E(G)| = 4n-1

We define $f: V(G) \rightarrow \{1,2,...,q+1\}$ as follows

$$f(u_1) = 3$$

$$f(u_i) = 4i-2, \qquad 2 \le i \le n$$

$$f(v_i') = 4i-3,$$
 $1 \le i \le n$

$$f(v_1^{\prime\prime})=2$$

$$f(v_i^{\prime\prime}) = 4i-1, \qquad 2 \le i \le n$$

Edges are labeled with

$$f(\mathbf{u}_{\mathbf{i}}\mathbf{u}_{\mathbf{i}+1}) = 4i, \qquad 1 \le i \le \mathbf{n}-1$$

$$f(u_1v_1') = 2,$$
 $f(u_iv_i') = 4i-3, 2 \le i \le n$

$$f(u_i v_i^{\prime\prime}) = 4i-1, \quad 1 \le i \le n$$

ISSN: 2231-5373

$$f(v_1'v_1'') = 1$$
 $f(v_i'v_i'') = 4i-2, 2 \le i \le n$

The above labeling pattern we get distinct edge labels. Thus f provides is a Harmonic mean labeling for graph G. Hence, duplicating each vertex by edge in Path P_n is a Harmonic mean graph.

Example 2.10: Duplicating each vertex by edge in path P_7 and its Harmonic mean labeling is shown below.

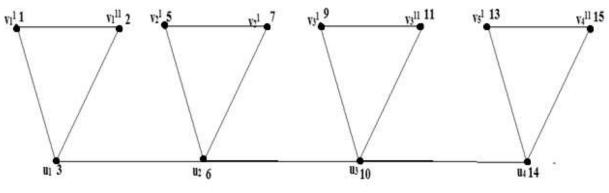


Figure: 5

Theorem 2.11: A Graph is obtained by attaching triangle at each pendent vertex of a crown is a Harmonic mean graph.

Proof: Let $u_1 u_2 ... u_n u_1$ be the cycle C_n . Let v_i be the vertex which is adjacent to u_i , where $1 \le i \le n$. The resultant graph is $C_n AK_1$

Let x_i , y_i and z_i be the vertices of i^{th} copy of C_3 and identify z_i with v_i . For $1 \le i \le n$, join v_i with x_i and y_i and then join x_i and y_i the required graph of G whose edge set is $E = \{u_iu_{i+1}, u_nu_1 \mid 1 \le i \le n-1\} \cup \{u_iv_i, v_ix_i, v_iy_i, x_iy_i \mid 1 \le i \le n\}$ Define a function $f: V(G) \to \{1, 2, ..., q+1\}$ by

 $f(u_1) = 3$

 $f(u_i) = 5i-1,$ $2 \le i \le n-1$

 $f(v_1) = 4$

 $f(v_i) = 5i,$ $2 \le i \le n$

 $f(x_i) = 5i-4, 1 \le i \le n$

 $f(y_i) = 5i-3, 1 \le i \le n$

ISSN: 2231-5373

From the above labeling pattern we get distinct edge labels. Thus f provides an Harmonic mean labeling for graph G and its labeling pattern is shown in the following figure.

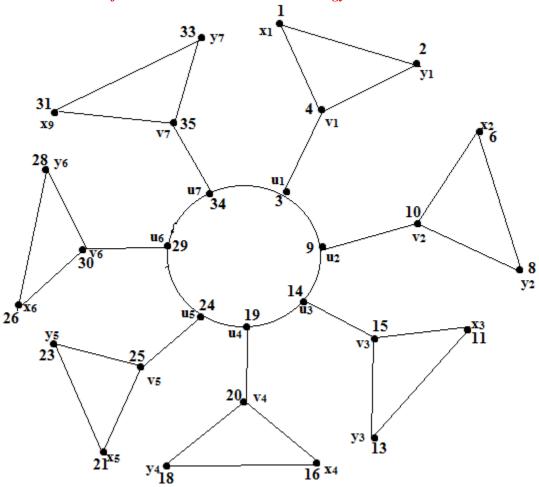


Figure: 6

Theorem 2.11: $D_n A \overline{K_2}$ is a Geometric mean graph.

 $\label{eq:proof: Let u_1 u_2 ... u_n u_1 and v_1 v_2 ... v_n v_1 be the two cycles of length n. Join u_i and v_i where $1 \le i \le n$. The resultant graph is D_n. Let x_i, y_i be the vertices of i^{th} copy of $\overline{K_2}$ which are adjacent to the vertex v_i of D_n. The resultant graph is $D_n A \overline{K_2}$ whose edge set is $E = \{u_i u_{i+1}, v_i v_{i+1} \mid 1 \le i \le n-1\} \cup \{v_i x_i, v_i y_i \mid 1 \le i \le n\}$$

Define a function f: $(D_n A \overline{K_2}) \rightarrow \{1,2,...,q+1\}$ by,

 $f(x_i) = 8i-7, 1 \le i \le 2$

 $f(x_i) = 5i-3, 3 \le i \le n$

 $f(y_i) = 8i - 6,$ $1 \le i \le 2$

 $f(y_i) = 5i-2, 3 \le i \le n$

 $f(v_i) = 5i-2, 1 \le i \le 2$

 $f(v_i) = 5i-1, 3 \le i \le n$

 $f(u_i) = 5i-4, 1 \le i \le 2$

 $f(w_i) = 5i,$ $3 \le i \le n$

From the above labeling pattern we get distinct edge labels. Thus f provides an Harmonic mean labeling for G. Hence $D_n A \overline{K_2}$ is a Harmonic mean graph and its labeling pattern is shown below

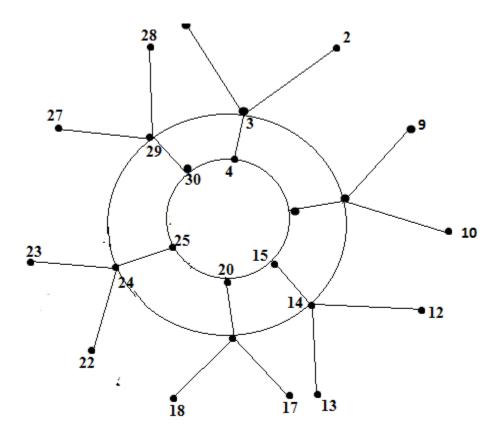


Figure: 7

References:

- [1] J.A.Gallian, A dynamic survey of graph labeling. The Electronic Journal of combinators 17#DS6.
- [2] F.Harary, Graph theory, Narosa publishing House New Delhi.
- [3] S. Somasundram and R.Ponraj, Mean labeling of graphs, National Academy of Science letters vol.26, p210-2013
- [4] S.S.Sandhya,and S. Somasundaram, Harmonic mean labeling of graphs International Journal of Mathematics Research vol.6, No.2(2014) pp179-182.