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Abstract — This paper presents an overview of results related 

to the computational analysis of compound redundant system 

under the head-of-line repair policy. Suppose a compound 

system consisting of two subsystems designated as ‘1’ and 

‘2’ connected in series. Subsystem ‘1’ consists of N non-

identical units in series, while the subsystem ‘2’ consists of 

three identical components in parallel redundancy. 
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I. INTRODUCTION  

In reliability analysis, it has been mostly assumed that the 

system has an immediate repair facility and after detection of 

failure, the unit goes under repair. But in many cases it is not 

advisable to always have a repair facility. In this paper the 

authors have considered a compound system consisting of two 

subsystems designated as ‘1’ and ‘2’ connected in series. 

Subsystem ‘1’ consists of N non-identical units in series, 

while the subsystem ‘2’ consists of three identical 

components in parallel redundancy. In this model it is 

considered that the system goes to complete breakdown state 

if any unit of subsystem ‘P’ fails or more than 1 unit of 

subsystem ‘2’ is in the failed condition. Also, the system 

works with reduced efficiency if one unit of subsystem ‘2’ 

failed. The system as a whole can also fail from normal 

efficiency state if there is any failure due to environmental 

reasons. Supplementary variable technique and Laplace 

transforms have been utilized to obtain various state 

probabilities and the cost incurred for the system is obtained. 

Failure and repair times of the units follow exponential and 

general time distributions respectively. 

Their many research [1, 2], different techniques have been 

applied to evaluate the reliability of distribution system, 

including distributed generation such as an analytical 

technique using the load duration curve, distributed processing 

technique, Characteristic function based approach for 

computing the probability distributers of reliability indices, 

probabilistic method for assessing the reliability and quantity 

of power supply to a customer, composite load point model, 

practical reliability assessment algorithm, validation method 

and impact of substation on distribution reliability 

respectively.  

II. ASSUMPTIONS  

(i) initially, all units are good  

(ii) A failed unit is repaired at a single service channel.  

(iii) The parallel subsystem is composed of three identical  

units, while series subsystem is composed of N  non-

identical units.  

(iv) Failures are statistically independent.  

(v) Environmental failure rates are constant.  

(vi) after repair, units work like new. 

(viii) First come first served (Head-of-line) repair policy is 

being adopted. 

  

III.  MATHEMATICAL SYMBOL 

(i) / /i Ef f f : Constant failure rates of any unit of 

subsystem 2
th

 unit of subsystem 1/environmental 

failure.  

(ii) 1 2 3 4( ) / (y) / ( ) / ( )r x r r z r  : Repair rates with general 

time distribution from states             S4 to S0, S1 to S0, 

or S3 to S4, S2 to S0, S5 to S0. 

(iii) 
2 (y, )NP t   : The probability that at time ‘t’, the 

system is in degraded state  due to the failure of one 

unit of subsystem 2. The elapsed repair time lies in 

the interval              (y, y + ). 

(iv) ( , )F

NP z t  : The probability that at time ‘t’, the 

system is in failed state due to the failure of more 

than one unit of subsystem 2, the elapsed repair 

time lies in the interval                (z, z + ). 

(v) 
3 ( , )iP x t  : The probability that at time ‘t’, the 

system is in failed state due to the failure of i
th

 unit of 

subsystem 1. The elapsed repair time lies in the 

interval (x, x + ). 

(vi) 
2 (y, )iP t  : The probability that at time ‘t’ the repair 

time lies in the interval (y, y + ). 

(vii) ( , )EP t  : The probability that at time ‘t’, the 

system is in failed state, due  to the environmental 

failure, the elapsed repair time lies in the  interval  

(,  + ). 
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IV. TRANSITION STATE DIAGRAM 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 1. represents the state transition diagram of the 

system. 

V. FORMULATION OF MATHEMATICAL MODEL 

The analysis crucially depends on the method of 

supplementary variables technique and the supplementary 

variable x denotes the time that a unit has been elapsed 

undergoing repair. Viewing the nature of the problem, we 

obtain the following set of difference-differential equations: 

  3 2

2 3

0 0

3 ( ) (y, ) (y) y ( , ) ( )F

t e N i ND f f f P t P t r d P z t r z dz

 

       

 
3

1 4

0 0

( , ) ( ) ( , ) ( )i EP x t r x dx P t r d  
 

     ... (1) 

2

22 (y) (y, ) 0t y ND D f f r P t         ... (2) 

 3 ( ) ( , ) 0F

t z ND D r z P z t      ... (3) 

  3

1( ) ( , ) 0t x iD D r z P x t      ... (4) 

2 2

2 (y) (y, ) (y, )t y i ND D r P t f P t       ... (5) 

 4 ( ) ( , ) 0t ED D r P t        ... (6) 

A. Boundary Conditions:  

2 3(0, ) 3 ( )N NP t f P t     ... (7) 

2(0, ) 2 ( )F

N NP t f P t     ... (8) 

3 3 2

2
0

(0, ) ( ) (y, ) (y) yi N iP t f P t P t r d


     ... (9) 

2 (0, ) 0iP t       ... (10) 

3(0, ) ( )i e NP t f P t     ... (11) 

B. Initial Conditions:  

3 (0) 1NP   Otherwise zero   ... (12) 

Where , , ,t x y zD D D D
t x y z

   
   

   
and D







 

 

VI.  SOLUTION OF MATHEMATICAL MODEL 

 Taking Laplace transforms of equations (1) through (11) and 

using initial conditions one may obtain: 

 
3 2

2 3
0 0

3 ( ) 1 (y, ) (y) y ( , ) ( )
F

N N Nes f f f P s P s r d P z s r z dz
 

        

   
3

1
0

( , ) ( )NP x s r x dx


  

   4
0

( , ) ( )EP s r d  


  ... (13) 

2

22 (y) (y, ) 0NyD s f r P s         ... (14) 

 3( ) ( , ) 0
F

NzD s r z P z s      ... (15) 

 
3

1( ) ( , ) 0ixD s r x P x s      ... (16) 

2 2

2 (y) (y, ) (y, )i NyD s r P s f P s       ... (17) 

 4 ( ) ( , ) 0ED s r P s        ... (18) 

2 3

(0, ) 3 ( )N NP s f P s     ... (19) 

2

(0, ) 2 ( )
F

N NP s f P s     ... (20) 

3 3 2

2
0

(0, ) ( ) (y, ) (y) yi N iP s f P s P s r d


     ... (21) 

2

(0, ) 0iP s       ... (22) 

3

(0, ) ( )E NeP s f P s     ... (23) 

After solving the above equations, we get finally  

3 1
( )

( )
NP s

A s
      ... (24) 

2

2 3
( ) ( 2 )

( )
N r

f
P s D s f f

A s


      ... (25) 

2 3

26
( ) ( 2 ) ( )

( )

F

N r r

f
P s D s f f D s

A s


     ... (26) 

2 2

2 3
( ) ( ) ( 2 )

(2 ) ( )
i r r

f f
P s D s D s f f

f f A s


      

    ... (27) 

 2 2

3 3
( ) 1 ( ) ( 2 ) ( )

( ) 2
i r r

f f
P s S s S s f f D s

A s f f


 
      

 

      ... (28) 

4
( ) ( )

( )

e
E r

f
P s D s

A s
     ... (29) 

Where  

2( ) 3 3 ( 2 )reA s s f f f f S s f f          

   32
6 ( 2 ) ( )rrf D s f f S s      

 2 2 4

3
1 ( ) ( 2 ) ( ) ( )

2
r r re

f
f S s S s f f S s f S s

f f


 
        

      ... (30) 

It is interesting to note that sum of relation (24) through (29) 

= 
1

s
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VII. ERGODIC BEHAVIOUR OF SYSTEM 

Using Abel’s Lemma
0

lim ( ) lim ( ) (say)
s t

s F s F t F
 

  , 

provided the limit on the R.H.S. exists, the time independent 

probabilities are obtained as follows by making use above 

lemma in the relations (24) through (29) 

3 1

(0)
NP

A



     ... (31) 

2

2 3
(2 )

(0)
N r

f
P D f f

A


 


    ... (32) 

2 3

6
(2 )

(0)

F

N r r

f
P D f f M

A


 


   ... (33) 

3 2

2 3
(2 )

(2 ) (0)
i r r

ff
P M D f f

f f A


     

  ... (34) 

3

(0)
i

f
P M

A



     ... (35) 

4(0)

e
E r

f
P M

A



     ... (36) 

Where, 
0

(0) ( )
s

d
A A s

ds 

 
   

 
 and kM = Mean time to repair 

k
th

 unit 

VIII. EVALUATION OF UP AND DOWN STATE 

PROBABILITIES   

 We have,  

1 3
( ) 1

3 2
up

e

f
P s

s f f f s f f

 
        

 ... (37) 

On both sides taking inverse Laplace transform, we get  

   
3 3

( ) 1 exp (3 ) exp (2 )up e

e e

f f
P t f f f t f f t

f f f f

  
         

   

 

      ... (38) 

and ( ) 1 ( )down upP t P t      ... (39) 

IX. COST PROFIT ANALYSIS FUNCTION 

The cost profit function is defined as,  

 1 2
0

( ) ( )
t

upG t C P t dt C t     ... (40) 

Where,  

G(t) = Expected cost for total time,  

C1 = Revenue cost per unit up time and  

C2 = Service cost per unit time  

Putting the value of Pup(t) in equation (40), we get 

 
1

1 exp (3 )3
( ) 1

3

e

e e

f f f tf
G t C

f f f f f

     
    

      
 

 
 

1 2

1 exp (2 )3

2e

f f tf
C C t

f f f f

    
    

     
 

      ... (41) 

X. RELIABILITY OF THE SYSTEM 

The Reliability of the system is  

    
1

3 ' e

R s
s f f f


  

 

On both sides taking inverse Laplace transform, we get  

    exp 3 ' eR t f f f t        ... (42) 

XI. NUMERICAL COMPUTATION 

Substituting f  = 0.001, f  = 0.002, fe = 0.003 and            c1 = 2, 

c2 = 1and all repair rates are zero, then from equations (38), 

(41) and (42), we get 

A. Availability of system 

      0.2exp 0.010 1.2exp 0.005upP t t t      

B. Cost profit function of system 

 
   1 exp 0.010 1 exp 0.005

0.4 2.4
0.010 0.005

t t
G t t

      
      

   
 

 

C. Reliability of system 

    exp 0.010R t t      

XII. TABLE I AND FIGURE 2 

COMPUTATION OF AVAILABILITY OF SYSTEM WITH 

RESPECT TO TIME 

S.No. t Pup(t) 

1 0 1 

2 1 0.996005 

3 2 0.9920201 

4 3 0.9880452 

5 4 0.9840805 

6 5 0.980126 

7 6 0.9761817 

8 7 0.9722477 

9 8 0.9683241 

10 9 0.9644107 

11 10 0.9605078 

12 11 0.9566154 

13 12 0.9527334 

14 13 0.9488619 

15 14 0.9450009 

16 15 0.9411506 
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TABLE III AND FIGURE 3 

COMPUTATION OF COST FUNCTION WITH RESPECT TO 

TIME 

S.No. t G(t) 

1 0 0 

2 1 0.9960033 

3 2 1.9840267 

4 3 2.9640903 

5 4 3.9362144 

6 5 4.9004192 

7 6 5.8567252 

8 7 6.805153 

9 8 7.7457231 

10 9 8.6784561 

11 10 9.603373 

12 11 10.520494 

13 12 11.429841 

14 13 12.331435 

15 14 13.225296 

16 15 14.111446 

 

 

 

 

 

 

 

 

 

TABLE IIIII AND FIGURE 4 

COMPUTATION OF RELIABILITY OF SYSTEM WITH 

RESPECT TO TIME 

S.No. t R(t) 

1 0 1.00 

2 1 0.99 

3 2 0.98 

4 3 0.97 

5 4 0.96 

6 5 0.95 

7 6 0.94 

8 7 0.93 

9 8 0.92 

10 9 0.91 

11 10 0.90 

12 11 0.90 

13 12 0.89 

14 13 0.88 

15 14 0.87 

16 15 0.86 

 

 

 

 

 

 

 

 

 

 

 

 

XIII. CONCLUSIONS 

The Table-I and Figure 2 provide information how 

availability of the complex engineering repairable system 

change with respect to time when failure rate increases, then 

availability of system is decreases. 

The Table-II & Figure 3 when revenue cost per unit 

time C1 and C2 are fixed, then one can conclude by observing 

this graph that as cost increase with respect to time t. 

The Table-III and Figure 4 provide information how 

reliability of the complex engineering repairable system 

changes with respect to the time when failure rate increases 

reliability of the system decreases.  

Hence the present study clearly proves the importance of 

head-of line repair policy in comparison of [5-6] which seem 

to be possible in many engineering systems when it is 

analysed with the help of the copula.  
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