On LPS Riemannian Manifold - Ii

"Manohar Singh, "Amarnath, Shailendra Kumar Gautam*
\#Deptt of Mathematics, College of Engineering Roorkee (COER) Roorkee (U.K.)
*Deptt of Mathematics, Eshan College of Engineering, Mathura

Abstract

In this paper, Lorentzian para sasakian Riemannian manifold have been studied. The first section is introductory. Basic definition and known results are defined. Second section deals with LPSRiemannian manifold and the third section is devoted for KLPS-Riemannian manifold. Some interesting results have been investigated.

1. Introduction

Definition (1.1) Let an n dimensional differentiable manifold Mn is called a Lorentzian para sasakian (LP-sasakian) manifold if it admits $(1,1)$ tensor field F , a vector field T , a 1 form A and a Lorentzian metric ' g ' satisfying -
(1.1)
(a) $\quad \mathrm{A}(\mathrm{T})=-1$
(b) $\quad \mathrm{F}^{2} \mathrm{X}=\mathrm{X}+\mathrm{A}(\mathrm{X}) \mathrm{T}$,
(c) $\quad \mathrm{g}(\mathrm{FX}, \mathrm{FY})=-\mathrm{g}(\mathrm{X}, \mathrm{Y})+\mathrm{A}(\mathrm{X}) \mathrm{A}(\mathrm{Y})$.
(d) $\quad \mathrm{g}(\mathrm{X}, \mathrm{T})=-\mathrm{A}(\mathrm{X})$
(e) $\quad \mathrm{F}(\mathrm{X})=\mathrm{D}_{\mathrm{X}} \mathrm{T}$
(f) $\quad\left(\mathrm{D}_{\mathrm{X}} \mathrm{F}\right) \mathrm{Y}=\mathrm{g}(\mathrm{X}, \mathrm{Y})+\mathrm{A}(\mathrm{X}) \mathrm{A}(\mathrm{Y}) \mathrm{T}+(\mathrm{X}+\mathrm{A}(\mathrm{X}) \mathrm{T}) \mathrm{A}(\mathrm{Y})$
where D denoted the covariant differentiation with respect to g .
In an LP-sasakian manifold Mn with structure (F,T,A,G) we can easily show that -
(1.2) (a) $\mathrm{F}(\mathrm{T})=0$
(b) $\quad \mathrm{A}(\mathrm{FX})=0$
(c) $\quad \operatorname{rank}(\mathrm{F})=\mathrm{n}-1$
more over if we put
(1.3) $\quad ' \mathrm{~F}(\mathrm{X}, \mathrm{Y})=\mathrm{g}((\overline{\mathrm{X}}, \mathrm{Y}))$
where ' F is a skew symmetric
Definition (1.2) An LP- Sasakian manifold on which the fundamental 2 - form ' F such that
$2^{\prime} \mathrm{F}=\mathrm{d} \mathrm{A}$
is satisfied is called LP-sasakian manifold

Some Results on APST - Riemannian manifold

$' \mathrm{~F}(\mathrm{X}, \mathrm{Y})=1 / 2\left[\left(\mathrm{D}_{\mathrm{X}} \mathrm{A}\right)(\mathrm{Y})-\left(\mathrm{D}_{\mathrm{Y}} \mathrm{A}\right)(\mathrm{X})\right]$.
$\left(d^{\prime} \mathrm{F}\right)=0 \Leftrightarrow\left(\mathrm{D}_{\mathrm{X}}{ }^{\prime} \mathrm{F}\right)(\mathrm{Y}, \mathrm{Z})+\left(\mathrm{D}_{\mathrm{Y}}{ }^{\prime} \mathrm{F}\right)(\mathrm{Z}, \mathrm{X})+\left(\mathrm{D}_{\mathrm{Z}}{ }^{\prime} \mathrm{F}\right)(\mathrm{X}, \mathrm{Y})=0$.
$' \mathrm{~F}(\mathrm{X}, \mathrm{Y})=\left(\mathrm{D}_{\mathrm{X}} \mathrm{A}\right)(\mathrm{Y})=-\left(\mathrm{D}_{\mathrm{Y}} \mathrm{A}\right)(\mathrm{X})$

$$
\begin{equation*}
\left(D_{Z} ‘ F\right)(X, Y)=A(K(X, Y, Z)) \tag{1.8}
\end{equation*}
$$

$$
\begin{align*}
& D_{X} \cdot F(Y, T)=-g(\bar{X}, \bar{Y}) \tag{1.9}\\
& \left(D_{Z} ‘ F\right)(\bar{X}, \bar{Y})-\left(D_{Z} ' F\right)(X, Y)-g(Z, X) A(Y)+g(Z, Y) A(X)=0 \tag{1.10}
\end{align*}
$$

(1.11) $\quad\left(\mathrm{D}_{\mathrm{Z}}{ }^{\prime} \mathrm{F}\right)(\mathrm{X}, \mathrm{Y}) \quad=\mathrm{A}(\mathrm{Y})\left(\mathrm{D}_{\mathrm{Z}}{ }^{\prime} \mathrm{F}\right)(\mathrm{X}, \mathrm{T})-\mathrm{A}(\mathrm{X})\left(\mathrm{D}_{\mathrm{Z}}{ }^{`} \mathrm{~F}\right)(\mathrm{Y}, \mathrm{T})$.
(1.14) $\quad D_{X} T=F(X)=\bar{X}$
(1.15) $\quad D_{X}{ }^{\prime} F(Y, Z)=A(K(Y, Z, X))$
2. SOME THEOREMS ON LPS - Riemannian manifold

Let us put
(2.1) $\quad T(X, Y)=\left(D_{\bar{X}} F\right)(Y)-\overline{\left(D_{X} F\right)(Y)}+\left(D_{X} A\right)(Y) T$

$$
\begin{aligned}
& =\left(D_{\bar{X}} \mathrm{~F}\right)(\mathrm{Y})+\left(\mathrm{D}_{\mathrm{X}} \mathrm{~F}\right)(\overline{\mathrm{Y}})-\left(\mathrm{D}_{\mathrm{X}} \mathrm{~A}\right)(\mathrm{Y}) \mathrm{T}-\mathrm{A}(\mathrm{Y})(\overline{\mathrm{X}})+\left(\mathrm{D}_{\mathrm{X}} \mathrm{~A}\right)(\mathrm{Y}) \mathrm{T} \\
& =\left(\mathrm{D}_{\bar{X}} \mathrm{~F}\right)(\mathrm{Y})+\left(\mathrm{D}_{\mathrm{X}} \mathrm{~F}\right)(\overline{\mathrm{Y}})-\mathrm{A}(\mathrm{Y})(\overline{\mathrm{X}}) .
\end{aligned}
$$

(2.2) a) $\quad \mathrm{N}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}) \underline{\underline{\operatorname{def}}} \mathrm{g}(\mathrm{N}(\mathrm{X}, \mathrm{Y}), \mathrm{Z})$
b) $\quad \mathrm{T}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}) \underline{\underline{\operatorname{def}} \mathrm{g}(\mathrm{T}(\mathrm{X}, \mathrm{Y}), \mathrm{Z}) \text {. } ~}$
using (2.1),
(2.3) $\mathrm{T}(\mathrm{X}, \quad \mathrm{Y})-\mathrm{T}(\mathrm{Y}, \mathrm{X})=(\mathrm{D} \overline{\mathrm{X}} \mathrm{F})(\mathrm{Y})+\left(\mathrm{D}_{\mathrm{X}} \mathrm{F}\right)(\overline{\mathrm{Y}})-\mathrm{A}(\mathrm{Y})(\overline{\mathrm{X}})-$
$(\mathrm{D} \overline{\mathrm{Y}} \mathrm{F})(\mathrm{X})-\left(\mathrm{D}_{\mathrm{Y}} \mathrm{F}\right)(\overline{\mathrm{X}})+\mathrm{A}(\mathrm{X})(\overline{\mathrm{Y}})$
from (1.12), (2.3) we get,
(2.4) $\quad \mathrm{T}(\mathrm{X}, \mathrm{Y})-\mathrm{T}(\mathrm{Y}, \mathrm{X})=\underset{0}{\mathrm{~N}}(\mathrm{X}, \mathrm{Y})$.
or
(2.5) $\left.\quad \begin{array}{c}\mathrm{N} \\ \mathrm{O} \\ \mathrm{O}\end{array} \mathrm{X}, \mathrm{Y}\right)=\mathrm{T}(\mathrm{X}, \mathrm{Y})-\mathrm{T}(\mathrm{Y}, \mathrm{X})=-\mathrm{N}(\mathrm{Y}, \mathrm{X})$

Thus we have

Theorems (2.1) ON KLPS - Riemannian manifold,
$\underset{0}{\mathrm{~N}}(\mathbf{X}, \mathbf{Y})=\mathbf{T}(\mathbf{X}, \mathbf{Y})-\mathbf{T}(\mathbf{Y}, \mathbf{X})=-\underset{0}{-\mathrm{N}}(\mathbf{Y}, \mathbf{X})$.
from (2.2) (b)
' $\mathrm{T}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\mathrm{g}(\mathrm{T}(\mathrm{X}, \mathrm{Y}), \mathrm{Z})$

$$
=g\left(\left(D \bar{X}^{F}\right) Y, Z\right)+g\left(\left(D_{X} F\right) \bar{Y}, Z\right)-A(Y) g(\bar{X}, Z)
$$

(2.6) $\quad \mathrm{T}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\left(\mathrm{D} \overline{\mathrm{X}}{ }^{`} \mathrm{~F}\right)(\mathrm{Y}, \mathrm{Z})+\left(\mathrm{D}_{\mathrm{X}}{ }^{\prime} \mathrm{F}\right)(\overline{\mathrm{Y}}, \mathrm{Z})-\mathrm{A}(\mathrm{Y}){ }^{\prime} \mathrm{F}(\mathrm{X}, \mathrm{Z})$
(2.7) $\quad ' \mathrm{~T}(\mathrm{X}, \mathrm{Z}, \mathrm{Y})=(\mathrm{D} \overline{\mathrm{X}} ' \mathrm{~F})(\mathrm{Z}, \mathrm{Y})+\left(\mathrm{D}_{\mathrm{X}} \mathrm{F}\right)(\overline{\mathrm{Z}}, \mathrm{Y})-\mathrm{A}(\mathrm{Z}){ }^{\prime} \mathrm{F}(\mathrm{X}, \mathrm{Y})$

Adding (2.6) and (2.7), we get.
(2.8) ' $\mathrm{T}(\mathrm{X}, \quad \mathrm{Y}, \quad \mathrm{Z})+\quad \mathrm{T}(\mathrm{X}, \quad \mathrm{Z}, \quad \mathrm{Y})=(\mathrm{D} \overline{\mathrm{X}} \quad \mathrm{F})(\mathrm{Y}, \mathrm{Z})+\left(\mathrm{D}_{\mathrm{X}} \quad \mathrm{F}\right)(\overline{\mathrm{Z}}, \mathrm{Y})-$

$$
A(Y) ‘ F(X, Z)-A(Z) ‘ F(X, Y) .
$$

using (1.11), (2.8) becomes
 (X,Y)

$$
=-2\left\{‘ \mathrm{~F}(\mathrm{X}, \mathrm{Y}) \mathrm{A}(\mathrm{Z})+{ }^{‘} \mathrm{~F}(\mathrm{X}, \mathrm{Z}) \mathrm{A}(\mathrm{Y})\right\}
$$

Thus we have
Theorem (2.2). On KLPS Riemannian manifold,
If, $\quad \mathrm{T}(\mathbf{X}, \mathbf{Y}, \mathbf{Z})=\mathbf{g}(\mathbf{T}, \mathbf{X}, \mathbf{Y}), \mathbf{Z})$,
then
${ }^{\prime} T(\mathbf{X}, \mathbf{Y}, \mathbf{Z})+{ }^{\prime} \mathbf{T}(\mathbf{X}, \mathbf{Z}, \mathbf{Y})=-2\left[{ }^{‘} \mathbf{F}(\mathbf{X}, \mathbf{Y}) \mathbf{A}(\mathbf{Z})+‘ \mathbf{F}(\mathbf{X}, \mathbf{Z}) \mathbf{A}(\mathbf{Y})\right]$.
From (2.2) (a)
$\begin{array}{cc}' \mathrm{~N}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}) & =\quad \mathrm{g}(\mathrm{N}(\mathrm{X}, \mathrm{Y}), \mathrm{Z}) \\ 0\end{array}$
$=\quad g\left(\left(D \bar{X}^{F}\right) Y, Z\right)-g\left(\left(D \bar{Y}^{F}\right) X, Z\right)+g\left(\left(D_{X} F\right) \bar{Y}, Z\right)-$ $g\left(\left(D_{Y} F\right) \bar{X}, Z\right)-A(Y) g(\bar{X}, Z)+A(X) g(\bar{Y}, Z)$,
(2.10) ' $\mathrm{N}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=$ $\left(\mathrm{D} \overline{\mathrm{X}}{ }^{\prime} \mathrm{F}\right)(\mathrm{Y}, \mathrm{Z})-\left(\mathrm{D} \overline{\mathrm{Y}}{ }^{\prime} \mathrm{F}\right)(\mathrm{X}, \mathrm{Z})+\left(\mathrm{D}_{\mathrm{X}}{ }^{\prime} \mathrm{F}\right)(\overline{\mathrm{Y}}, \mathrm{Z})-$

$$
\left(\mathrm{D}_{\mathrm{Y}} ‘ \mathrm{~F}\right)(\overline{\mathrm{X}}, \mathrm{Z})-\mathrm{A}(\mathrm{Y}){ }^{\prime} \mathrm{F}(\mathrm{X}, \mathrm{Z})+\mathrm{A}(\mathrm{X}) ‘ \mathrm{~F}(\mathrm{Y}, \mathrm{Z})
$$

(2.11) ' $\mathrm{N}(\mathrm{Y}, \mathrm{Z}, \mathrm{X})=$
$\left(\mathrm{D} \overline{\mathrm{Y}} \quad\right.$ 'F) $(\mathrm{Z}, \mathrm{X})-(\mathrm{D} \overline{\mathrm{Z}} \quad$ ' F$)(\mathrm{Y}, \mathrm{X})+\left(\mathrm{D}_{\mathrm{Y}} \quad\right.$ 'F) $(\overline{\mathrm{Z}}, \mathrm{X})-$ $\left(\mathrm{D}_{\mathrm{Z}}{ }^{\prime} \mathrm{F}\right)(\overline{\mathrm{Y}}, \mathrm{X})-\mathrm{A}(\mathrm{Z}){ }^{\prime} \mathrm{F}(\mathrm{Y}, \mathrm{X})+\mathrm{A}(\mathrm{Y})^{\prime} \mathrm{F}(\mathrm{Z}, \mathrm{X})$.
(2.12) ' $\mathrm{N}(\mathrm{Z}, \mathrm{X}, \mathrm{Y})=$ $(\mathrm{D} \overline{\mathrm{Z}} \quad$ ' F$)(\mathrm{X}, \quad \mathrm{Y})-(\mathrm{D} \overline{\mathrm{X}} \quad$ ' F$)(\mathrm{Z}, \quad \mathrm{Y})+\left(\mathrm{D}_{\mathrm{Z}} \quad \mathrm{F}\right)(\overline{\mathrm{X}}, \mathrm{Y})-$ $\left(D_{X}{ }^{\prime} \mathrm{F}\right)(\overline{\mathrm{Z}}, \mathrm{Y})-\mathrm{A}(\mathrm{X}){ }^{\prime} \mathrm{F}(\mathrm{Z}, \mathrm{Y})+\mathrm{A}(\mathrm{Z}){ }^{\prime} \mathrm{F}(\mathrm{X}, \mathrm{Y})$.

Adding (2.10) and (2.12) and subtract (2.11), we get
(2.13) ' $\mathrm{N}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})+‘ \mathrm{~N}(\mathrm{Z}, \mathrm{X}, \mathrm{Y})-‘ \mathrm{~N}(\mathrm{Y}, \mathrm{Z}, \mathrm{X})=(\mathrm{D} \overline{\mathrm{X}} \quad \mathrm{F})(\mathrm{Y}, \mathrm{Z})-(\mathrm{D} \overline{\mathrm{Y}}$ 'F)(X,Z)+ $\left(\mathrm{D}_{\mathrm{X}} ' \mathrm{~F}\right)(\overline{\mathrm{Y}}, \mathrm{Z})-\left(\mathrm{D}_{\mathrm{Y}} \cdot \mathrm{F}\right)(\overline{\mathrm{X}}, \mathrm{Z})-\mathrm{A}(\mathrm{Y}){ }^{\prime} \mathrm{F}(\mathrm{X}, \mathrm{Z})+$ $\mathrm{A}(\mathrm{X})^{\prime} \mathrm{F}(\mathrm{Y}, \mathrm{Z})+\left(\mathrm{D} \overline{\mathrm{Z}}{ }^{' \mathrm{~F}}\right)(\mathrm{X}, \mathrm{Y})-(\mathrm{D} \overline{\mathrm{X}} \quad \mathrm{F})(\mathrm{Z}, \mathrm{Y})+$ $\left(\mathrm{D}_{\mathrm{Z}}{ }^{\prime} \mathrm{F}\right)(\overline{\mathrm{X}}, \mathrm{Y})-\left(\mathrm{D}_{\mathrm{X}} \quad\right.$ 'F) $(\overline{\mathrm{Z}}, \mathrm{Y})-\mathrm{A}(\mathrm{X}) .{ }^{\prime} \mathrm{F}(\mathrm{Z}, \mathrm{Y})+$ A (Z) 'F (X, Y) - (D $\overline{\mathrm{Y}} \quad$ 'F) $(\mathrm{Z}, \mathrm{X})+(\mathrm{D} \overline{\mathrm{Z}} \quad \mathrm{F})(\mathrm{Y}, \mathrm{X})-$ $\left(\mathrm{D}_{\mathrm{Y}}{ }^{\prime} \mathrm{F}\right)(\overline{\mathrm{Z}}, \mathrm{X})+\left(\mathrm{D}_{\mathrm{Z}}{ }^{\prime} \mathrm{F}\right)(\overline{\mathrm{Y}}, \mathrm{X})+\mathrm{A}(\mathrm{Z}){ }^{\prime} \mathrm{F}(\mathrm{Y}, \mathrm{X})-$ A (Y) 'F (Z, X).
$=\left(D_{\bar{X}} F\right)(Y, Z)+\left(D_{X}{ }^{\prime} F\right)(\bar{Y}, Z)-\left(D_{Y} ‘ F\right)(\bar{X}, Z)-(D \bar{X} F)(Z, Y)$ $+\left(\mathrm{D}_{\mathrm{Z}}{ }^{\prime} \mathrm{F}\right)(\overline{\mathrm{X}}, \mathrm{Y})-\left(\mathrm{D}_{\mathrm{X}}{ }^{\prime} \mathrm{F}\right)(\overline{\mathrm{Z}}, \mathrm{Y})-\left(\mathrm{D}_{\mathrm{Y}}{ }^{\prime} \mathrm{F}\right)(\overline{\mathrm{Z}}, \mathrm{X})+$ $\left(\mathrm{D}_{\mathrm{Z}}{ }^{\prime} \mathrm{F}\right)(\overline{\mathrm{Y}}, \mathrm{X})+\mathrm{A}(\mathrm{X}){ }^{‘} \mathrm{~F}(\mathrm{Y}, \mathrm{Z})-\mathrm{A}(\mathrm{X}){ }^{‘} \mathrm{~F}(\mathrm{Z}, \mathrm{Y})$

Using (1.11), (2.13) becomes.

$$
\begin{aligned}
& =2\left(\mathrm{D} \overline{\mathrm{X}}^{`} \mathrm{~F}\right)(\mathrm{Y}, \mathrm{Z})+\mathrm{A}(\mathrm{X})^{\prime} \mathrm{F}(\mathrm{Y}, \mathrm{Z})-\mathrm{A}(\mathrm{X})^{`} \mathrm{~F}(\mathrm{Z}, \mathrm{Y}) \\
& =\quad 2(\mathrm{D} \overline{\mathrm{X}} \mathrm{~F})(\mathrm{Y}, \mathrm{Z})+2 \mathrm{~A}(\mathrm{X}) \cdot \mathrm{F}(\mathrm{Y}, \mathrm{Z}) . \\
& =\quad 2{ }^{`} \mathrm{~T}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})+2 \mathrm{~A}(\mathrm{Z})^{`} \mathrm{~F}(\mathrm{X}, \mathrm{Y})+2 \mathrm{~A}(\mathrm{Y})^{`} \mathrm{~F}(\mathrm{X}, \mathrm{Z})+2 \mathrm{~A}(\mathrm{X})^{`} \mathrm{~F}(\mathrm{Y}, \mathrm{Z}) \\
& =2\left[{ }^{\prime} \mathrm{T}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})+\mathrm{A}(\mathrm{X})^{`} \mathrm{~F}(\mathrm{Y}, \mathrm{Z})+\mathrm{A}(\mathrm{Y})^{`} \mathrm{~F}(\mathrm{X}, \mathrm{Z})+\mathrm{A}(\mathrm{Z}){ }^{`} \mathrm{~F}(\mathrm{X}, \mathrm{Y})\right]
\end{aligned}
$$

thus we have,

Theorem (2.3) On KLPS Riemannian manifold, the N Vanishes 0

if and only if.

```
\({ }^{\prime} \mathbf{T}(\mathbf{X}, \mathbf{Y})=-\{\mathbf{A}(\mathbf{X}) ‘ \mathbf{F}(\mathbf{Y}, \mathbf{Z})-\mathbf{A}(\mathbf{Y}) \cdot \mathbf{F}(\mathbf{Z}, \mathbf{X})+\mathbf{A}(\mathbf{Z}) \cdot \mathbf{F}(\mathbf{X}, \mathbf{Y})\}\)
\(\cdot \mathbf{T}(\mathbf{X}, \mathbf{Y})=-\left\{\mathbf{A}(\mathbf{X}) \overline{\mathrm{Y}}_{-\mathbf{A}(\mathbf{Y})} \overline{\mathrm{Z}}+\mathbf{A}(\mathbf{Z}) \overline{\mathrm{X}}\right\}\)
```


3. AFFINE CONNEXION

On LPS - Riemannian manifold, Riemannian connexion D and affine connexion B is connected as,
(3.1) $\quad B_{X} Y=D_{X} Y+H(X, Y)$,
(3.2) $\quad B_{X} T=D_{X} T+H(X, T)$

Using (1.14)

$$
\begin{aligned}
& \mathrm{B}_{\mathrm{X}} \mathrm{~T} \quad=\overline{\mathrm{X}}+\mathrm{H}(\mathrm{X}, \mathrm{~T}) \\
& F\left(B_{X} T\right)=F(\bar{X})+F(H(X, T)) \\
& F\left(B_{X} T\right)=\overline{\bar{X}}_{+F(H(X, T))} \\
& \mathrm{F}\left(\mathrm{~B}_{\mathrm{X}} \mathrm{~T}\right)=\mathrm{X}+\mathrm{A}(\mathrm{X}) \mathrm{T}+\mathrm{F}(\mathrm{H}(\mathrm{X}, \mathrm{~T})) \\
& \mathrm{F}\left(\mathrm{~B}_{\overline{\mathrm{X}}} \mathrm{~T}\right)=\overline{\mathrm{X}}+\mathrm{A}\left(\overline{\mathrm{X}}_{)} \mathrm{T}+\mathrm{F} .\left(\mathrm{H}\left(\overline{\mathrm{X}}_{, \mathrm{T})}\right)\right.\right. \\
& \mathrm{F}\left(\mathrm{~B}_{\overline{\mathrm{X}}} \mathrm{~T}^{\mathrm{T}}\right)=\overline{\mathrm{X}}_{+\mathrm{F}(\mathrm{H}(\overline{\mathrm{X}}, \mathrm{~T}))}
\end{aligned}
$$

thus we have

Theorem (3.1) On LPS - Riemannian manifold,

(3.3) $\quad \mathbf{F}\left(\mathrm{B}_{\bar{X}} \mathbf{T}\right)=\bar{X}+\mathbf{F}(\mathbf{H}(\bar{X}, \mathbf{T}))$.
we have from (3.1)
$\mathrm{B}_{\mathrm{X}} \mathrm{Y}=\mathrm{D}_{\mathrm{X}} \mathrm{Y}+\mathrm{H}(\mathrm{X}, \mathrm{Y})$
(3.4) $\quad B_{X} \bar{Y}=D_{X} \bar{Y}+H(X, \bar{Y})$
$(3.5)\left(B_{X} F\right)(Y)+F\left(B_{X} Y\right) \quad=\quad\left(D_{X} F\right)(Y)+F\left(D_{X} Y\right)+H(X, \bar{Y})$
$\left(\mathrm{B}_{\mathrm{X}} \mathrm{F}\right)(\mathrm{Y})+\mathrm{F}\left(\mathrm{B}_{\mathrm{X}} \mathrm{Y}-\mathrm{D}_{\mathrm{X}} \mathrm{Y}\right) \quad=\quad\left(\mathrm{B}_{\mathrm{X}} \mathrm{F}\right)(\mathrm{Y})+\mathrm{H}(\mathrm{X}, \overline{\mathrm{Y}})$
$\left(B_{X} F\right)(Y)+\overline{H(X, Y)}=\left(D_{X} F\right)(Y)+H\left(X, \bar{Y}_{)}\right)$
$\left(\mathrm{B}_{\mathrm{X}} \mathrm{F}\right)(\mathrm{Y})$
$=\quad\left(D_{X} \mathrm{~F}\right)(\mathrm{Y})+\mathrm{H}\left(\mathrm{X}, \overline{\mathrm{Y}}^{\prime}\right)-\overline{\mathrm{H}(\mathrm{X}, \mathrm{Y})}$
(3.6) $\left.g\left(\left(B_{X} F\right)\right) Y, Z\right) \quad=\quad g\left(\left(D_{X} F\right) Y, Z\right)+g(H(X, \bar{Y}), Z)-g(\overline{H(X, Y)}, Z)$

$$
=\quad\left(\mathrm{D}_{\mathrm{X}}{ }^{\prime} \mathrm{F}\right)(\mathrm{Y}, \mathrm{Z})+{ }^{\prime} \mathrm{H}(\mathrm{X}, \overline{\mathrm{Y}}, \mathrm{Z})+{ }^{\prime} \mathrm{H}(\mathrm{X}, \mathrm{Y}, \overline{\mathrm{Z}})
$$

Using (1.15) becomes
(3.7) $\quad\left(\mathrm{B}_{\mathrm{X}}{ }^{`} \mathrm{~F}\right)(\mathrm{Y}, \mathrm{Z}) \quad=\quad \mathrm{A}(\mathrm{K}(\mathrm{Y}, \mathrm{Z}, \mathrm{X}))+{ }^{\prime} \mathrm{H}(\mathrm{X}, \overline{\mathrm{Y}}, \mathrm{Z})+{ }^{\prime} \mathrm{H}(\mathrm{X}, \mathrm{Y}, \overline{\mathrm{Z}})$

Thus we have

Theorem (4.2) On LPS - Riemannian manifold, we have

$$
\left(\mathrm{B}_{\mathrm{X}} ‘ \mathrm{~F}\right)(\mathrm{Y}, \mathrm{Z}) \quad=\quad \mathrm{A}(\mathrm{~K}(\mathrm{Y}, \mathrm{Z}, \mathrm{X}))
$$

If ${ }^{\prime} \mathbf{H}(\mathbf{X}, \overline{\mathrm{Y}}, \mathbf{Z})+{ }^{\prime} \mathbf{H}(\mathbf{X}, \mathbf{Y}, \overline{\mathrm{Z}}) \quad=\quad \mathbf{0}$
Let us assume
$\left(D_{X} D_{Y} A\right)(Z)=\left(D_{X} ' F\right)(Y, Z)=g(X, Y) A(Z)+g(X, Z) A(Y)+2 A(X) A(Y) A(Z)$
$\mathrm{L}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\mathrm{g}(\mathrm{X}, \mathrm{Y}) \mathrm{A}(\mathrm{Z})+\mathrm{g}(\mathrm{X}, \mathrm{Z}) \mathrm{A}(\mathrm{Y})+2 \mathrm{~A}(\mathrm{X}) \mathrm{A}(\mathrm{Y}) \mathrm{A}(\mathrm{Z})$
$\mathrm{L}(\mathrm{Y}, \mathrm{Z}, \mathrm{X})=\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \mathrm{A}(\mathrm{X})+\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \mathrm{A}(\mathrm{Z})+2 \mathrm{~A}(\mathrm{Y}) \mathrm{A}(\mathrm{Z}) \mathrm{A}(\mathrm{X})$
$\mathrm{L}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})-\mathrm{L}(\mathrm{Y}, \mathrm{Z}, \mathrm{X})=\mathrm{g}(\mathrm{X}, \mathrm{Z}) \mathrm{A}(\mathrm{Y})-\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \mathrm{A}(\mathrm{X})$
$\mathrm{L}(\mathrm{X}, \mathrm{Y}, \mathrm{T})-\mathrm{L}(\mathrm{Y}, \mathrm{T}, \mathrm{X})=0$
$\mathrm{L}(\mathrm{T}, \mathrm{Y}, \mathrm{Z})-\mathrm{L}(\mathrm{Y}, \mathrm{Z}, \mathrm{T})=\mathrm{A}(\mathrm{Z}) \mathrm{A}(\mathrm{Y})-\mathrm{g}(\mathrm{Y}, \mathrm{Z})$
$\mathrm{L}(\mathrm{T}, \overline{\mathrm{Y}}, \mathrm{Z})-\mathrm{L}(\overline{\mathrm{Y}}, \mathrm{Z}, \mathrm{T})=-(\mathrm{F}(\mathrm{Y}, \mathrm{Z})$
Theorem : On LPS - Riemannian manifold, we have $L(X, Y, T)=L(Y, T, X)$
and $\mathbf{L}(\mathbf{T}, \overline{\mathrm{Y}}, \mathbf{Z})-\mathbf{L}(\overline{\mathbf{Y}}, \mathbf{Z}, \mathbf{T})=-\quad{ }^{\prime} \mathbf{F}(\mathbf{Y}, \mathbf{Z})$

REFERENCES

[1] S.S.Yadav (2002) : Some contribution to almost para contact manifold: Ph.D. Thesis (awarded) Dr. B.R.A.University, Agra.
[2] Mishra R.S.(1984) : Structures on differentiable manifold and their application, Chandrama Prakashan Allahabad.
[3] H.B. Pandey, Manohar Singh : On LPS-Riemannian manifold, Journal of the Tensor Society (JTS), Lucknow, Vol-1, 2007.

