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Abstract

An Algorithm has been developed for solving special types of transportation problem having total demand more
than or equal to the total supply. This algorithm is useful for solving both balanced and unbalanced
transportation problems. The dual-matrix approach is used in the present algorithm.
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Introduction

The minimum cost planning plays an important role for solving the transportation problems from origins
to different destinations, such as from factories to warehouses, or from warehouses to supermarkets, etc. The
shipping cost from one location to another is usually a linear function of the number of units shipped. Simplex
method which utilizes linear programming models can be effectively used for solving transportation problems.
Ping and CHU(2002) showed that dual-matrix approach is more efficient in comparison to simplex method in
the context of transportation.

Dual- matrix approach was applied successfully earlier for solving the transportation problems[2] (ping
and CHU, 2002) having demand is less than or equal to the supply. However the present study indicates that
even the Ping and CHU’s approach also suffers from certain constraints having demand is more than or equal to
the supply. The new approach similar to dual-matrix approach represents the algorithm for solving
transportation problem having demand is greater than or equal to the supply.

The new approach considers the dual of the transportation problem instead of primal and obtains the
optimal solution of the dual by the use of matrix operations. The new algorithm is detailed in the paper, and
finally numerical example is given to illustrate the approach.

The Model and its Dual

The transportation problem is usually presented as matrix as shown in Figure 1. The unit transportation
cost generally indicated on the northeast corner in each cell.
This problem can be expressed as a linear programming model as follows:

minimize ¢ = Zmlzn:cijxij

i=1 j=1

Subjectto D x;>a (i=12..,m) (1)
[E

Zn:xij <b, (=12,..,n) (2) ¢+ .. LP(1)
7xij >0(=12,...,m, j=1 2,..,n)

Here all a;’s and bj ’s are assumed to be positive, and called supplies and demands respectively, as shown in

m n
Figurel, The cost C; are all nonnegative. Zai = z bj , Is a condition for balanced transportation problem. If
i=1 j=1
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this condition is not met, a dummy origin or destination is generally introduced to make the problem balanced.
The new dual-matrix approach presented now does not require a transportation problem to be balanced. The
approach can be applied to both balanced and unbalanced problems, no dummy origin or destination is
introduced, and so time and space are saved.

The dual matrix approach considers the dual model of the transportation problem, and the main
operations are calculated on a matrix. Another advantage is that degeneracy does not exist in the dual-matrix
approach.

If model LP1 is considered as the primal, then its dual can be formulated as follows:

m n
maximize y = au, — > by,
=1

i=1

Subjectto u, —v. <c. (i=1,2,...,m, j=1 2,..,n 3
: o _( _J ANCI LP(2)
u,V, >0(=L2,...,m j=12,..,n)

Here all &,’s and bj ’s are assumed to be positive, and called supplies and demands respectively, as shown in

m n
figurel. The cost C;are all nonnegative. Zai = ij , is a condition for balanced transportation problem. If
i=1 j=1
this condition is not met, a dummy origin or destination is generally introduced to make the problem balanced.
The new dual-matrix approach presented now does not require a transportation problem to be balanced. The
approach can be applied to both balanced and unbalanced problems, no dummy origin or destination is
introduced, and so time and space are saved.

The primal problem has m+n constraints and m.n variables. The dual has m+n variables and m.n
constraints. Because of fewer variables in dual problem, the dual problem will be solved by the dual-matrix
approach quickly. However, all m.n constraints are not necessary to be presented explicitly as in LP2. All these
constraints are kept in original transportation matrix, as indicated in Figure 1.

The Dual-Matrix Approach

The main idea of the dual-matrix approach is to obtain a first feasible solution to the dual problem and its
corresponding matrix. Then the duality theory is used to check the optimality condition and to get the leaving
cell. All non-basic cells are evaluated in order to get the entering cell. Finally, the entering cell replaces the
leaving cell and the matrix is updated. The dual-matrix approach is presented as follows:
Step 0 Initialization

Step 0.1 Set A=(ai,az,...,am,—bl,—bz,...,—bn)
step0.2Set v, =0; (j=12...n)and let U =c;, =min{c;, j=12,...n};i=12..,m.

Ties can be broken arbitrarily. The corresponding cell to C_ijare (i,ji)(i=1,2,...,m),
respectively.
Step 0.3 Let the basic cell set Fz{(l, jl), (2, jz), - (m, jm), (O,l), (0,2), ,(O,n)}.

The cells (O,l), (0,2), s (O,n)are called virtual cells because they do not exist in the
original transportation problem matrix.
Step 0.4 Let the matrix D= [dij ], Lj=L12,...,m+n;
1i,j=12,..,m;

-1 i=L2,...,m;j=m+j, m+J,,.m+ j,
where d;; = o
-1l i j=m+1, m+2,...,m+n

0 otherwise
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m n
And compute the objective v = Zaiui - Z:ijj
i=1 j=1
Determination of leaving cell:
Step 1.1 Compute Y = AD

Step 1.2 Find the smallest value Y, in the elements of Y, that is the value of the k" element in Y is
the smallest. Ties can be broken arbitrarily.
Step 1.31f y, >0, the solution is optimal(both the dual and primal), stop. Otherwise, leaving cell is

k™ cell in T that is (i, Ji) -

: Determination of entering cell:
I pl | dlvk _ql ] m+1,k
P, d, g, m+2,k
Step 2.1 Let P= = Q= =
P di,k g; dm+j,k
_pm_ _dm,k_ _qn_ _dm+n,k_

Step 2.2 For all non basic cells, if qj -p < 0, then the dual problem is not bounded, and the original
primal problem has no feasible solution, and stop. Otherwise, compute 0” =G —U; +V, if
qj' —pi> 0

Step 2.3Find the smallest value 6 in all 6,

i and the cell (s,t)is the entering cell. Ties can be

broken arbitrarily.

Updating
Step3.1 Update the matrix D
Step3.1.1 For the elements of column k in D
ci,kz—d,k 1=12,....,m+n
Step3.1.2 For the elements of the other columns in D
A ~ r=12,...k=1k+1,...... ,m+n;
dIr :dlr +(dt+m,r _dsr)dlk _
1=12,...... ,m+n

Step3.3 Update the objective value: Compute

m n
and the objective y = Zaiui - ijvj
=1

i=1
goto step 1.
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Destination
D, D, DJ D, Supply
Cy C 1j Crn
O1 Xy X1 XlJ Xin &
Cy Cy Caj Can
Oz Xy X2 XZJ Xon a,
Origin
i1 i2 i in
0, i1 Xiz ij in &;
Cr Cnz Co mn
Om X Xin2 .. ij .. mn a,
Demand by b, bj . b,

Figure 1: transportation problem Matrix

The initialization procedure is to obtain an initial feasible solution. By setting v, = Oand u, being the
smallest cost in the row i, obviously they meet the constraint set(3) in the dual problem. The matrix D is an
(m + n) X ( m+ n) matrix, which can be divided into four sub-matrices as follows:

1. The upper left sub matrix is an M x M identity matrix.

2. The upper right sub-matrix is an mx nmatrix: If the cell (i, j) is a basic cell (corresponding to C_ij)

then the element (i, j) in this sub-matrix is -1. All other elements in this sub-matrix are 0.

3. The lower left sub-matrix is an N x M zero matrix.

4. The lower right sub-matrix is an N x N negative identity matrix.
During the main procedure of the dual-matrix approach, step 1 is to get the leaving cell, similar to getting a
leaving variable in the simplex method. As matter of fact, the initial feasible solution in the dual-matrix

approach is a very good starting point. From the objective function in the dual LP2, it is obvious that v, should
be smaller, the better. The smallest is 0 for all Vj . On the other hand, U; should be larger, the better. However

due to the constraints set (3) a U; can only be the minimum value of C; in the row i. Step 2 is to obtain the
entering cell by evaluating all non-basic cells, which is similar to stepping-Stone method (Charnes & Cooper,
1954). The equation in step 2.2 is the same as the one in stepping-stone method (MODI, precisely) except the
sign of U, . Finally the matrix D and other relevant data are updated accordingly. To explain this approach

mathematically, a cell (i, j)can be represented as an equation, that is U, —-V; =C;. The mathematical

background of the dual-matrix approach is to find m+n equations, i.e., m+n basic cells from constraints
set(3) in the dual. If these equations cannot maximize the objective of the dual, that is solution is not optimal,
find another cell (equation), i.e., the entering cell, to replace one equation set until an optimal solution is found.
So, the algorithm of this approach is very simple as shown previously.
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Numerical Example
The following unbalanced transportation problem is considered.

Destination
D, D, D, D, Supply
25 17 25 14
Ol Xi1 X1 Xi3 Xi4 300
15 10 18 24
origin | O X1 X2 Xo3 X4 500
16 20 8 13
03 X31 X3 X33 X34 600
Demand | 300 300 500 500
Step 0 Initialization
A=(300, 500, 600, —300, —300, —500, —500) V, =V, =V, =0and
u =14, u,=10, u,=8,T={(14), (2.2), (33), (0.1), (0,2), (0.3), (0,4)}
1 00 0 0 0 -1]
010 0 -1 0 O
001 0 0 -1 0
D=0 0 0 -1 0 0 O
000 0 -1 0 O
000 0 0 -1 0
000 0 0 0 -1
and v=>au, - by, =14900
i=1 j=1
Stepl Determination of leaving JceII:
Y=AD=(300, 500, 600, 300, —200, -100, 200) s0 k=5 and the leaving cell is (0,2)
inT’
Step2 Determination of entering cell
p.] [dis] [0 " 34'5 °
P=lp,|= d2,5 =-1 Q= % = > |= N
q3 d6,5 O
Pa] [dys] O
] |dss] LO

Among all the non-basic cells (1,1) (1,2)(1,3)(3,1)(3,2)(3,4) have non positive (qj — pi)’s,
while the cells (2,1),(2,3),(2,4) have positive (qj - pi)’s S0,
0, =min{0,,,0,,6,,} =min{12-10+0,18-10+0,24-10+0} = min {5,8,14} =5.

Now the entering cell (S,t) = (2,1).
Step3 Updating
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15 01 o] | _dl.z_
dz.s -1 1 dz.z dz_z
as.s 0 0 &3.2 d,,
a4.5 =—{0 [=|0 &4.2 = d4.2 +(d4.2_d7.2)
as.s -1 1 &5.2 ds,
ae.s g g &6.2 36'2
d7.5 -0 T d7.2 ol
Simil_arly o—ther elements in D ca_n be l]pdated and
1 0 0 0 0 0 -1
0 0 011 0 O
0 01 0 0 -1 0
D=0 0 0 -1 0 0 O
0 -10 -11 0 O
0O 0 0 0 0 -1 0
0 0 00 0 0 -1]
r'={(14),(2,2),(3.3),(0,1),(2.1),(0,3),(
a, | [u, p, | [14 0
u, |= uz}é?St p, |= 10}5 -1|=
U, U, P, 8 0
V, Vi O, 0 0
\Zz {/z _est a, _ 0 -5 -1
3 Vs s 0 0
v, v, q,|] |0 0

V= Zm:aiui —Zn:ijj =15,000
i=1 j=1

Y = AD =(300,300, 600,100, 200,-100, 200)

Since one element of Y is negative so the problem is not optimal, So we go to Step 1 and repeat the

procedure. After one iteration, final solution can be written as:

1 0 0 0 0
00 0 -11
00 0 00
00 0 -10
0 -1 0 -1 1
00 -1 00
00 0 00

0

O B O O L, O

>

=
3

o,

N
3

(@Y
w
o

>

>
3

O, O, O,
~ o o
o o o

r={(24),(22),(33),(0.1),(21).(0.3),(0,4)}
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>
1
|
1
|
1
]

1 Vl ql O _1 1

a, u, P, 3 0 31 (Y| |V, q,| |2 0 2
U, |=|U, [-04| P, |=|4|-1-1|=|5] |V |=|Vs |[-04]| 0 |=]|0|-10 |=|O
U, | |u, p;| |6 0 6| [V,| |V, q,| |0 0 0
_As_ Vs | 1O _O_ _O i _O_

V= Zm:aiui —Zn:ijj =15,500
i=1 j=1

Y = AD =(300,300, 500,100, 200,100,100)

So the optimal  solution is  obtain  with  the  objectiveyy =¢ =15500,  with
X,, =300, x,, =300, x,, =500, X,, =100, x,, = 200, x,, =100, x,, =100

Conclusions

This method is more efficient for the problems having total demand more than the total supply. The dual-
matrix approach can be applied to both balanced and unbalanced transportation problems. An unbalanced
transportation problem is not required to be converted into a balanced problem. Another advantage is that it
does not have the degeneracy problem and no path tracing.

References:

[1.
2.
[3].
[4].
[5].

[6].

Charnes A. and W. W, Cooper (1954), The stepping stone method for explaining linear Programming
calculations in transportation problems. Management Science 1, 49-69.

Ping JI and K.F. CHU (2002), A Dual-Matrix Approach to the transportation problem. Asia Pacific
Journal of Operational Research. 35-45

S. D. Sharma (2003), Operations Research, Kedar Nath Ram Nath & Company, India.

Ford, L. R. and D.R. Fulkerson (1956) , Solving Transportation Problem, Management Science3, 24-32
Goyal S. K. (1984), Improving VAM for unbalanced transportation problems. Journal of Operational
Research Society 35, 1113-1114.

Shafaat, A. and S. K. Goyal, (1988), Resolution of degeneracy in transportation Problem, Journal of
Operational Research Society 39, 411-413

ISSN: 2231-5373 http://www.ijmttjournal.org Page 51




