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Abstract 

An Algorithm has been developed for solving special types of transportation problem having total demand more 
than or equal to the total supply. This algorithm is useful for solving both balanced and unbalanced 
transportation problems. The dual-matrix approach is used in the present algorithm. 
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Introduction 
            The minimum cost planning plays an important role for solving the transportation problems from origins 
to different destinations, such as from factories to warehouses, or from warehouses to supermarkets, etc. The 
shipping cost from one location to another is usually a linear function of the number of units shipped. Simplex 
method which utilizes linear programming models can be effectively used for solving transportation problems. 
Ping and CHU(2002) showed that dual-matrix approach is more efficient in comparison to simplex method in 
the context of transportation.  
           Dual- matrix approach was applied successfully earlier for solving the transportation problems[2] (ping 
and CHU, 2002) having demand is less than or equal to the supply. However the present study indicates that 
even the Ping and CHU’s approach also suffers from certain constraints having demand is more than or equal to 
the supply. The new approach similar to dual-matrix approach represents the algorithm for solving 
transportation problem having demand is greater than or equal to the supply. 
          The new approach considers the dual of the transportation problem instead of primal and obtains the 
optimal solution of the dual by the use of matrix operations. The new algorithm is detailed in the paper, and 
finally numerical example is given to illustrate the approach. 

The Model and its Dual  
          The transportation problem is usually presented as matrix as shown in Figure 1. The unit transportation 
cost generally indicated on the northeast corner in each cell. 
This problem can be expressed as a linear programming model as follows: 
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Here all ia ’s and jb ’s are assumed to be positive, and called supplies and demands respectively, as shown in 

Figure1, The cost ijc  are all nonnegative. 
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this condition is not met, a dummy origin or destination is generally introduced to make the problem balanced. 
The new dual-matrix approach presented now does not require a transportation problem to be balanced. The 
approach can be applied to both balanced and unbalanced problems, no dummy origin or destination is 
introduced, and so time and space are saved. 
           The dual matrix approach considers the dual model of the transportation problem, and the main 
operations are calculated on a matrix. Another advantage is that degeneracy does not exist in the dual-matrix 
approach. 
 If model LP1 is considered as the primal, then its dual can be formulated as follows: 
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  , is a condition for balanced transportation problem. If 

this condition is not met, a dummy origin or destination is generally introduced to make the problem balanced. 
The new dual-matrix approach presented now does not require a transportation problem to be balanced. The 
approach can be applied to both balanced and unbalanced problems, no dummy origin or destination is 
introduced, and so time and space are saved. 
          The primal problem has m+n constraints and m.n variables. The dual has m+n variables and m.n 
constraints. Because of fewer variables in dual problem, the dual problem will be solved by the dual-matrix 
approach quickly. However, all m.n constraints are not necessary to be presented explicitly as in LP2. All these 
constraints are kept in original transportation matrix, as indicated in Figure 1. 

The Dual-Matrix Approach 
           The main idea of the dual-matrix approach is to obtain a first feasible solution to the dual problem and its 
corresponding matrix. Then the duality theory is used to check the optimality condition and to get the leaving 
cell. All non-basic cells are evaluated in order to get the entering cell. Finally, the entering cell replaces the 
leaving cell and the matrix is updated. The dual-matrix approach is presented as follows: 
Step 0       Initialization 

Step 0.1 Set  1 2 1 2, ,..., , , ,...,m nA a a a b b b     

Step 0.2 Set  0;  1, 2,...,jv j n  and let  min , 1, 2,..., ;  1,2,...,t ij iju c c j n i m    . 

Ties can be broken arbitrarily. The corresponding cell to ijc are   , 1,2,...,ii j i m , 

respectively. 
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original transportation problem matrix. 
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And compute the objective 
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Step1 Determination of leaving cell: 
Step 1.1 Compute Y AD  

Step 1.2 Find the smallest value ky  in the elements of Y, that is the value of the thk element in Y is 

the smallest. Ties can be broken arbitrarily. 
Step 1.3 If 0ky  , the solution is optimal(both the dual and primal), stop. Otherwise, leaving cell is 

thk cell in  that is  ,k ki j . 
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Step 2.2 For all non basic cells, if 0j iq p  , then the dual problem is not bounded, and the original 

primal problem has no feasible solution, and stop. Otherwise, compute ij ij i jc u v     if 

0j iq p   

Step 2.3 Find the smallest value st in all ij , and the cell  ,s t is the entering cell. Ties can be 

broken arbitrarily. 
Step3 Updating 

Step3.1 Update the matrix D 
Step3.1.1 For the elements of column k in D 

ˆ              1,2,.....,lk lkd d l m n     

Step3.1.2 For the elements of the other columns in D 
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        Destination       
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  Demand  1b   2b   …  jb   …  nb    
                                        Figure 1:  transportation problem Matrix 
           
          The initialization procedure is to obtain an initial feasible solution. By setting 0jv  and iu being the 

smallest cost in the row i , obviously they meet the constraint set(3) in the dual problem. The matrix D is an 

   m n m n   matrix, which can  be divided into four sub-matrices as follows: 

1. The upper left sub matrix is an m m identity matrix. 

2. The upper right sub-matrix is an m n matrix: If the cell  ,i j is a basic cell (corresponding to ijc ) 

then the element  ,i j in this sub-matrix is -1. All other elements in this sub-matrix are 0. 

3. The lower left sub-matrix is an n m zero matrix. 
4. The lower right sub-matrix is an n n negative identity matrix.                         

During the main procedure of the dual-matrix approach, step 1 is to get the leaving cell, similar to getting a 
leaving variable in the simplex method. As matter of fact, the initial feasible solution in the dual-matrix 
approach is a very good starting point. From the objective function in the dual LP2, it is obvious that jv should 

be smaller, the better. The smallest is 0 for all jv . On the other hand, iu should be larger, the better. However 

due to the constraints set (3) a iu  can only be the minimum value of ijc in the row i. Step 2 is to obtain the 

entering cell by evaluating all non-basic cells, which is similar to stepping-Stone method (Charnes & Cooper, 
1954).    The equation in step 2.2 is the same as the one in stepping-stone method (MODI, precisely) except the 
sign of iu . Finally the matrix D and other relevant data are updated accordingly. To explain this approach 

mathematically, a cell  ,i j can be represented as an equation, that is i j iju v c  . The mathematical 

background of the dual-matrix approach is to find m n  equations, i.e., m n  basic cells from constraints 
set(3) in the dual. If these equations cannot maximize the objective of the dual, that is solution is not optimal, 
find another cell (equation), i.e., the entering cell, to replace one equation set until an optimal solution is found. 
So, the algorithm of this approach is very simple as shown previously. 
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Numerical Example 
                 The following unbalanced transportation problem is considered.  
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Step1 Determination of leaving cell: 

 300,   500,   600,   300,   200,   100,   200Y AD     so k=5 and the leaving cell is (0,2) 

in   
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Among all the non-basic cells        1,1 1, 2 1,3 3,1 3, 2 3, 4 have non positive  j iq p ’s, 

while the cells      2,1 , 2,3 , 2, 4 have positive  j iq p ’s so, 

     21 23 24min , , min 12 10 0,18 10 0, 24 10 0 min 5,8,14 5st             . 

Now the entering cell    , 2,1s t  . 

Step3 Updating 
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Similarly other elements in D can be updated and 
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Since one element of Y is negative so the problem is not optimal, So we go to Step 1 and repeat the 
procedure. After one iteration, final solution can be written as: 
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So the optimal solution is obtain with the objective 15,500   , with 

14 22 33 01 21 34 04300, 300, 500, 100, 200, 100, 100x x x x x x x        

Conclusions 
          This method is more efficient for the problems having total demand more than the total supply. The dual-
matrix approach can be applied to both balanced and unbalanced transportation problems. An unbalanced 
transportation problem is not required to be converted into a balanced problem. Another advantage is that it 
does not have the degeneracy problem and no path tracing. 
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