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Abstract 
In this paper, we consider a wide range of widely-
studied models strategic form behavioural game 
theory. It is standard multi agent settings to assume 
that agents will adopt Nash equilibrium strategies. 
This paper gives a brief overview of game theory. 
Therefore in the first section we want to outline what 
game theory generally is and where it is applied. In 
the next section, we introduce some of the most 
important terms of Non-cooperative game theory such 
as strategic form (or) normal form games, extensive 
form and Nash equilibrium. 
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1. Introduction 

A game is a description of strategic interaction that 
includes the constraints on the actions that the players 
can take and the player’s interests, but does not 
specify the actions that the players do take. A solution 
is a systematic description of the outcomes that may 
emerge in a family of games. Game theory suggests 
reasonable solutions for classed of games and 
examines their properties. Nash equilibrium is one of 
the most basic concepts in game theory. 
The next-most standard approach is to devise new 
solution concepts that overcome problems with Nash 
equilibrium, e.g., competitive safety strategies 
(Tennenholtz, 2002), minimax regret equilibrium 
(Hyafil and Boutilier, 2004), generalized strategic 
eligibility (Conitzer and Sandholm, 2005), CURB 
sets (Benisch, Davis, and Sandholm, 2006), and 
iterated regret minimization (Halpern and Pass, 
2009). Still other work aims to identify strategies that 
work well without detailed modelling of the opponent. 
This line of work is perhaps exemplified by the very 
influential series of Trading Agent Competitions 
(Wellman, Greenwald, and Stone, 2007). We are 
most interested in approaches that make explicit 
predictions about which actions a player will adopt, 
and that are grounded in human behaviour. The 
relatively new field of behavioural game theory 
extends game-theoretic models to account for human 
behaviour by taking account of human cognitive 
biases and limitations (Camerer, 2003). Experimental 
evidence is a cornerstone of behavioural game theory, 
and researchers have developed many models of how 
humans behave in strategic situations based on 
experimental data. Among these models, the closely 
related cognitive hierarchy model (Camerer, Ho, and 

Chong, 2004), and quantal response equilibrium 
(McKelvey and Palfrey, 1995). Although different 
studies consider different specific variations, the 
overwhelming majority of behavioural models of 
initial play of normal-form games fall broadly into this 
categorization. 
 

2. Game Theory 
A game is made of three basic components: a set of 
Players, a set of actions, and a set of preferences. 
These are collectively known as the rules of the game, 
and the modeller’s objective is to describe a situation 
in terms of the rules of a game so as to explain what 
will happen in that situation. Trying to maximize their 
payoffs, the player will devise plane known as 
strategies that pick actions depending on the 
information that has arrived at each moment. The 
combination of strategies chosen by each player is 
known as the equilibrium. Given an equilibrium, the 
modeller can see what actions come out of the 
conjunction of all the players’ plans, and this tells him 
the outcome of the game.  
The number of players will be denoted by n . Let us 
label the players with the integers 1 to n , and denote 
the set of players by  nN ,........2,1 . We assume 
throughout that there are atleast two players, that is 
n 2 . There are three main mathematical models or 
forms used in the study of games,(i) the extensive 
form (ii) the strategic or normal form and (iii) the 
coalitional form. 
In the strategic form, many of the details of the game 
such as position and move are lost; the main concepts 
are those of a strategy and a payoff. In the strategic 
form, each player chooses a strategy from a set of 
possible strategies. We denote the strategy set or 
action space of player i  by iA , for i =1,2,…… n . 
Each player considers all the other players and their 
possible strategies, and then chooses a specific 
strategy from his strategy set. All players make such a 
choice simultaneously, the choices are revealed and 
the game ends with each player receiving some payoff. 
Each player’s choice may influence the final outcome 
for all players. We model the payoffs as taking as 
numerical values. The mathematical and philosophical 
justification behind the assumption that each player 
can replace such payoffs with numerical values is said 
to be utility theory. This theory is treated in detail in 
the books of Savage (1954) and of Fishburn (1988). 
We therefore assume that each player receives a 
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numerical payoff that depends on the actions chosen 
by all the players. 
The strategic form of a game is defined by the three 
objects: 
(i) the set,  nN ,........2,1  of players. 

(ii) the sequence, nAAA ,...., 21  of strategy sets of the 
players, and 
(iii)the sequence, 
 naaaf ......, 211 ……..  nn aaaf ......, 21 , of real-

valued payoff functions of the players. 
A game in strategic form is said to be zero-sum if the 
sum of the payoffs to the players is zero no matter 
what actions are by the players. That is, the game is 

zero-sum if          0,....,
1

21 


n

i
ni aaaf   

for all nn AaAaAa  ,....., 2211 . 
Now the strategic form is extended to two-person non-
zero-sum games. In general, such games do not have 
values and players do not have optimal strategies. The 
theory breaks naturally into two parts: (i) Non-
cooperative theory (ii) Cooperative theory. 
In the non-cooperative theory in which the players, if 
they may communicate, may not form binding 
agreements. This is the area of most interest to 
economists, see Gibbons(1992), and Bierman and 
Fernandez (1993). In 1994, John Nash, John Harsanyi 
and Reihard Selten received the Nobel Prize in 
Economics for work in this area. The main concept, 
replacing value and optimal strategy is the notion of a 
strategic equilibrium, also called a Nash equilibrium. 
In this Cooperative theory the players are allowed to 
form binding agreements, and so there is strong 
incentive to work together to receive the largest total 
payoff. The problem then is how to split the total 
payoff between or among the players. This 
cooperative theory also splits into two parts. If the 
players measure utility of the payoff in the same units 
and there is a means of exchange of utility such as side 
payments, we say the game has transferable utility; 
otherwise non-transferable utility. 
When the number of players grows large, even the 
strategic form of a game, though less, detailed than the 
extensive form, becomes too complex for analysis. In 
the Coalitional form of a game, the notion of a 
strategy disappears; the main features are those of a 
coalitional and the value or worth of the coalition. In 
many-player games, there is a tendency for the players 
to form coalitions to favour common interests. It is 
assumed each coalition can guarantee its members a 
certain amount, called the value of the coalition. The 
coalition form of a game is a part of cooperative game 
theory with transferable utility, so it is natural to 
assume that the grand coalition, consisting of all the 
players, will form, and it is a question of how the 
payoff received by the grand coalition should be 
shared among the players. There we introduce the 
important concepts of the core of an economy. The 

core is a set of payoffs to the players where each 
coalition receives at least its value. We will also look 
for principles that lead to a unique way to split the 
payoff from the grand coalition, such as the shapely 
value and the nucleolus. 
 
3. Non-Cooperative Games in Extensive 
Forms and Equilibrium N-Tuples. 
3.1 Non-cooperative: 
A non –cooperative theory is based on the absence of 
coalitions in that it is assumed that each participant 
acts independently, without collaboration or 
communication without any of the others. 
3.2 Strategy: 
The term ‘strategy’ is defined as a complex set of 
plans of action specifying precisely what the player 
will do under every possible future contingency that 
might occur during the play of the game.(i.e) the 
strategy of a player is the decision rule he was for 
making a choice from his list of courses of action. 
Strategy can be classified as (i) Pure Strategy (ii) 
Mixed Strategy. 
(i) Pure strategy:  A Strategy is called pure if 
one knows in advance of the play that it is certain to 
be adopted irrespective of the Strategy the other 
players might choose. 
(ii) Mixed strategy: A mixed strategy of player i 
will be a collection of non-negative numbers which 
have unit sum and are in one to one correspondence 
with his pure strategies. 

3.3 Nash Equilibrium: 
Nash equilibrium exists in any game if there is a set of 
strategies with the property that no player can increase 
her payoff by changing her strategy while the other 
players keep their strategies unchanged. These sets of 
strategies and the corresponding payoffs represent the 
Nash equilibrium. We can simply see that the action 
profile (defect, defect) is the Nash equilibrium in the 
Prisoners dilemma game and the actions profile 
( ballet, ballet) and (football, football) are the ones for 
the battle of the sexes game. 
3.4 Pure and mixed strategy Nash equilibrium: 
 In any game someone will find pure and mixed 
strategies, a pure strategy has a probability of one, and 
will be always played. On the other hand, a mixed 
strategy has multiple purse strategies with 
probabilities connected to them. A player would only 
use a mixed strategy when she is indifferent between 
several pure strategies, and when keeping the 
challenger guessing is desirable, that is when the 
opponent can benefit from knowing the next move. 
Another reason why a player might decide to play a 
mixed strategy is when a pure strategy is not 
dominated by other pure strategies, but dominated by 
a mixed strategy. Finally, in a game without a pure 
strategy Nash equilibrium, a mixed strategy may result 
in Nash equilibrium. 
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3.5 Normal forms and mixed strategy equilibria: 
Although not all finite n-person non-cooperative 
games have pure strategy equilibria we can ask about 
the situation if mixed strategies are permitted. His 
result, which generalizes the Von Neumann minimax 
theorem, is that main objective of this paper and 
certainly provides one of the strongest arguments in 
favour of equilibrium points as a solution concept for 
n-person non-cooperative games. 
3.6 Minimax Principle: 
This principal minimizes the maximum losses. The 
maximum losses with respect to different alternatives 
of player B, irrespective of player A’s alternatives, are 
obtained first. The minimum of these maximum losses 
is known as the minimax value and the corresponding 
alternatives are called as minimax strategy. 
3.7 Strategic and extensive form games: 
The strategic form (also called normal form) is the 
basic type of game studied in non-cooperative game 
theory. A game in strategic form lists each player’s 
strategies, and the outcomes that result from each 
possible combination of choices. An outcome is 
represented by a separate payoff for each player, 
which is a number (also called utility) that measures 
how much the player likes the outcome. 
The extensive form, also called a game tree, is more 
detailed than the strategic form of a game. It is a 
complete description of how the game is played over 
time. This includes the order in which players take 
actions, the information that players have at the time 
they must take those actions, and the times at which 
any uncertainty in the situation is resolved. A game in 
extensive form may be analysed directly, or can be 
converted into an equivalent strategic form. 
By a non-cooperative game is meant a game in which 
absolutely no preplay communication is permitted 
between the players and in which players are awarded 
their due payoff according to the rules of the game. 
In particular, agreements to share payoffs, even if this 
were practicable (and in many instances it is not), are 
specially forbidden. Thus in a non-cooperative game it 
is ‘all players for themselves’. 
We do not assert that transitory strategic cooperation 
cannot occur in as non-cooperative game if permitted 
by the rules. Typically, however, such arrangements to 
cooperative are not ‘binding unto death’. For a 
requirement of this type would possess the limitation 
of cooperative games (that agreements are binding) 
without the possibility of preplay negotiation or profit 
sharing, atleast one of which normally occurs in 
cooperative games. 
An n  person non-cooperative game   in extensive 
form can be regarded as a graph theoretic tree of 
vertices  (states) and edges (decisions or choice) with 
certain properties.  
     These properties can be summarized as follows: 
(i)   has a distinguished vertex called the 
initial state. 

(ii) There is a payoff function which assigns to 
each outcome an n -tuple (  nPPP ,....., 21  where iP  

denoted the payoff to the thi  player. 
(iii) Each non-terminal vertex of  is given one 
of 1n  possible labels according to which player 
makes the choice at that vertex. If the choice is made 
by chance the vertex is labeled with an N is equipped 
with a probability distribution over the edges leading 
from it. 
(iv) The vertices of each player, other than nature, 
are partitioned into disjoint subsets known as 
information sets. A player is presumed to know which 
information set he or she is in, but not which vertex of 
the information set. This has the consequence that (a) 
Any two vertices in the same information set have 
identical sets of choices (edges) leading from them. 
(b) No vertex can follow another vertex in the same 
information set. 
Player i    ni 1  is said to have perfect 

information in    if each information set for this 
player consists of one element. 
 The game   in extensive form is said to have perfect 
information if every player in   has perfect 
information. By a pure strategy for player  i  is 
meant a function which assigns to each of player  si'  
information sets one of the edges leading from a 
representative vertex of this set. 
 We denote by iS  the set of all pure strategies for 

player i . A game in extensive form is finite if it has a 
finite number of vertices. 
If   has no chance elements the payoff iP  to the 

thi player is completely determined by an n -tuple 

 n ,....., 21 , where ii S , that is 

 nii PP  ,....., 21 .  If, however, chance of 

elements are involved then  niP  ,....., 21  is 

taken to be the statistical expectation of the payoff 
function of player i , with respect to the probability 
distributions specified from property (iv), when the 
pure strategies  n ,....., 21 ,  ii S , are 

chosen. 

  A game is Zero sum if   0,......, 21
1




n

n

i
iP   

for all n -tuples  n ,....., 21 , ii S . 
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Definition 3.7. 1 : Equilibrium point 
 A pure strategy  n -tuple  n ,....., 21 , ii S  

, is said to be an equilibrium point of   if for each i, 
 ni 1 , and any ii S , 

 niinii PP  ,......,......,,......,......, 2121 




 

 Thus an n -tuple   n ,....., 21  is an equilibrium 
point if no player has a positive incentive for a 
unilateral change of strategy. 
 
We truncate a finite n -person game   having perfect 
information by deleting the initial vertex and the edges 
leading from it. Because each information set consists 
of a single vertex, what remains is a finite number of 
sub games ,,......, 21 r  called the truncations of 

 , each having perfect information. We can also 
consider the truncation of a given pure strategy 

ii S  by restricting it as a function to the vertices 

of some truncation of  . 
 
Theorem 3.7.1 : 

A finite n -person non-cooperative game   in 
extensive form which has perfect information 
possesses an equilibrium point in pure strategies. 
Proof: 
 Let 0x  be the initial vertex of   and let the other 

ends of the edges from 0x  be the vertices 

raaa ,......, 21 . Then rja j 1, , are the initial 

vertices of the games r ,......, 21  respectively, 
obtained by truncating  . 
Figure1. Truncating   
                                        x0                   r  

               1                                                       ar 

                                                           r  
       a1 

1  
 
 
 
 
 
 
 
Let the longest play in   be of length N . We shall 
prove the theorem by induction on N . Clearly the 

games   r ,......, 21  have length at most 1N . 

Let  njjj  ,......, 21   be pure strategies for each 

player for the game j  )1( rj  . 

Let  n ,....., 21   be pure strategies for each 

player for the  .We write  niP  ,......, 21 , 

 njjj
j

iP  ,....., 21  for the payoffs to player i  in 

  and j  respectively. 
For games of length zero the theorem is trivial ( in 
action is equilibrium), so we assume the existence of 
equilibrium points for games of perfect information 
with length at most 1N , in particular for 

r ,......, 21 . 

Let  00
2

0
1 ,......, njjj   be such a point for j  that 

is for every i,  ni 1 . 
 
 000

2
0
1

0'0
2

0
1

,......,......,

,......,......,

njijjj
j

i

njijjj
j

i

P

P



 
   -------------------(1) 

We shall construct an equilibrium point  
 00

2
0

1 ,......, n  for the game  . 

Case 1 : 0x  is labelled N  

Let ,,......, 21 r  10  j ,   1j , 
denote the probabilities for the vertices 

raaa ,......, 21 to be selected. Let x  be any vertex of 
 . 

If 0xx   we do not need to define  xi
0 , nor do 

we need to define it if x is any other vertex labeled 
with an N . 

Otherwise jx   for some j  and is labeled with an 

i ,  ni 1 . We then define    xx iji
00   . 

For any pure strategies  n ,......, 21  of   we 

denote the restriction of i to j  by ji  . 
We plainly have 

   jnjj
j

i

r

j
jni PP 



 ,......,,......, 21
1

21

 and 
00
ijji   . 

Thus for  ni 1 , 

   000
2

0
1

1

00
2

0
1 ,......,......,,......., njijjj

j
i

r

j
jni PP  





 
                                 

 0'0
2

0
1

1
,......,......, njijjj

j
i

r

j
j P 



 from (1) 
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But  0'0
2

0
1

1

,......,......, njijjj
j

i

r

j
j P 

  
 =  0'0

2
0
1 ....,......, niiP   

so that, for each i ,  ni 1  

 0'0
2

0
1 ....,......, niiP    

 000
2

0
1 ....,......, niiP  ,  

that is,  00
2

0
1 ,......., n  is an equilibrium point for 

 . 
Case 2 : 0x  is labeled with a player index. 
Without loss of generality we can suppose 0x   is 
labeled with a 1. 
If 0xx  we define  x0

1  to be that choice of 

j  for which 
rj

Max
1

  00
2

0
1 ,......, njjj

j
iP   is 

attained, that is   .0
0
1  x  

For any other vertex 0xx  ,  xi
0  is defined, 

where necessary, as in case 1. 
   
 00

2
0
11

00
2

0
11

00
2

0
11

,.....,

,......,,......,

njjj
j

nn

P
PP



 
 

 

then for rj 1 . 

Since  00
2

0
1 ,......, njjj   is an equilibrium point for 

j , 

   .,......,,......, 00
2

0
11

00
2

'
11 njjj

j
njjj

j PP    

Now any pure strategy '
1  for player 1 in  will 

truncate to some pure strategy '
1 j  in j  for any j , 

rj 1 . 
 Thus 
   .,......,,......, 00

2
'
11

00
2

'
11 njjj

j
n PP   where 

  jx 0
'

1 . Hence 

   
  ).2....(..........,......,

,......,......,,......,
00

2
0
11

000
2

0
11

00
2

'
11

n

nin

P
PP



 






.   
If 1i   since  00

2
0
1 ,......,   n  is an 

equilibrium point for   
 

 
 



 0'0
2

0
1

0'0
2

0
1

...,...,.....,
,......,......,

nii

nii

P
P

                                       

 
 000

2
0

1

0'0
2

0
1

,......,......,

,......,......,











nii

nii

P
P


 

 =  000
2

0
1 ,......,......., niiP   

Since    0
0
1 x . Hence if 1i , 

 0'0
2

0
1 ,......,......, niiP   

 000
2

0
1 ,......,......., niiP   ---------(3) 

But (2) and (3) together assert that  00
2

0
1 ,......, n  

is an equilibrium point for  , and this complete the 
proof. 
Definition 3.7.2: 
A non-cooperative game  (n person game) in normal 
form is a collection     IiiIii PXI  ,, , in 

which the set of player is I , the set of strategies for 
player i  is iX , and the payoff to player i  is given by 

RXP iIii 


: . Here the sets iX  could be taken to 

be sets of pure or mixed strategies. 
Theorem 3.7.2: Every game with complete 
information and a finite tree has atleast one 
equilibrium point. 
Definition 3.7.3 : 
A mixed strategy n-tuple 

  iin Xxxxxx  ,,....., 21 ,is an equilibrium point 
of an n-person non-cooperative game  if each i , 

,1 ni   and any    xPxxPXx iiiii  '' , . 

Theorem 3.7.3: A mixed strategy n-tuple 
 nxxxx ,....., 21  is an equilibrium point of a finite 

game  if and only if for each player index i  ,  
   xPxP iii    for every pure strategy ii S .   

Proof: 
If x is an equilibrium point of  , for each ,i  

ni 1 , the inequality    xPxP iii 
    is 

irreducible from  
   xPxxP iii '

. Since a pure strategy is a 
particular case of a mixed strategy. 
To prove that the condition is sufficient to ensure that 
x

  is an equilibrium point, choose an arbitrary mixed 
strategy 

,'
ii Xx 

 
       xPxxPx iiiiiii  '' 

 
       xPxxPx iii

s
iiii

s iiii




'' 



From 

  ..........,
11

21 



s

ni xxxP


   jj

n

jn
s

i xP
nn


 121 ,.....,




  



International Journal of Mathematics Trends and Technology- Volume22 Number1 – June 2015 

ISSN: 2231-5373                         http://www.ijmttjournal.org                          Page 30 

And 
  




11 s

ii xP



……… 

  11 ii s


  11 ii s ………

   jj

n

j
js

i xP
nn


 1

1





     where 
 n ,.......1

 

We get 
   xPxP iii 

 
 ii

s
x

ii




'
  

Which is 
   xPxP iii 

 , since 
 ii

s
x

ii




'
 =1 

 This theorem gives an effective procedure for 
checking a possible equilibrium point. 
Theorem 3.7.4:  For any mixed strategy n-tuple 

 nxxxx ,....., 21  each player i , ,1 ni   

possesses a pure strategy k
i  such that    0k

iix   

and    xPxP i
k
ii  . 

Theorem 3.7.5: Nash Theorem 
Any finite n-person non-cooperative game   has 
atleast one mixed strategy equilibrium point. 
Based on the four theorem the following problem 
solution  takes the informative one. 
 
Research Article: 
Consider the non-cooperative n-person game in which 
each player Ii has exactly two pure strategies, 
either 1i  or 2i . The payoff is 

    jiijiniP  ,1......., 21 


 , Ii , 

where   is the kronecker   given by 

 


 


.,0

,1
,

otherwise
if ji

ji


   

If player i  uses a mixed strategy in which pure 

strategy 1 is chosen with probability  Iipi  . 

Prove that  nppp ,......, 21  defines an equilibrium 

point if and only if   jijjij
pp


 21  for every 

Ii . Deduce that a mixed strategy equilibrium is 

given by ,,
21

1

1
1

Iip
n

i 
















 and that for 

n=2,3 this is the only equilibrium point. 
Solution: 
Player 1: If 11   then 01 P  unless 

,2........2  n in which case 11 P . 

                If 21   then 01 P  unless 
,1........2  n in which case 21 P . 

       Similarly for the other players. Consider now the 

mixed strategy n-tuple  nxxxx ,....., 21 , where 
 iii ppx  1,  for ,1 ni   and  Iipi   is 

the probability of choosing 1i . 
From the above observation we obtain 
      jijjjijii ppppxP


 121 . 

Also  ii xP   jij
p


1  if 1i  

         ii xP   jij
p


2  if  2i  

According to Theorem 3.7.5 “A mixed strategy n-

tuple  nxxxx ,....., 21  is an equilibrium point of a 
finite game  if and only if for each player index i  ,  

   xPxP iii    for every pure strategy ii S .” 
x  is an equilibrium point if and only if 
 jij

p


1     jijjjiji pppp

 121     ----

----(3.1) 

And    jij
p


2     jijjjiji pppp


 121  

for every Ii .  ----------(3.2) 
Rearranging equation (1) we have  

       jijjjiji pppp

 121)1(  

That is,    jijjij
pp


 21   ---------------(3.3) 

Similarly rearranging equation (2) gives 

ijiji ppp 


)222(  jij
p


1  

ijiji ppp 


)2(  jij
p


1  


 jij

p2  jij
p


1   -------------(3.4) 

From equation (3) and equation (4) it follows that x  
is an equilibrium point if and only if 

  jij
p


1 = jij

p

2  for every Ii    ---------------

(3.5). 
For n=2 or 3 the system of equation (5) has no 

solution with any ip 0 or 1, but for n=4 these are 

several such solutions, for example 141  pp , 
032  pp . 

If n  5we can find solution with 141  pp , 
032  pp  and the remaining ipn 4  

Arbitrary. To complete the analysis suppose 
10  ip  for every Ii . 

 Consider the equation (3.5) for liki  ,  where 
lk  . This gives    jkj

p


1 = jkj
p


2  and  

 jlj
p


1 = jlj

p

2 . 
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If we put A=  jp 1 , B= jp , since 

10  ip , all i , we can write these as 

kk p
B

p
A 2

1


 ,  

ll p
B

p
A 2

1


  . 

Since A 0 and B 0 we easily see that lk pp  . 
But k  and l  were arbitrary, so that every player must 
use the same mixed strategy in x . 
Condition (3.5) therefore becomes simply 
  11 21   nn pp . 

Solving for p  we obtain   pp n 1
1

21   

                                          







 1

1

211 np        

                                    
1

1

21

1




n

p  as required. 

4. Conclusion: 
The process of finding equilibrium points in a 
bimatrix game consists in carrying out a finite number 
of rational operations on the values of the payoff 
matrix. For 3n  the above value of p is irrational, 
which shows that the situation for n=2 is untypical.  
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