Geometric mean labeling of some more Disconnected Graphs

S¹.P.Viji, S². Somasundaram, S3.S.Sandhya,

Department of Mathematics, K.N.S.K. College of Engineering, Therekalputhoor – 629004
 Department of Mathematics, M.S. University, Tirunelveli-627012
 Department of Mathematics, Sree Ayyappa College for Women, Chunkankadai: 629003

<u>Abstract</u>

A Graph G = (V, E) with p vertices and q edges is said to be a Geometric mean graph if is possible to label the vertices $x \in V$ with distinct labels f(x) from 1, 2, ..., q+1 is such a way that when each edge e=uv is labeled with f(e=uv) = $\left[\sqrt{f(u)f(v)}\right]$ (or) $\left[\sqrt{f(u)f(v)}\right]$, then the resulting edge labels are distinct. In this case f is called Geometric mean labeling of G. In this paper we prove that some disconnected graphs are Geometric Mean graphs.

Key Words: Graph, Geometric Mean labeling, Path, Cycle, Comb, Ladder etc.

1.Introduction

The graph considered here are finite and undirected graph

G = (V, E) with *p* vertices and *q* edges. For a detailed survey of graph labeling we refer to Gallain [1]. For all other standard terminology and notations we follow Harary [2]. S. Somasundaram and P. Vidhyarani introduced the concept of Geometric Mean labeling of graphs in [3] and studied their behavior in [4], [5], [6] and [7]. In this paper we investigate the Geometric mean labeling behavior of some disconnected graphs. The following definitions are useful for our present study.

Definition 1.1: A Graph G = (V,E) with p vertices and q edges is said to be a Geometric mean graph if is possible to label the vertices $x \in V$ with distinct labels f(x) from 1,2....,q+1 is such a way that when each edge e=uv is labeled with f(e=uv) = $\left[\sqrt{f(u)f(v)}\right]$ (or) $\left[\sqrt{f(u)f(v)}\right]$, then the resulting edge labels are distinct. In this case f is called *Geometric mean labeling* of G.

Definition 1.2: The *union* of two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is a graph $G = G_1 \cup G_2$ with vertex set $V = V_1 \cup V_2$ and the edge set $E = E_1 \cup E_2$ **Definition 1.3:** The *Corona* of two graphs G_1 and G_2 is the graph $G = G_1 \odot G_2$ formed by taking one copy of G_1 and $|V(G_1)|$ copies of G_2 where the ith vertex of G_1 is adjacent to every vertex in the ith copy of G_2 .

2.Main Results

Theorem 2.1: $C_m \cup (P_n \odot K_1)$ is a Geometric Mean graph.

Proof: Let $u_1u_2 \cdots u_m u_1$ be the cycle C_m . Let $v_1v_2 \cdots v_n$ be the path P_n and let w_i be the vertex which is joined to the vertex v_i , $1 \le i \le n$ of the path P_n . Let $G = C_m \cup (P_n \odot K_1)$.

п

Define a function $f: V(G) \rightarrow \{1, 2, \dots, q+1\}$ by

$$f(u_i) = i, 1 \le i \le m$$

$$f(v_i) = m + 2i - 1, 1 \le i \le i$$

$$f(w_i) = m + 2i, 1 \le i \le n$$

Then the edge labels are distinct.

Hence *f* is a Geometric Mean Labeling of *G*.

Example2.2: The Geometric Mean labeling of $C_8 \cup (P_5 \odot K_1)$ is given below.

Figure1

Theorem 2.3: $(C_m \odot K_1) \cup (P_n \odot K_1)$ is a Geometric Mean graph.

Proof: Let C_m be the cycle $u_1 u_2 \cdots u_m u_1$ and let v_i be the pendent vertex attached to u_i , $1 \le i \le m$.Let $P_n = w_1 w_2 \cdots w_n$ be the path on n vertices. Join a vertex t_i to $w_i, 1 \le i \le n$.Let $G = (C_m \odot K_1) \cup (P_n \odot K_1)$.

Define a function
$$f: V(G) \rightarrow \{1, 2, ..., q + 1\}$$
 by

$$f(u_i) = 2i - 1, 1 \le i \le 2$$

$$f(u_i) = 2i, \quad 3 \le i \le m$$

$$f(v_i) = 2i, \quad 1 \le i \le 2$$

$$f(v_i) = 2i - 1, 3 \le i \le m$$

$$f(w_i) = 2m + 2i - 1, 1 \le i \le n$$

$$f(t_i) = 2m + 2i, 1 \le i \le n$$

Then the edge labels are distinct. Hence f is a Geometric Mean Labeling of G.

Example2.4: The Geometric Mean labeling of $(C_6 \odot K_1) \cup (P_5 \odot K_1)$ is given below.

Theorem 2.5: $(C_m \odot \overline{K_2}) \cup (P_n \odot K_1)$ is a Geometric Mean graph.

Proof:Let $u_1u_2 \cdots u_m u_1$ be the cycle C_m and let v_i , w_i be the vertices which are joined to the vertex u_i , $1 \le i \le m$ of the cycle C_m . Let $s_1s_2 \cdots s_n$ be the path P_n and let t_i be the vertex which is joined to the vertex s_i ($1 \le i \le n$) of the path P_n . Let $G = (C_m \odot \overline{K_2}) \cup (P_n \odot K_1)$.

Define a function $f: V(G) \rightarrow \{1, 2, \dots, q+1\}$ by

$$f(u_i) = 3i - 1, 1 \le i \le m$$

$$f(v_i) = 3i - 2, 1 \le i \le m$$

$$f(w_i) = 3i, 1 \le i \le m$$

$$f(s_i) = 3m + 2i - 1, 1 \le i \le n$$

$$f(t_i) = 3m + 2i, 1 \le i \le n$$

From the above labeling pattern, we get distinct edge labels. Hence f is a Geometric Mean Labeling of G.

Example2.6: The Geometric Mean labeling of $(C_6 \odot \overline{K_2}) \cup (P_6 \odot K_1)$ is given below.

Figure3

Theorem2.7: $C_m \cup L_n$ is a Geometric Mean graph.

Proof: Let $u_1 u_2 \cdots u_m u_1$ be the cycle C_m . Let L_n be the Ladder graph with vertices v_i and w_i , $1 \le i \le n$. Let $G = C_m \cup L_n$.

Define a function $f: V(G) \rightarrow \{1, 2, \dots, q+1\}$ by

$$f(u_i) = i$$
, $1 \le i \le m$

$$f(v_i) = m + 3i - 2$$
 , $1 \le i \le n$

 $f(w_i) = m + 3i - 1$, $1 \le i \le n$

Then the edge labels are distinct.

Hence f is a Geometric Mean Labeling of G.

Example2.8: The Geometric Mean labeling of $C_7 \cup L_6$ is given below.

Figure4

Theorem 2.9: $(C_m \odot K_1) \cup L_n$ is a Geometric Mean graph.

Proof: Let $u_1u_2 \cdots u_mu_1$ be the cycle C_m and let v_i be the vertex which is joined to the vertex u_i , $1 \le i \le m$ of the cycle C_m . Let x_i and y_i , $1 \le i \le n$ be the vertices of L_n . Let $G = (C_m \odot K_1) \cup L_n$.

Define a function $f: V(G) \rightarrow \{1, 2, \dots, q+1\}$ by

$$f(u_i) = 2i - 1, 1 \le i \le 2$$

$$f(u_i) = 2i, \quad 3 \le i \le m$$

$$f(v_i) = 2i, \quad 1 \le i \le 2$$

$$f(v_i) = 2i - 1, 3 \le i \le m$$

$$f(x_i) = 2m + 3i - 1, 1 \le i \le n$$

$$f(y_i) = 2m + 3i - 2, 1 \le i \le n$$

Then the edge labels are distinct.

Hence f is a Geometric Mean Labeling of G.

Example2.10: The Geometric Mean labeling of $(C_9 \odot K_1) \cup L_6$ is given below.

Theorem2.11:C_m \cup ($P_n \odot K_3$) is a Geometric Mean graph.

Proof: Let C_m be the cycle $u_1u_2 \cdots u_mu_1$. Let $v_1v_2 \cdots v_n$ be the path P_n .

Let x_i , y_i , $1 \le i \le n$ be the vertices of K_3 which are attached to the vertices of P_n . Let $G = C_m \cup (P_n \odot K_3)$.

Define a function $f: V(G) \rightarrow \{1, 2, \dots, q+1\}$ by

$$f(u_i) = i, 1 \le i \le m$$

$$f(v_i) = m + 4i - 2, 1 \le i \le n$$

$$f(x_i) = m + 4i - 3, 1 \le i \le n$$

$$f(y_i) = m + 4i - 1, 1 \le i$$

Then the edge labels are distinct.

Hence f is a Geometric Mean Labeling of G.

Example2.12: The Geometric Mean labeling of $C_9 \cup (P_5 \odot K_3)$ is given below.

 $\leq n$

Figure6

Theorem 2.13: $(C_m \odot K_1) \cup (P_n \odot K_3)$ is a Geometric Mean graph.

Proof: Let C_m be the cycle $u_1u_2 \cdots u_mu_1$ and let v_i be the vertex which is joined to the vertex u_i , $1 \le i \le m$ of the cycle C_m . Let $w_1w_2 \cdots w_n$ be the path P_n . Let x_i , y_i be the vertices of K_3 which are attached to eachvertex of P_m . Let $= (C_n \odot K_1) \cup (P_m \odot K_3)$.

Define a function $f: V(G) \rightarrow \{1, 2, ..., q + 1\}$ by

$$f(u_i) = 2i - 1, 1 \le i \le 2$$

 $f(u_i) = 2i, 3 \le i \le m$

$$f(v_i) = 2i, 1 \le i \le 2$$

$$f(v_i) = 2i - 1, 3 \le i \le m$$

$$f(w_i) = 2m + 4i - 2, 1 \le i \le n$$

$$f(x_i) = 2m + 4i - 3, 1 \le i \le n$$

$$f(y_i) = 2m + 4i - 1, 1 \le i \le n$$

Then the edge labels are distinct.

Hence f is a Geometric Mean Labeling of G.

Example2.14: The Geometric Mean labeling of $(C_8 \odot K_1) \cup (P_4 \odot K_3)$ is given below.

Theorem2.15: $(C_m \odot K_3) \cup P_n$ is a Geometric Mean graph.

Proof: Let $u_1u_2 \cdots u_mu_1$ be the cycle C_m . Let $v_i, w_i, 1 \le i \le m$ be the vertices of K_3 which are attached to the vertices of C_n . Let $t_i, 1 \le i \le n$ be the vertices of the path P_n . Let $G = (C_m \odot K_3) \cup P_n$.

Define a function $f: V(G) \rightarrow \{1, 2, \dots, q+1\}$ by

 $f(u_i) = 4i - 1, 1 \le i \le m$ $f(v_i) = 4i - 3, 1 \le i \le m$

$$f(w_i) = 4i$$
 , $1 \le i \le m$

$$f(t_i) = 4m + i, 1 \le i \le n$$

Then the edge labels are distinct.

Hence f is a Geometric Mean Labeling of G.

Example2.16: The labeling pattern of $(C_6 \odot K_3) \cup P_5$ is given below.

Figure8

Theorem 2.17: $(C_m \odot K_3) \cup (P_n \odot K_3)$ is a Geometric Mean graph.

Proof:Let $u_1u_2 \cdots u_mu_1$ be the cycle C_m . Let $v_i, w_i, 1 \le i \le m$ be the vertices of K_3 which are attached to the vertices of C_m . Let $t_1t_2 \cdots t_n$ be the path P_n .Let x_i, y_i be the vertices of K_3 which are attached to $t_i, 1 \le i \le n$.Let $G = (C_m \odot K_3) \cup (P_n \odot K_3)$.

Define a function $f: V(G) \rightarrow \{1, 2, \dots, q+1\}$ by

$$f(u_i) = 4i - 1, \qquad 1 \le i \le m$$

$$f(v_i) = 4i - 3, \qquad 1 \le i \le m$$

$$f(w_i) = 4i, \qquad 1 \le i \le m$$

$$f(t_i) = 4m + 4i - 2, 1 \le i \le n$$

$$f(x_i) = 4m + 4i - 3, 1 \le i \le n$$

$$f(y_i) = 4m + 4i - 1, 1 \le i \le n$$

Then the edge labels are distinct.

Hence f is a Geometric Mean Labeling of G.

Example2.18: The labeling pattern of $(C_6 \odot K_3) \cup (P_5 \odot K_3)$ is given below.

REFERENCES:

[1] Gallian. J.A, 2012, A dynamic Survey of graph labeling. The electronic Journal of Combinatories 17#DS6.

[2] Harary.F, 1988, Graph Theory, Narosa Publishing House Reading, New Delhi.

[**3**]S. Somasundaram, P. Vidyarani and R. Ponraj "Geometric Mean Labeling of Graphs", Bullettin of Pure and Applied Sciences. 30E(2)(2011), page 153-160.

[**4**]Sandhya.S.S , Somasundaram.S , "Geometric Mean Labeling of Disconnected Graphs" Future Prospects in Multi Disciplinary Research. ISBN 978-81-910747-7-2 page no:134 to 136.

[5] S. Somasundaram. S.S. Sandhya, S.P. Viji, "Some New Results in Geometric Mean Graphs" Kanyakumari Academy of Arts and Science. ISBN 978-93-81658-10-9 Vol. 3 page 13-17.

[6] S. Somasundaram. S.S. Sandhya, S.P. Viji, "A Note on Geometric Mean Graphs", International Journal of Mathematical Archive- 5(10)(2014), 1-8 ISSN 2229-5046.

[7] S. Somasundaram. S.S. Sandhya, S.P. Viji, "Few Results on Geometric Meam Graphs", International Journal of Mathematical Trends & Technology. ISSN 2331-5373 Vol. 16 No. 1 (2014).

[8] S. Somasundaram. S.S. Sandhya, S.P Viji, "On Geometric Mean Graphs", communicated to International Journal of Mathematical Forum.