Geometric mean labeling of some more Disconnected Graphs

S 1.P.Viji, S 2. Somasundaram, S3.S.Sandhya,
1. Department of Mathematics, K.N.S.K. College of Engineering, Therekalputhoor - 629004
2. Department of Mathematics, M.S. University, Tirunelveli-627012
3. Department of Mathematics, Sree Ayyappa College for Women, Chunkankadai: 629003

Abstract

$\underline{\text { Abstract }}$ A Graph $G=(V, E)$ with p vertices and q edges is said to be a Geometric mean graph if is possible to label the vertices $x \in V$ with distinct labels $f(x)$ from 1,2.....q+1 is such a way that when each edge $e=u v$ is labeled with $f(e=u v)=$ $\lceil\sqrt{f(u) f(v)}\rceil$ (or) $\lfloor\sqrt{f(u) f(v)}\rfloor$, then the resulting edge labels are distinct. In this case f is called Geometric mean labeling of G. In this paper we prove that some disconnected graphs are Geometric Mean graphs.

Key Words: Graph, Geometric Mean labeling, Path, Cycle, Comb, Ladder etc.

1.Introduction

The graph considered here are finite and undirected graph
$G=(V, E)$ with p vertices and q edges. For a detailed survey of graph labeling we refer to Gallain [1]. For all other standard terminology and notations we follow Harary [2]. S. Somasundaram and P. Vidhyarani introduced the concept of Geometric Mean labeling of graphs in [3] and studied their behavior in [4], [5], [6] and [7]. In this paper we investigate the Geometric mean labeling behavior of some disconnected graphs. The following definitions are useful for our present study.

Definition1.1: A Graph $G=(V, E)$ with p vertices and q edges is said to be a Geometric mean graph if is possible to label the vertices $x \in \mathrm{~V}$ with distinct labels $f(x)$ from $1,2 \ldots . . q^{+1}$ is such a way that when each edge $\mathrm{e}=\mathrm{uv}$ is labeled with $\mathrm{f}(\mathrm{e}=\mathrm{uv})=$ $\lceil\sqrt{f(u) f(v)}\rceil$ (or) $\lfloor\sqrt{f(u) f(v)}\rfloor$, then the resulting edge labels are distinct. In this case f is called Geometric mean labeling of G.

Definition1.2: The union of two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ is a graph $G=G_{1} \cup G_{2}$ with vertex set $V=V_{1} \cup V_{2}$ and the edge set $E=E_{1} \cup E_{2}$

Definition1.3: The Corona of two graphs G_{1} and G_{2} is the graph $G=G_{1} \odot G_{2}$ formed by taking one copy of G_{1} and $\left|V\left(G_{1}\right)\right|$ copies of G_{2} where the $\mathrm{i}^{\text {th }}$ vertex of G_{1} is adjacent to every vertex in the $\mathrm{i}^{\text {th }}$ copy of G_{2}.

2.Main Results

Theorem2.1: $C_{m} \cup\left(P_{n} \odot K_{1}\right)$ is a Geometric Mean graph.

Proof: Let $u_{1} u_{2} \cdots u_{m} u_{1}$ be the cycle C_{m}. Let $v_{1} v_{2} \cdots v_{n}$ be the path P_{n} and let w_{i} be the vertex which is joined to the vertex $v_{i}, 1 \leq i \leq n$ of the path $P_{n} . \operatorname{Let} G=C_{m} \cup\left(P_{n} \odot K_{1}\right)$.

Define a function $f: V(G) \rightarrow\{1,2, \ldots, q+1\}$ by
$f\left(u_{i}\right)=i, 1 \leq i \leq m$
$f\left(v_{i}\right)=m+2 i-1,1 \leq i \leq n$
$f\left(w_{i}\right)=m+2 i, 1 \leq i \leq n$
Then the edge labels are distinct.
Hence f is a Geometric Mean Labeling of G.
Example2.2: The Geometric Mean labeling of $C_{8} \cup\left(P_{5} \odot K_{1}\right)$ is given below.

Figure 1

Theorem2.3: $\left(C_{m} \odot K_{1}\right) \cup\left(P_{n} \odot K_{1}\right)$ is a Geometric
Mean graph.
Proof: Let C_{m} be the cycle $u_{1} u_{2} \cdots u_{m} u_{1}$ and let v_{i} be the pendent vertex attached to $u_{i}, 1 \leq i \leq m \cdot \operatorname{Let} P_{n}=$ $w_{1} w_{2} \cdots w_{n}$ be the path on n vertices. Join a vertex t_{i} to $w_{i}, 1 \leq i \leq n . \operatorname{Let} G=\left(C_{m} \odot K_{1}\right) \cup\left(P_{n} \odot K_{1}\right)$.

Define a function $f: V(G) \rightarrow\{1,2, \ldots, q+1\}$ by
$f\left(u_{i}\right)=2 i-1,1 \leq i \leq 2$
$f\left(u_{i}\right)=2 i, \quad 3 \leq i \leq m$
$f\left(v_{i}\right)=2 i, \quad 1 \leq i \leq 2$
$f\left(v_{i}\right)=2 i-1,3 \leq i \leq m$
$f\left(w_{i}\right)=2 m+2 i-1,1 \leq i \leq n$
$f\left(t_{i}\right)=2 m+2 i, 1 \leq i \leq n$
Then the edge labels are distinct. Hence f is a Geometric Mean Labeling of G.

Example2.4: The Geometric Mean labeling $\operatorname{of}\left(C_{6} \odot K_{1}\right) \cup\left(P_{5} \odot K_{1}\right)$ is given below.

Figure 2

Theorem2.5: $\left(C_{m} \odot \overline{K_{2}}\right) \cup\left(P_{n} \odot K_{1}\right)$ is a Geometric Mean graph.

Proof:Let $u_{1} u_{2} \cdots u_{m} u_{1}$ be the cycle C_{m} and let v_{i}, w_{i} be the vertices which are joined to the vertex $u_{i}, 1 \leq i \leq m$ of the cycle C_{m}. Let $s_{1} s_{2} \cdots s_{n}$ be the path P_{n} and lett t_{i} be the vertex which is joined to the vertex $s_{i}(1 \leq i \leq n)$ of the path $P_{n} . \operatorname{Let} G=$ $\left(C_{m} \odot \overline{K_{2}}\right) \cup\left(P_{n} \odot K_{1}\right)$.

Define a function $f: V(G) \rightarrow\{1,2, \ldots, q+1\}$ by

$$
\begin{aligned}
& f\left(u_{i}\right)=3 i-1,1 \leq i \leq m \\
& f\left(v_{i}\right)=3 i-2,1 \leq i \leq m \\
& f\left(w_{i}\right)=3 i, 1 \leq i \leq m \\
& \quad f\left(s_{i}\right)=3 m+2 i-1,1 \leq i \leq n \\
& f\left(t_{i}\right)=3 m+2 i, 1 \leq i \leq n
\end{aligned}
$$

From the above labeling pattern, we get distinct edge labels. Hence f is a Geometric Mean Labeling of G.

Example2.6: The Geometric Mean labeling $\operatorname{of}\left(C_{6} \odot \overline{K_{2}}\right) \cup\left(P_{6} \odot K_{1}\right)$ is given below.

Figure3

Theorem2.7: $C_{m} \cup L_{n}$ is a Geometric Mean graph.
Proof: $\operatorname{Let} u_{1} u_{2} \cdots u_{m} u_{1}$ be the cycle C_{m}.Let L_{n} be the Ladder graph with vertices v_{i} and $w_{i}, \quad 1 \leq i \leq n$. Let $G=C_{m} \cup L_{n}$.

Define a function $f: V(G) \rightarrow\{1,2, \ldots, q+1\}$ by
$f\left(u_{i}\right)=i, 1 \leq i \leq m$
$f\left(v_{i}\right)=m+3 i-2,1 \leq i \leq n$
$f\left(w_{i}\right)=m+3 i-1,1 \leq i \leq n$
Then the edge labels are distinct.
Hence f is a Geometric Mean Labeling of G.
Example2.8: The Geometric Mean labeling of $C_{7} \cup$ L_{6} is given below.

Figure4
Theorem2.9: $\left(C_{m} \odot K_{1}\right) \cup L_{n}$ is a Geometric Mean graph.

Proof: Let $u_{1} u_{2} \cdots u_{m} u_{1}$ be the cycle C_{m} and let v_{i} be the vertex which is joined to the vertex $u_{i}, \quad 1 \leq i \leq$ m of the cycle C_{m}. Let x_{i} and $y_{i}, 1 \leq i \leq n$ be the vertices of L_{n}. Let $G=\left(C_{m} \odot K_{1}\right) \cup L_{n}$.

Define a function $f: V(G) \rightarrow\{1,2, \ldots, q+1\}$ by

$$
\begin{aligned}
& f\left(u_{i}\right)=2 i-1,1 \leq i \leq 2 \\
& f\left(u_{i}\right)=2 i, \quad 3 \leq i \leq m \\
& f\left(v_{i}\right)=2 i, \quad 1 \leq i \leq 2 \\
& f\left(v_{i}\right)=2 i-1,3 \leq i \leq m \\
& f\left(x_{i}\right)=2 m+3 i-1,1 \leq i \leq n \\
& \quad f\left(y_{i}\right)=2 m+3 i-2,1 \leq i \leq n
\end{aligned}
$$

Then the edge labels are distinct.
Hence f is a Geometric Mean Labeling of G.
Example2.10: The Geometric Mean labeling of $\left(C_{9} \odot K_{1}\right) \cup L_{6}$ is given below.

Figure5

Theorem2.11: $C_{m} \cup\left(P_{n} \odot K_{3}\right)$ is a Geometric Mean graph.

Proof: Let C_{m} be the cycle $u_{1} u_{2} \cdots u_{m} u_{1}$. Let $v_{1} v_{2} \cdots v_{n}$ be the path P_{n}.

Let $x_{i}, y_{i}, 1 \leq i \leq n$ be the vertices of K_{3} which are attached to the vertices of P_{n}. Let $G=C_{m} \cup$ $\left(P_{n} \odot K_{3}\right)$.

Define a function $f: V(G) \rightarrow\{1,2, \ldots, q+1\}$ by
$f\left(u_{i}\right)=i, 1 \leq i \leq m$
$f\left(v_{i}\right)=m+4 i-2,1 \leq i \leq n$
$f\left(x_{i}\right)=m+4 i-3,1 \leq i \leq n$

$$
f\left(y_{i}\right)=m+4 i-1,1 \leq i \leq n
$$

Then the edge labels are distinct.
Hence f is a Geometric Mean Labeling of G.
Example2.12: The Geometric Mean labeling of $C_{9} \cup\left(P_{5} \odot K_{3}\right)$ is given below.

Figure6

Theorem2.13: $\left(C_{m} \odot K_{1}\right) \cup\left(P_{n} \odot K_{3}\right)$ is a Geometric Mean graph.

Proof: Let C_{m} be the cycle $u_{1} u_{2} \cdots u_{m} u_{1}$ and let v_{i} be the vertex which is joined to the vertex $u_{i}, 1 \leq i \leq$ m of the cycle C_{m}. Let $w_{1} w_{2} \cdots w_{n}$ be the path P_{n}. Let x_{i}, y_{i} be the vertices of K_{3} which are attached to eachvertex of P_{m}.Let $=\left(C_{n} \odot K_{1}\right) \cup\left(P_{m} \odot K_{3}\right)$.

Define a function $f: V(G) \rightarrow\{1,2, \ldots, q+1\}$ by
$f\left(u_{i}\right)=2 i-1,1 \leq i \leq 2$
$f\left(u_{i}\right)=2 i, 3 \leq i \leq m$

$$
\begin{aligned}
& f\left(v_{i}\right)=2 i, 1 \leq i \leq 2 \\
& f\left(v_{i}\right)=2 i-1,3 \leq i \leq m \\
& f\left(w_{i}\right)=2 m+4 i-2,1 \leq i \leq n \\
& f\left(x_{i}\right)=2 m+4 i-3,1 \leq i \leq n \\
& \quad f\left(y_{i}\right)=2 m+4 i-1,1 \leq i \leq n
\end{aligned}
$$

Then the edge labels are distinct.
Hence f is a Geometric Mean Labeling of G.
Example2.14: The Geometric Mean labeling of $\left(C_{8} \odot K_{1}\right) \cup\left(P_{4} \odot K_{3}\right)$ is given below.

Figure 7
Theorem 2.15: $\left(C_{m} \odot K_{3}\right) \cup P_{n}$ is a Geometric Mean graph.

Proof: Let $u_{1} u_{2} \cdots u_{m} u_{1}$ be the cycle C_{m}. Let $v_{i}, w_{i}, 1 \leq i \leq m$ be the vertices of K_{3} which are attached to the vertices of C_{n}. Let $t_{i}, 1 \leq i \leq n$ be the vertices of the path P_{n}. Let $G=\left(C_{m} \odot K_{3}\right) \cup P_{n}$.

Define a function $f: V(G) \rightarrow\{1,2, \ldots, q+1\}$ by
$f\left(u_{i}\right)=4 i-1,1 \leq i \leq m$
$f\left(v_{i}\right)=4 i-3,1 \leq i \leq m$
$f\left(w_{i}\right)=4 i, \quad 1 \leq i \leq m$
$f\left(t_{i}\right)=4 m+i, 1 \leq i \leq n$
Then the edge labels are distinct.
Hence f is a Geometric Mean Labeling of G.

Example2.16: The labeling pattern of $\left(C_{6} \odot K_{3}\right) \cup$ P_{5} is given below.

Figure8
Theorem2.17: $\left(C_{m} \odot K_{3}\right) \cup\left(P_{n} \odot K_{3}\right)$ is a Geometric Mean graph.

Proof: Let $u_{1} u_{2} \cdots u_{m} u_{1}$ be the cycle C_{m}. Let $v_{i}, w_{i}, 1 \leq i \leq m$ be the vertices of K_{3} which are attached to the vertices of C_{m}. Let $t_{1} t_{2} \cdots t_{n}$ be the path P_{n}.Let x_{i}, y_{i} be the vertices of K_{3} which are attachedto $\quad t_{i}, 1 \leq i \leq n \quad$.Let $\quad G=\left(C_{m} \odot K_{3}\right) \cup$ $\left(P_{n} \odot K_{3}\right)$.

Define a function $f: V(G) \rightarrow\{1,2, \ldots, q+1\}$ by
$f\left(u_{i}\right)=4 i-1, \quad 1 \leq i \leq m$
$f\left(v_{i}\right)=4 i-3, \quad 1 \leq i \leq m$
$f\left(w_{i}\right)=4 i, \quad 1 \leq i \leq m$
$f\left(t_{i}\right)=4 m+4 i-2,1 \leq i \leq n$
$f\left(x_{i}\right)=4 m+4 i-3,1 \leq i \leq n$
$f\left(y_{i}\right)=4 m+4 i-1,1 \leq i \leq n$
Then the edge labels are distinct.
Hence f is a Geometric Mean Labeling of G.
Example2.18: The labeling pattern of $\left(C_{6} \odot K_{3}\right) \cup$ $\left(P_{5} \odot K_{3}\right)$ is given below.

Figure9

REFERENCES:

[1] Gallian. J.A, 2012, A dynamic Survey of graph labeling. The electronic Journal of Combinatories17\#DS6
[2] Harary.F, 1988, Graph Theory, Narosa Publishing House Reading, New Delhi.
[3]S. Somasundaram, P. Vidyarani and R. Ponraj "Geometric Mean Labeling of Graphs", Bullettin of Pure and Applied Sciences. 30E(2)(2011), page 153-160.
[4]Sandhya.S.S, Somasundaram.S , "Geometric Mean Labeling of Disconnected Graphs" Future Prospects in Multi Disciplinary Research. ISBN 978-81-910747-7-2 page no:134 to 136.
[5] S. Somasundaram. S.S. Sandhya, S.P Viji, "Some New Results in Geometric Mean Graphs" Kanyakumari Academy of Arts and Science. ISBN 978-93-81658-10-9 Vol. 3 page 13-17.
[6] S. Somasundaram. S.S. Sandhya, S.P Viji, "A Note on Geometric Mean Graphs", International Journal of Mathematical Archive- 5(10)(2014), 1-8 ISSN 2229-5046.
[7] S. Somasundaram. S.S. Sandhya, S.P Viji, "Few Results on Geometric Meam Graphs", International Journal of Mathematical Trends \& Technology. ISSN 2331-5373 Vol. 16 No. 1 (2014).
[8] S. Somasundaram. S.S. Sandhya, S.P Viji, "On Geometric Mean Graphs", communicated to International Journal of Mathematical Forum.

