Homomorphism and Anti Homomorphism on Multi L-Fuzzy Quotient Group of a Group
 K.Sunderrajan ${ }^{* 1}$, M.Suresh ${ }^{* 2}$, R. Muthuraj* ${ }^{3}$
 1,2 Department of Mathematics,SRMV College of Arts and Science, Coimbatore-641020, Tamilnadu, India.
 ${ }^{3}$ Department of Mathematics,H.H.The Rajah's College, Pudukkottai-622 001, Tamilnadu, India

Abstract

In this paper we introduce the notion of homomorphism and anti homomorphism of a multi L-fuzzy quotient subgroup of a group and some of its properties are investigated.

Keywords

Fuzzy set, multi-L-fuzzy subgroup, homomorphism of multi L-fuzzy group, anti homomorphism of multi L-fuzzy group, quotient subgroup, multi L-fuzzy quotient subgroup.

1.INTRODUCTION

L. A. Zadeh[19] introduced the notion of a fuzzy subset A of a set X as a function from X into $\mathrm{I}=$ [0,1]. Rosenfeld [3] and Kuroki [12] applied this concept in group theory and semi group theory, and developed the theory of fuzzy subgroups and fuzzy sub semi groupoids respectively.The concept of anti - fuzzy subgroup was introduced by Biswas [5]. The Concept of multi fuzzy subgroups was introduced by Souriar Sebastian and S.Babu Sundar [17]. In all these studies, the closed unit interval $[0,1]$ is taken as the Membership lattice.
We introduce the notion of a multi L-fuzzy sub group G and discussed some of its properties. The characterizations of a Multi L-fuzzy subgroup under homomorphism and anti homomorphism on multi L-fuzzy quotient subgroup on a group is discussed.

2. Preliminaries

In this Section, we review some definitions and some results of Multi L-fuzzy
subgroups which will be used in the later sections. Throughout this section we mean that (G,*) is a group, e is the identity of G and xy as $\mathrm{x} * \mathrm{y}$.

2.1 Definition:

Let X be any nonempty set. A fuzzy set A of X is $\mathrm{A}: \mathrm{X} \rightarrow[0,1]$.

2.2 Definition:

Let ($\mathrm{G},$.) be a group. A fuzzy subset A of G is said to be a fuzzy subgroup (FSG) of G if the following conditions are satisfied:

$$
\begin{aligned}
& \text { i. } A(x y) \geq \min \{A(x), A(y)\} \text {, } \\
& \text { ii. } A(x-1)=A(x) \text {, for all } x \text { and } \\
& y \in G \text {. }
\end{aligned}
$$

2.3 Definition:

Let ($\mathrm{G},$.) be a group. A fuzzy subgroup A of G is said to be a normal fuzzy subgroup of G if $A(x y)$ $=A(y x)$, for all x and $y \in G$.

2.4 Definition:

A fuzzy subset A of G is said to be a anti fuzzy group of G, if for all $x, y \in G$
i $\quad \mathrm{A}(\mathrm{xy}) \leq \max \{\mathrm{A}(\mathrm{x}), \mathrm{A}(\mathrm{y})\}$
ii $\quad \mathrm{A}(\mathrm{x}-1)=\mathrm{A}(\mathrm{x})$.

2.5 Definition:

A anti fuzzy subgroup A of G is called a anti fuzzy normal subgroup (AFNS) of G if for every $x, y \in G$,

$$
\mathrm{A}\left(\mathrm{xyx}^{-1}\right) \leq \mathrm{A}(\mathrm{y})
$$

2.6 Definition:

Let X be a non - empty set. A multi L-fuzzy set A in X is defined as a set of ordered sequences, $\mathrm{A}=\{(\mathrm{x}, \mathrm{A} 1(\mathrm{x}), \mathrm{A} 2(\mathrm{x}), \ldots$, $\operatorname{Ai}(x), \quad \ldots) \quad: \quad x \in X\}$, where

$\mathrm{Ai}: \mathrm{X} \rightarrow \mathrm{L}$ for all i .

2.7 Definition:

A multi L-fuzzy subset A of G is called a multi L-fuzzy subgroup (MLFS) of G if for every $x, y \in G$,

$$
\begin{array}{lll}
& \text { i } & A(x y) \geq A(x) \wedge \\
A(y) & & \\
& \text { ii } & A\left(x^{-1}\right)=A(x) .
\end{array}
$$

2.8 Definition:

A multi L-fuzzy subset A of G is called a multi anti L-fuzzy subgroup (MALFS) of G if for every $\mathrm{x}, \mathrm{y} \in \mathrm{G}$,

$$
\text { i } \quad A(x y) \leq A(x) \vee
$$

A(y)

$$
\text { ii } \quad \mathrm{A}(\mathrm{x}-1)=\mathrm{A}(\mathrm{x}) .
$$

2.9 Definition

The function $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{G}^{\prime}$ is said to be a homomorphism if $\mathrm{f}(\mathrm{xy})=\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y}) \forall \mathrm{x}, \mathrm{y} \in \mathrm{G}$.

2.10 Definition

The function $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{G}^{\prime}\left(\mathrm{G}\right.$ and G^{\prime} are not necessarily commutative) is said to be an anti homomorphism if $\mathrm{f}(\mathrm{xy})=\mathrm{f}(\mathrm{y}) \mathrm{f}(\mathrm{x}) \quad \forall \mathrm{x}, \mathrm{y} \in \mathrm{G}$.

2.11 Definition

Let f be any function from a set X to a set Y , and let A be any L-fuzzy subset of X . Then A is called f-invariant if $f(x)=f(y)$ implies $\quad A(x)=A(y)$, where $\mathrm{x}, \mathrm{y} \in \mathrm{X}$.

2.12 Definition:

Let A be a multi L-fuzzy normal subgroup of G with identity e. Let
$K=\{x \in G / A(x)=A(e)\}$. Consider the map $\overline{\mathrm{A}}=$ ($\tilde{A}=\left(\tilde{A}_{1}, \tilde{A}_{2}, \ldots, \tilde{A}_{K}\right)$ be a multi L-fuzzy group in G with
$A_{i}: G / K \rightarrow L$ defined by
$\overline{\mathrm{A}}_{(\mathrm{xK})}=\vee \mathrm{A}(\mathrm{xk})$ for all $\mathrm{k} \in \mathrm{K}$ and $\mathrm{x} \in \mathrm{G}$. Then, the multi L-fuzzy subgroup $\overline{\mathrm{A}}$ of G / K is called ai multi

L-fuzzy quotient group of A by K.

Remarks:

$\overline{\mathrm{A}}$ is not a multi L-fuzzy normal quotient group of G/K

$$
\text { Since, } \overline{\mathrm{A}}_{(\mathrm{xKyK})} \neq \overline{\mathrm{A}}_{(\mathrm{yKxK})}
$$

Consider the map, $\overline{\mathrm{A}}: \mathrm{G} / \mathrm{K} \rightarrow \mathrm{L}$ defined by $\overline{\mathrm{A}}_{(\mathrm{xK})}$ $=\mathrm{A}(\mathrm{x})$ for all $\mathrm{k} \in \mathrm{K}$ and
$\mathrm{x} \in \mathrm{G}$. Then, $\overline{\mathrm{A}}$ is a multi L-fuzzy normal quotient group of G / K.as a template and simply type your text into it.

3.Properties of multi L-fuzzy quotient group $\overline{\mathrm{A}}$ determined by A and K under homomorphism and anti homomorphism:

In this section, we discuss some of the properties of multi L-fuzzy quotient group of a group G/K determined by A and K under homomorphism and anti homomorphism.

3.1 Theorem:

Let G and G^{\prime} be any two groups. Let
f: $G \rightarrow G^{\prime}$ be a homomorphism and onto. Let $\overline{\mathrm{A}}=$ ($\tilde{A}=\left(\tilde{A}_{1}, \tilde{A}_{2}, \ldots, \tilde{A}_{K}\right)$ be a multi L-fuzzy group in G with $\mathrm{A}_{\mathrm{i}}: \mathrm{G} / \mathrm{K} \rightarrow$ L be a multi L-fuzzy quotient group of G / K. Then $\mathrm{f}(\overline{\mathrm{A}})$ is a multi L-fuzzy quotient group of $\mathrm{G}^{\prime} / \mathrm{K}$, if \bar{A} has sup property and \bar{A} is f invariant and $f(\overline{\mathrm{~A}})=\overline{\mathrm{f}(\mathrm{A})}$.

Proof:

Let $\overline{\mathrm{A}}$ be a multi L-fuzzy quotient group of G/K
$f(\bar{A})(f(x) f(y) K)$

$$
\begin{aligned}
&=(f(\overline{\mathrm{~A}}))(\mathrm{f}(\mathrm{xy}) \mathrm{K}) \\
&=\overline{\mathrm{A}}_{(\mathrm{xyK})} \\
&\left.\geq \overline{\mathrm{A}}_{(\mathrm{xK})}\right) \wedge \overline{\mathrm{A}}_{(\mathrm{yK})} \\
&=(\mathrm{f}(\overline{\mathrm{~A}}))(\mathrm{f}(\mathrm{x}) \mathrm{K}) \wedge(\mathrm{f}(\overline{\mathrm{~A}})(\mathrm{f}(\mathrm{y}) \mathrm{K}) \\
& \quad \mathrm{f}(\overline{\mathrm{~A}})(\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y}) \mathrm{K}) \quad \geq(\mathrm{f})
\end{aligned}
$$

$$
\left(\overline{\mathrm{A}}_{)}\right)(\mathrm{f}(\mathrm{x}) \mathrm{K}) \wedge(\mathrm{f}(\overline{\mathrm{~A}})(\mathrm{f}(\mathrm{y}) \mathrm{K})
$$

$$
\text { ii } \quad \mathrm{f}(\overline{\mathrm{~A}})([\mathrm{f}(\mathrm{x})]-1 \mathrm{~K})
$$

$$
=\mathrm{f}\left(\overline{\mathrm{~A}}_{)}\right)[\mathrm{f}(\mathrm{x}-1) \mathrm{K}] \quad=\overline{\mathrm{A}}_{(\mathrm{x}-1 \mathrm{~K})}
$$

$$
=\overline{\mathrm{A}}_{(\mathrm{xK})}
$$

$$
=\mathrm{f}(\overline{\mathrm{~A}})[\mathrm{f}(\mathrm{x}) \mathrm{K}]
$$

$$
=\mathrm{f}(\overline{\mathrm{~A}})([\mathrm{f}(\mathrm{x})]-1 \mathrm{~K})
$$

$$
=\mathrm{f}(\overline{\mathrm{~A}})[\mathrm{f}(\mathrm{x}) \mathrm{K}] .
$$

Hence $f(\overline{\mathrm{~A}})$ is a multi L - fuzzy quotient group of $\mathrm{G}^{\prime} / \mathrm{K}$.

Also,$\overline{\mathrm{f}(\mathrm{A})}(\mathrm{yK})=\vee \mathrm{f}(\mathrm{A})(\mathrm{yK})$,
for all $k \in K$ and $y \in G^{\prime}$.

$$
\begin{aligned}
& =\vee \mathrm{f}(\mathrm{~A})(\mathrm{f}(\mathrm{x}) \mathrm{K}), \mathrm{f} \text { is onto and } \mathrm{x} \in \mathrm{G} . \\
& =\vee \mathrm{A}(\mathrm{xK}) \\
& =\overline{\mathrm{A}}_{(\mathrm{xK})}
\end{aligned}
$$

$$
=\mathrm{f}(\overline{\mathrm{~A}})(\mathrm{f}(\mathrm{x}) \mathrm{K})
$$

$$
=\mathrm{f}(\overline{\mathrm{~A}})(\mathrm{yK})
$$

Hence $\quad \overline{f(A)}(y K)=f(\bar{A})(y K)$.

3.2 Theorem:

Let G and G^{\prime} be any two groups. Let $f: G \rightarrow$
G^{\prime} be a homomorphism. Let $\tilde{B}=\left(\tilde{B}_{1}, \tilde{B}_{2}, \ldots, \tilde{B}_{K}\right)$ be a multi L-fuzzy group in G with $\mathrm{B}_{\mathrm{i}}: \mathrm{G} / \mathrm{K} \rightarrow$ L be a multi L-fuzzy quotient group

$f^{-1}(\bar{B})$ is a multi L-fuzzy quotient group of G / K and $\mathrm{f}^{-1}(\overline{\mathrm{~B}})=\overline{\mathrm{f}^{-1}(\mathrm{~B})}$

Proof:
Let \bar{B} be a multi L-fuzzy quotient group of $\mathrm{G}^{\prime} / \mathrm{K}$.
$\mathrm{f}^{-1}(\overline{\mathrm{~B}})(\mathrm{xyK})=\overline{\mathrm{B}}_{(\mathrm{f}(\mathrm{xy}) \mathrm{K})}$

$$
=\overline{\mathrm{B}}(\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y}) \mathrm{K})
$$

$$
\geq \overline{\mathrm{B}}_{(\mathrm{f}(\mathrm{x}) \mathrm{K})} \wedge \overline{\mathrm{B}}_{(\mathrm{f}(\mathrm{y}) \mathrm{K})}
$$

$$
\geq \mathrm{f}^{-1}(\overline{\mathrm{~B}})(\mathrm{xK}) \wedge \mathrm{f}^{-1}(\overline{\mathrm{~B}})(\mathrm{yK})
$$

$$
\mathrm{f}^{-1}(\overline{\mathrm{~B}})(\mathrm{xyK})
$$

$$
\geq \mathrm{f}^{-1}(\overline{\mathrm{~B}})(\mathrm{xK}) \wedge \mathrm{f}^{-1}(\overline{\mathrm{~B}})(\mathrm{yK})
$$

$$
\mathrm{f}^{-1}(\overline{\mathrm{~B}})(\mathrm{x}-1 \mathrm{~K})
$$

$$
=\overline{\mathrm{B}}(\mathrm{f}(\mathrm{x}-1) \mathrm{K})
$$

$$
=\overline{\mathrm{B}}_{((\mathrm{f}(\mathrm{x}))-1 \mathrm{~K})}
$$

$$
=\overline{\mathrm{B}}_{(\mathrm{f}(\mathrm{x}) \mathrm{K})}
$$

$$
=\mathrm{f}^{-1}(\overline{\mathrm{~B}})(\mathrm{xK})
$$

$$
=\mathrm{f}^{-1}(\overline{\mathrm{~B}})(\mathrm{x}-1 \mathrm{~K})
$$

$$
=\mathrm{f}^{-1}(\overline{\mathrm{~B}})(\mathrm{xK}) .
$$

Hence, $\mathrm{f}^{-1}(\overline{\mathrm{~B}})$ is a multi L-fuzzy quotient
group of G / K.
Also, $\quad \overline{\mathrm{f}^{-1}(\mathrm{~B})}(\mathrm{xK}) \quad=\vee \mathrm{f}-1(\mathrm{~B})(\mathrm{xK})$,
for all $\mathrm{k} \in \mathrm{K}$ and $\mathrm{x} \in \mathrm{G}$.
$=\vee B(f(x) K)$
$\left.=\overline{\mathrm{B}}_{(\mathrm{f}}(\mathrm{x}) \mathrm{K}\right)$
$=f^{-1}(\bar{B})(x K)$.

Hence,

$$
\overline{\mathrm{f}^{-1}(\mathrm{~B})}(\mathrm{xK}) \quad=\mathrm{f}^{-1}(\overline{\mathrm{~B}})(\mathrm{xK})
$$

3.3 Theorem:

Let G and G^{\prime} be any two groups. Let
f: $G \rightarrow G^{\prime}$ be an anti homomorphism and onto. Let
$\overline{\mathrm{A}}=\left(\tilde{A}=\left(\tilde{A}_{1}, \tilde{A}_{2}, \ldots ., \tilde{A}_{K}\right)\right.$ be a multi L-fuzzy group in G with
$\mathrm{A}_{\mathrm{i}}: \mathrm{G} / \mathrm{K} \rightarrow$ L be a multi L-fuzzy quotient group of G / K. Then $\mathrm{f}\left(\overline{\mathrm{A}}_{\mathrm{H}}\right)$ is a multi
L-fuzzy quotient group of $\mathrm{G}^{\prime} / \mathrm{K}$, if \bar{A} has sup property and \bar{A} is f - invariant and $f(\bar{A})=\overline{f(A)}$.

Proof:

Let \bar{A} be a multi L-fuzzy quotient group of G / K.
i. $\mathrm{f}(\overline{\mathrm{A}})(\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y}) \mathrm{K})=\left(\mathrm{f}\left(\overline{\mathrm{A}}^{\prime}\right)(\mathrm{f}(\mathrm{yx}) \mathrm{K})\right.$

$$
\begin{aligned}
& =\overline{\mathrm{A}}_{(\mathrm{yxK})} \\
& \geq \overline{\mathrm{A}}_{(\mathrm{yK}) \wedge} \overline{\mathrm{A}}_{(\mathrm{xK})} \\
& \geq \overline{\mathrm{A}}_{(\mathrm{xK}) \wedge} \overline{\mathrm{A}}_{(\mathrm{yK})} \\
& =\left(\mathrm { f } (\overline { \mathrm { A } } _ { \mathrm { f } }) (\mathrm { f } (\mathrm { f }) \mathrm { K }) \wedge \left(\mathrm { f } \left(\overline{\mathrm{A}}_{)(\mathrm{f}(\mathrm{y}) \mathrm{K})}\right.\right.\right.
\end{aligned}
$$

$\mathrm{f}(\overline{\mathrm{A}})(\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y}) \mathrm{K})$
$\geq(f(\overline{\mathrm{~A}}))(\mathrm{f}(\mathrm{x}) \mathrm{K}) \wedge(\mathrm{f}(\overline{\mathrm{A}})(\mathrm{f}(\mathrm{y}) \mathrm{K})$.
ii $\quad f(\overline{\mathrm{~A}})\left([\mathrm{f}(\mathrm{x})]^{-1} \mathrm{~K}\right)$
$=\mathrm{f}(\overline{\mathrm{A}})\left[\mathrm{f}\left(\mathrm{x}^{-1}\right) \mathrm{K}\right]$

$$
=\overline{\mathrm{A}}\left(\mathrm{x}^{-1} \mathrm{~K}\right)
$$

$$
=\overline{\mathrm{A}}_{(\mathrm{xK})}
$$

$$
=\mathrm{f}(\overline{\mathrm{~A}})[\mathrm{f}(\mathrm{x}) \mathrm{K}]
$$

$$
=\mathrm{f}(\overline{\mathrm{~A}})\left([\mathrm{f}(\mathrm{x})]^{-1} \mathrm{~K}\right)
$$

$$
=\mathrm{f}
$$

$\left.\left(\overline{\mathrm{A}}_{)}\right) \mathrm{f}(\mathrm{x}) \mathrm{K}\right]$.
Hence $\mathrm{f}(\overline{\mathrm{A}})$ is a multi L-fuzzy quotient group of $\mathrm{G}^{\prime} / \mathrm{K}$.

Also,

$$
\overline{\mathrm{f}(\mathrm{~A})}(\mathrm{yK})=\vee f(\mathrm{~A})(\mathrm{yK}), \text { for all } \mathrm{k} \in \mathrm{~K}
$$ and $y \in G^{\prime}$.

$$
\begin{aligned}
& =\vee f(A)(f(x) K), f \text { is onto and } x \in G . \\
& =\vee A(x K)
\end{aligned}
$$

$$
\begin{aligned}
& =\overline{\mathrm{A}}_{(\mathrm{xK})} \\
& =\mathrm{f}\left(\overline{\mathrm{~A}}_{)(\mathrm{f}(\mathrm{x}) \mathrm{K})}\right. \\
& =\mathrm{f}\left(\overline{\mathrm{~A}}^{\prime}\right)(\mathrm{yK}) \\
\text { Hence, } & \overline{\mathrm{f}}^{\mathrm{A})}(\mathrm{yK})=\mathrm{f}(\overline{\mathrm{~A}})(\mathrm{yK})
\end{aligned}
$$

3.4 Theorem:

Let G and G^{\prime} be any two groups. Let $\mathrm{f}: \mathrm{G} \rightarrow$ G^{\prime} be an anti homomorphism.
Let $\tilde{B}=\left(\tilde{B}_{1}, \tilde{B}_{2}, \ldots, \tilde{B}_{K}\right)$ be a multi L-fuzzy quotient group of $\mathrm{G}^{\prime} / \mathrm{K}$. Then
$f^{-1}(\bar{B})$ is a multi L-fuzzy quotient group of G / K and

$$
\mathrm{f}^{-1}(\overline{\mathrm{~B}})=\overline{\mathrm{f}^{-1}(\mathrm{~B})}
$$

Proof:

Let \bar{B} be a multi L-fuzzy quotient group of $\mathrm{G}^{\prime} / \mathrm{K}$.

$$
\begin{aligned}
f-1(\bar{B})(x y K) \quad= & \bar{B}_{(f(x y) K)} \\
\quad= & \bar{B}_{(f(y) f(x) K)} \\
\geq & \bar{B}_{(f(y) K) \wedge} \bar{B}_{(f(x) K)} \\
\geq & \bar{B}_{(f(x) K) \wedge} \bar{B}_{(f(y) K)} \\
\geq & f^{-1}\left(\overline { B } _ {) } (x K) \wedge f ^ { - 1 } \left(\bar{B}_{)(y K)}\right.\right. \\
& f^{-1}\left(\bar{B}_{)}\right)(x y K) \\
\geq & f-1(\bar{B})(x K) \wedge f^{-1}\left(\bar{B}^{\prime}\right)(y K)
\end{aligned}
$$

$$
\mathrm{f}-1(\overline{\mathrm{~B}})\left(\mathrm{x}^{-1} \mathrm{~K}\right)=\overline{\mathrm{B}}_{\left(\mathrm{f}\left(\mathrm{x}^{-1}\right) \mathrm{K}\right)}
$$

$$
=\overline{\mathrm{B}}\left((\mathrm{f}(\mathrm{x}))^{-1} \mathrm{~K}\right)
$$

$$
=\overline{\mathrm{B}}_{(\mathrm{f}(\mathrm{x}) \mathrm{K})}
$$

$$
=\mathrm{f}^{-1}(\overline{\mathrm{~B}})(\mathrm{xK})
$$

$$
\mathrm{f}^{-1}(\overline{\mathrm{~B}})(\mathrm{x}-1 \mathrm{~K})=\mathrm{f}^{-1}(\overline{\mathrm{~B}})(\mathrm{xK})
$$

Hence, $\mathrm{f}^{-1}(\overline{\mathrm{~B}})$ is a multi L-fuzzy quotient subgroup

Also,
$\overline{\mathrm{f}^{-1}(\mathrm{~B})}(\mathrm{xK}) \quad=\vee^{-1}(B)(x K)$, for all $k \in K$ and $x \in$
G.

Hence,

3.5 Theorem:

Let G and G^{\prime} be any two groups. Let
f: $\mathrm{G} \rightarrow \mathrm{G}^{\prime}$ be a homomorphism and onto. Let $\overline{\mathrm{A}}$:
G/K \rightarrow Lk be a multi anti L-fuzzy quotient group of G / K. Then $\mathrm{f}(\overline{\mathrm{A}})$ is a multi anti L-fuzzy quotient group of $\mathrm{G}^{\prime} / \mathrm{K}$, if $\overline{\mathrm{A}}$ has sup property and $\overline{\mathrm{A}}$ is f- invariant and $f(\overline{\mathrm{~A}})=\overline{\mathrm{f}(\mathrm{A})}$.

Proof:

Let $\overline{\mathrm{A}}$ be a multi anti L-fuzzy quotient group of G/K
i f($\overline{\mathrm{A}})(\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y}) \mathrm{K})$

$$
\begin{aligned}
& =\left(\mathrm{f}\left(\overline{\mathrm{~A}}_{)}\right)(\mathrm{f}(\mathrm{xy}) \mathrm{K})\right. \\
& =\overline{\mathrm{A}}_{(\mathrm{xyK})} \\
& \leq \overline{\mathrm{A}}_{(\mathrm{xK})} \vee \overline{\mathrm{A}}_{(\mathrm{yK})} \\
& =\left(\mathrm { f } (\overline { \mathrm { A } } _ {) }) (\mathrm { f } (\mathrm { x }) \mathrm { K }) \vee \left(\mathrm{f}\left(\overline{\mathrm{~A}}^{\prime}\right)(\mathrm{f}(\mathrm{y}) \mathrm{K})\right.\right. \\
& \mathrm{f}(\overline{\mathrm{~A}})(\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y}) \mathrm{K}) \leq\left(\mathrm{f}\left(\overline{\mathrm{~A}}^{\prime}\right)\right)(\mathrm{f}(\mathrm{x}) \mathrm{K}) \vee(\mathrm{f}
\end{aligned}
$$

$$
\left(\overline{\mathrm{A}}_{)(\mathrm{f}(\mathrm{y}) \mathrm{K})}\right.
$$

$$
\text { ii } \quad \mathrm{f}(\overline{\mathrm{~A}})\left([\mathrm{f}(\mathrm{x})]^{-1} \mathrm{~K}\right)
$$

$$
=\mathrm{f}(\overline{\mathrm{~A}})\left[\mathrm{f}\left(\mathrm{x}^{-1}\right) \mathrm{K}\right]
$$

$$
\begin{aligned}
& =\vee B(f(x) K) \\
& =\overline{\mathrm{B}}_{(\mathrm{f}(\mathrm{x}) \mathrm{K})} \\
& =f^{-1}(\bar{B})(x K) \text {. } \\
& \mathrm{f}^{-1}(\mathrm{~B})(\mathrm{xK}) \quad=\mathrm{f}^{-1}(\overline{\mathrm{~B}})(\mathrm{xK}) .
\end{aligned}
$$

$$
=\overline{\mathrm{A}}_{\left(\mathrm{x}^{-1} \mathrm{~K}\right)}
$$

$$
\begin{aligned}
& =\overline{\mathrm{A}}_{(\mathrm{xK})} \\
& =\mathrm{f}\left(\overline{\mathrm{~A}}_{\mathrm{A}}\right)[\mathrm{f}(\mathrm{x}) \mathrm{K}]
\end{aligned}
$$

$$
\left.\mathrm{f}(\overline{\mathrm{~A}})([\mathrm{f}(\mathrm{x})]]^{1} \mathrm{~K}\right)=\mathrm{f}\left(\overline{\mathrm{~A}}^{-}\right)[\mathrm{f}(\mathrm{x}) \mathrm{K}]
$$

Hence $\mathrm{f}(\overline{\mathrm{A}}$) is a multi anti L- fuzzy quotient group

Also $\overline{\mathrm{f}(\mathrm{A})}(\mathrm{yK})$
$=\wedge f(A)(y K)$, for all $k \in K$ and $y \in G^{\prime}$.

$$
=\wedge \mathrm{f}(\mathrm{~A})(\mathrm{f}(\mathrm{x}) \mathrm{K})
$$

f is onto and $=\wedge \mathrm{A}(\mathrm{xK})$

$$
\begin{aligned}
& =\overline{\mathrm{A}}_{(\mathrm{xK})=f(\overline{\mathrm{~A}})(\mathrm{f}(\mathrm{x}) \mathrm{K})} \\
& =\mathrm{f}\left(\overline{\mathrm{~A}}_{)}\right)(\mathrm{yK})
\end{aligned}
$$

Hence, $\quad \overline{f(A)}(y K)=f\left(\bar{A}^{\prime}\right)(y K)$.

3.6 Theorem:

Let G and G^{\prime} be any two groups. Let $\mathrm{f}: \mathrm{G} \rightarrow$ G^{\prime} be a homomorphism. Let $\tilde{B}=\left(\tilde{B}_{1}, \tilde{B}_{2}, \ldots, \tilde{B}_{K}\right)$ be a multi anti
L-fuzzy quotient group of $\mathrm{G}^{\prime} / \mathrm{K}$. Then
$f^{-1}(\bar{B})$ is a multi anti L-fuzzy quotient group of

$$
\mathrm{G} / \mathrm{K}_{\text {and }} \mathrm{f}^{-1}(\overline{\mathrm{~B}})=\overline{\mathrm{f}^{-1}(\mathrm{~B})}
$$

Proof:

Let \bar{B} be a multi anti L-fuzzy quotient group of $\mathrm{G}^{\prime} / \mathrm{K}$.
i. $\mathrm{f}^{-1}(\overline{\mathrm{~B}})(\mathrm{xyK})$
$=\overline{\mathrm{B}}_{(\mathrm{f}(\mathrm{xy}) \mathrm{K})}$
$=\overline{\mathrm{B}}_{(\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y}) \mathrm{K})}$
$\leq \overline{\mathrm{B}}_{(\mathrm{f}(\mathrm{x}) \mathrm{K}) \vee} \overline{\mathrm{B}}_{(\mathrm{f}(\mathrm{y}) \mathrm{K})}$ $\leq \mathrm{f}^{-1}(\overline{\mathrm{~B}})(\mathrm{xK}) \vee \mathrm{f}^{-1}(\overline{\mathrm{~B}})(\mathrm{yK})$
$\mathrm{f}^{-1}(\overline{\mathrm{~B}})(\mathrm{xyK})$

$$
\begin{aligned}
& \leq \mathrm{f}^{-1}(\overline{\mathrm{~B}})(\mathrm{xK}) \vee \mathrm{f}^{-1}(\overline{\mathrm{~B}})(\mathrm{yK}) \\
& \text { ii } \mathrm{f}-1(\overline{\mathrm{~B}})\left(\mathrm{x}^{-1} \mathrm{~K}\right)=\overline{\mathrm{B}}\left(\mathrm{f}\left(\mathrm{x}^{-1}\right) \mathrm{K}\right) \\
&=\overline{\mathrm{B}}((\mathrm{f}(\mathrm{x}))-1 \mathrm{~K}) \\
&=\overline{\mathrm{B}}(\mathrm{f}(\mathrm{x}) \mathrm{K}) \\
&=\mathrm{f}^{-1}(\overline{\mathrm{~B}})(\mathrm{xK}) \\
& \mathrm{f}-1(\overline{\mathrm{~B}})\left(\mathrm{x}^{-1} K\right)=\mathrm{f}^{-1}(\overline{\mathrm{~B}})(\mathrm{xK})
\end{aligned}
$$

Hence, $\mathrm{f}-1(\overline{\mathrm{~B}})$ is a multi anti L-fuzzy quotient group

Also, $\overline{\mathrm{f}^{-1}(\mathrm{~B})}(\mathrm{xK})$
$=\wedge f-1(B)(x K)$, for all $k \in K$ and $x \in G$.
$=\wedge B(f(x) K)$
$=\overline{\mathrm{B}}_{(\mathrm{f}(\mathrm{x}) \mathrm{K})}$
$=f^{-1}(\bar{B})(x K)$.
Hence, $\mathrm{f}^{-1}(\mathrm{~B})(\mathrm{xK})=\mathrm{f}^{-1}(\overline{\mathrm{~B}})(\mathrm{xK})$.
3.7 Theorem:

Let G and G^{\prime} be any two groups. Let
f: $\mathrm{G} \rightarrow \mathrm{G}^{\prime}$ be an anti homomorphism and onto. Let $\overline{\mathrm{A}}=\left(\tilde{A}=\left(\tilde{A}_{1}, \tilde{A}_{2}, \ldots, \tilde{A}_{K}\right)\right.$ be a multi anti L-fuzzy quotient group of G / K. Then $f(\bar{A})$ is a multi anti L fuzzy quotient group of $\mathrm{G}^{\prime} / \mathrm{K}$, if $\overline{\mathrm{A}}$ has sup property and $\overline{\mathrm{A}}_{\text {is f-invariant and }} \mathrm{f}(\overline{\mathrm{A}})=\overline{\mathrm{f}(\mathrm{A})}$.

Proof:

Let $\overline{\mathrm{A}}$ be a multi anti L-fuzzy quotient group of G/K

$$
\begin{aligned}
& \mathrm{f}\left(\overline{\mathrm{~A}}^{\mathrm{i}}\right)(\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y}) \mathrm{K}) \\
= & \left(\mathrm{f}\left(\overline{\mathrm{~A}}_{)}\right)(\mathrm{f}(\mathrm{yx}) \mathrm{K})\right. \\
= & \overline{\mathrm{A}}_{(\mathrm{yxK})} \\
\leq & \overline{\mathrm{A}}_{(\mathrm{yK}) \vee} \overline{\mathrm{A}}_{(\mathrm{xK})}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \overline{\mathrm{A}}_{(\mathrm{xK}) \vee} \overline{\mathrm{A}}_{(\mathrm{yK})} \\
& =(\mathrm{f}(\overline{\mathrm{~A}}))(\mathrm{f}(\mathrm{x}) \mathrm{K}) \vee(\mathrm{f}(\overline{\mathrm{~A}})(\mathrm{f}(\mathrm{y}) \mathrm{K}) \\
& f(\bar{A})(f(x) f(y) K) \\
& \leq(f(\overline{\mathrm{~A}}))(\mathrm{f}(\mathrm{x}) \mathrm{K}) \vee(\mathrm{f}(\overline{\mathrm{~A}})(\mathrm{f}(\mathrm{y}) \mathrm{K}) \text {. } \\
& \text { ii } \quad \mathrm{f}\left(\overline{\mathrm{~A}}_{\mathrm{A}}\right)\left([\mathrm{f}(\mathrm{x})]^{-1} \mathrm{~K}\right) \\
& =f(\overline{\mathrm{~A}})\left[\mathrm{f}\left(\mathrm{x}^{-1}\right) \mathrm{K}\right] \\
& =\overline{\mathrm{A}}_{\left(\mathrm{x}^{-1} \mathrm{~K}\right)} \\
& =\overline{\mathrm{A}}_{(\mathrm{xK})} \\
& =f(\overline{\mathrm{~A}})[\mathrm{f}(\mathrm{x}) \mathrm{K}] \\
& \mathrm{f}(\overline{\mathrm{~A}})\left([\mathrm{f}(\mathrm{x})]^{-1} \mathrm{~K}\right)=\mathrm{f}\left(\overline{\mathrm{~A}}^{\mathrm{A}}\right)[\mathrm{f}(\mathrm{x}) \mathrm{K}] \text {. }
\end{aligned}
$$

Hence $\mathrm{f}(\overline{\mathrm{A}})$ is a multi anti L - fuzzy quotient group

Also,
$\overline{\mathrm{f}(\mathrm{A})}(\mathrm{yK}) \quad=\wedge \mathrm{f}(\mathrm{A})(\mathrm{yK})$, for all $\mathrm{k} \in \mathrm{K}$ and $\mathrm{y} \in$ G^{\prime}.
$=\wedge f(A)(f(x) K)$, f is onto and $x \in G$.

$$
\begin{aligned}
& =\wedge \mathrm{A}(\mathrm{xK}) \\
& =\overline{\mathrm{A}}_{(\mathrm{xK})} \\
& =\mathrm{f}\left(\overline{\mathrm{~A}}^{\prime}\right)(\mathrm{f}(\mathrm{x}) \mathrm{K}) \\
& =\mathrm{f}\left(\overline{\mathrm{~A}}^{\prime}\right)(\mathrm{yK}) .
\end{aligned}
$$

Hence, $\overline{\mathrm{f}(\mathrm{A})}(y K) \quad=f(\overline{\mathrm{~A}})(y K)$.

3.8 Theorem:

Let G and G^{\prime} be any two groups. Let $f: G \rightarrow$
G^{\prime} be an anti homomorphism.
Let $\tilde{B}=\left(\tilde{B}_{1}, \tilde{B}_{2}, \ldots, \tilde{B}_{K}\right)$ be a multi anti L-fuzzy quotient group of $\mathrm{G}^{\prime} / \mathrm{K}$ Then $\mathrm{f}-1(\overline{\mathrm{~B}})$ is a multi anti L-fuzzy quotient group of G / K and $\mathrm{f}^{-1}(\overline{\mathrm{~B}})=\overline{\mathrm{f}^{-1}(\mathrm{~B})}$

Proof:

$$
\begin{aligned}
& \text { Let } \overline{\mathrm{B}} \text { be a multi anti L-fuzzy quotient } \\
& \text { group of } \mathrm{G}^{\prime} / \mathrm{K} \text {. } \\
& \text { i f }-1(\overline{\mathrm{~B}})(x y K)=\overline{\mathrm{B}}_{(\mathrm{f}(\mathrm{xy}) \mathrm{K})} \\
& =\bar{B}_{(f(y) f(x) K)} \\
& \leq \overline{\mathrm{B}}_{(\mathrm{f}(\mathrm{y}) \mathrm{K}) \vee} \overline{\mathrm{B}}_{(\mathrm{f}(\mathrm{x}) \mathrm{K})} \\
& \leq \overline{\mathrm{B}}_{(\mathrm{f}(\mathrm{x}) \mathrm{K}) \vee} \overline{\mathrm{B}}_{(\mathrm{f}(\mathrm{y}) \mathrm{K})} \\
& \leq \mathrm{f}^{-1}(\overline{\mathrm{~B}})(\mathrm{xK}) \vee \mathrm{f}^{-1}(\overline{\mathrm{~B}})(\mathrm{yK}) \\
& \mathrm{f}^{-1}(\overline{\mathrm{~B}})(\mathrm{xyK}) \\
& \leq f^{-1}(\bar{B})(x K) \vee f-1(\bar{B})(y K) . \\
& \text { ii } \mathrm{f}^{-1}(\overline{\mathrm{~B}})\left(\mathrm{x}^{-1} \mathrm{~K}\right)=\overline{\mathrm{B}}\left(\mathrm{f}\left(\mathrm{x}^{-1}\right) \mathrm{K}\right) \\
& =\overline{\mathrm{B}}\left((\mathrm{f}(\mathrm{x}))^{-1} \mathrm{~K}\right) \\
& =\overline{\mathrm{B}}_{(\mathrm{f}(\mathrm{x}) \mathrm{K})} \\
& =\mathrm{f}^{-1}(\overline{\mathrm{~B}})(\mathrm{xK}) \\
& f^{-1}(\bar{B})(x-1 K)=f^{-1}(\bar{B})(x K) \text {. } \\
& \text { Hence, } \quad f^{-1}(\overline{\mathrm{~B}}) \text { is a multi anti L-fuzzy quotient } \\
& \text { subgroup of } \mathrm{G} / \mathrm{K} \text {. } \\
& \text { Also, } \\
& f^{-1}(B)(x K) \quad=\wedge f^{-1}(B)(x K) \text {, for all } k \in K \text { and } x \in \\
& \text { G. } \\
& =\wedge B(f(x) K) \\
& =\overline{\mathrm{B}}_{(\mathrm{f}(\mathrm{x}) \mathrm{K})}
\end{aligned}
$$

$$
=f^{-1}(\bar{B})(x K)
$$

Hence,

References

[1] Ajmal.N: Homomorphism of fuzzy groups, correspondence theorem and fuzzy quotient Subgroups, Fuzzy sets and systems 61, 329-339, (1994).
[2] Anthony.J.M, Sherwood.H, A characterization of fuzzy subgroups, Fuzzy sets and systems, 7, 297-305, (1982).
[3] Azriel Rosenfeld, Fuzzy Groups, Journal of mathematical analysis and applications, 35, 512-517, (1971).
[4] Bhakat.S.K and Das.P : Fuzzy subalgebras of a universal algebra, Bull. Cal. Math. Soc, 85, 79-92 (1993).
[5] Biswas.R, Fuzzy subgroups and anti fuzzy subgroups, Fuzzy Sets and Systems 35, 121 - 124, (1990).
[6] Choudhury.F.P, Chakraborty.A.B and Khare.S.S, A note on fuzzy subgroups and fuzzy homomorphism, Journal of mathematical analysis and applications, 131, 537-553, (1988).
[7] Fang.J.X : Fuzzy Homomorphism and and fuzzy isomorphism, Fuzzy Sets and Systems 87, 243-249, (1997).
[8] Goguen.J.A, L-fuzzy Sets, J. Math. Anal. Appl. 18, 145-147, (1967).
[9] Haci Aktas:On fuzzy relation and fuzzy quotient groups, International Journal ofcomputational cognition, Vol.2, No2,71-79, (2004).
[10] Jacobson.N. Lectures in Abstract Algebras, East-West Press, 1951.
[11] John N Mordeson and D.S. Malik : Fuzzy Commutative Algebra,World Scientific publishing. co.pvt.Ltd.
[12] Kuroki.N : On fuzzy ideals and fuzzy bi-ideals in semigroups, Fuzzy sets and systems, 5, 203-215 (1981).
[13] Mukherjee.T.K and Sen.M.K : On fuzzy ideals of a ring1, Fuzzy sets and systems, 21, 99104 (1987).
[14] Prabir Bhattacharya, Fuzzy subgroups, some characterizations, Journal of mathematical
analysis and applications, 128, 241-252 (1987).
[15] Rajesh Kumar, Fuzzy Algebra, Volume 1, University of Delhi Publication Division, July 1993.
[16] Sabu.S and Ramakrishnan.T.V, Multi-fuzzy sets, International Mathematical Forum, 50, 471-2476, (2010)
[17] Souriar Sebastian, S.Babu Sundar, Commutative L-Fuzzy Subgroups Fuzzy Sets and Systems 68, 115-121, (1994).
[18] Wang-Jin Liu : Fuzzy invariant subgroups and fuzzy ideals, Fuzzy sets and systems, 8, 133-139 (1982).
[19] Zadeh. L.A, Fuzzysets, Information and control, Vol.8, 338353 (1965).

