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1.INTRODUCTION

It proved a turning point in the development
of mathematics when the notion of fuzzy set was
introduced by Zadeh[9] which laid the foundation of
fuzzy mathematics. Since then to use this concept in
topology and analysis many authors have expansively
developed the theory of fuzzy sets and application.
George and Veeramani [2] andKramosil and Michalek
[3] introduced the concept of fuzzy topological spaces
induced by fuzzy metric which have very important
applications in quantum particle physics particularly
in connections with both string and E-infinity theory
which were given and studied by El Naschie [4-7].
Dhage [1] introduced the notion of generalized metric
or D-metric spaces and proved several fixed point
theorems in it. Recently Sedghi and Shobe [8]
introduced D*-metric space as a probable
modification of D-metric space and studied some
topological properties . In this paper we prove some
common fixed point theorems in two M-Fuzzy Metric
Spaces.

Definition:1.1[8]. Let X be a nonempty set. A
generalized metric (or D’ - metric) on X is a function:
D’: X® — [0,:0), that satisfies the following conditions
foreach x,y,z,a € X
(i) D'(x,y,2)>0,
(ii) D’(x,y,2) =0 iff x=y=2,
(iii) D’(x, v, 2) = D’(p{X, ¥, z}), s(symmetry) where p
isa

permutation function,
(iv)D’(x,y,2) <D’(X, y,a) + D’(a, z, 2).
The pair (X, D), is called a generalized metric (or D’
- metric) space.

Examples of D’ - metric are

(@ D’ (x,y,2z) =max{d(x, y), d(y, 2), d(z, x) },
(b) D’ (x,y,2)=d(x,y) +d(y, 2) +d(z, X).
Here, d is the ordinary metric on X.

Definition: 1.2 A fuzzy set M in an arbitrary set X is
a function with domain X and values in [0, 1].

Definition: 1.3 A binary operation *: [0, 1] x [0, 1] —

[0, 1] is a continuous t-norm if it satisfies the

following conditions

(i) *isassociative and commutative,

(if) *is continuous,

(iiiya*1=aforalla € [0, 1],

(iv) a*b < c*d whenever a < c and b < d, for each a, b,
c,d e [0,1].

Two typical examples for continuous t-norm are a*b =
ab and a*b = min {a, b}.

Definition: 1.4 A 3-tuple (X, M, *) is called a M-
fuzzy metric space. if X is an arbitrary non-empty set,
* js a continuous t-norm, and M is a fuzzy set on X* x
(0,:0), satisfying the following conditions for each x,
y,z,a€ Xandt, s>0
FM-1)M(x,y,2,1)>0
FM-2)M(x,y,z,t)=1iffx=y=2
(FM-3)M (X, Y, z,t) =M (p{X, y, 2}, t), where p is
a

permutation function
FM-4)M(x,y,a,t) *M(a,z 2z s) <M (XY, Z,
t+s)
(FM-5)M (X,Y, Z,+) : (0,00) = [0,1]is continuous
(FM-6) lim; ,,M(X,y,2z1t) =1

Example: 1.5 Let X be a nonempty set and D* is the
D* - metric on X. Denote a*b = a.b forall a, b € [0,1].
Foreacht € (0,00), define

M(x,y,zt) = t/({t+D"(x,y.2))
forall x,y,z € X, then (X, M, *) is a M- fuzzy metric
space.

Lemma: 1.6 Let (X, M, *) be a M- fuzzy metric
space. . Then for every t > 0 and for every X, y € X
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we have
M(Xa Xy y1 t) = M(X, yv y’t)'

Proof:

For each € > 0 by triangular inequality

We have

MHMXXY € +t)>MX XX €)*MX VY1)

=M(x,y,y, 1)

(M (y,y, x, € +t)2M(y,y,y, €)*M(y, X, X, 1)
=M(y, X, X, t).

By taking limits of (i) and (ii) when € — 0,

we obtain M(x, X, y,t) = M(X, y, Y, t)

Lemma: 1.7 Let(X, M, x)is a fuzzy metric space. If
we defineM : X3x(0,0) — [0, 1] by M(x, v, z, t) =
M(X, y, t) * M(y, z, t) * M(z, X, t) for every X, y,z in X,
then (X,M, *) is a M-fuzzy metric space.

Lemma: 1.8 Let (X, M, *) be a M- fuzzy metric
space. Then M (x, v, z, t) is non-decreasing with
respect to t, forall x, y, z in X.

Proof:
Foreach x,y,z,a € Xand t, s>0 we have
MY, at)* M(@,zzs)<M(,Yy,zt+s)
If set a=z we get
MY, 21t * M(z,225)<M(X,Y,zt+s)
Thatis M (X,y,z, t+s) > M (X, Y, z, t).

Definition: 1.9 Let (X, M, *) be a M- fuzzy metric
space. Fort >0, the open ball By (X, r, t) with center
x € Xand radius 0 <r <1 is defined by

Bux, ) ={y e XiM(x,y,y,)>1-r}.
A subset A of X is called open set if for each x € A
there existt >0 and 0 < r<1suchthat By (X, r,t)
C A

Definition: 1.10 Let (X, M, *) be a M- fuzzy metric
space. and {x,} be a sequence in X
(@) {xn}is said to converge to a pointx € X if
lim, - . M (X, X, X, t) =1 forall t >0
(b) {x.} is said to be a Cauchy sequence if lim,

— ®©

M (Xnep, Xnaps Xn, 1) =1 forallt>0and p >
0.

Remark: 1.11 A M- fuzzy metric space in which
every Cauchy sequence is convergent is said to be
complete.

Remark: 1.12 since * is continuous, it follows from
(FM-4) that the limit of the sequence is uniquely
determined.

Lemma: 1.13 [4] Let {x,} be a sequence in a M-
fuzzy metric space. (X, M, *) with the condition(FM-
6). If there exists a number q € (0,1) such that

M (Xn, Xn, Xne1, ) = M (Xpo1, X1, Xn, H/Q)

forallt>0andn=1,2,3, ..., then {x,}is a Cauchy

sequence.

Lemma 1.14 [4] Let (X, M, *) be a M- fuzzy metric
space. with condition (FM-6). If for all X, y, z € X, t
> 0 with positive number g € (0,1) and M (X, Y, z, qt)
>M(x,y,7t),thenx=y=z

Definition: 1.15 A point x in X is a common fixed
point of two maps Ty, T.: X —» X if T (X) =T, (X) =
X.

2.MAIN RESULTS

Theorem 2.1: Let (X, My,*) and (Y, M,*) be two
complete M- fuzzy metric spaces. If T is a mapping
from X into Y and S is a mapping from Y into X
satisfying

2M;(Sy,Sy,STx,qt) >
M1(X,X,STX,t).M1(X,X,Sy, ) +M,(y,y, Tx,t) ---- (1)
2Mo(TX, TX,TSy,qt) 2 Ma(y,y, TSy, t).My(y,y, Tx,t)+
Ml(X!X!Sylt) ____ (2)

forall xin XandyinY where ¢ <1, then ST has a
unique fixed point z in X and TS has a unique fixed
point win Y. Further Tz =wand Sw = z.

Proof: Let X, be an arbitrary point in X. Define two
sequences {x,} and {y,} in X and Y, respectively, as
follows:

X, = (ST)" X0, ¥Yn = T(Xp-1)
forn=1,2,... . By (1) we have
2Mi(Xn ) Xo Xnen O = 2M((ST)" X , (ST)" Xq ,
(ST)™ x0).at)
=2M;(S(T(ST)" %o, S(T(ST)™
%0, ST(ST)" X0 qt)

2My(ST(Xp.1) , ST(Xp1) , STXy,

qt)

2M; (Syn, Syn, STX, ,qt)

2 Ml(xnl Xnv STXnvt) Ml(xnv Xnv synvt) +
MZ(Yn, Yn,TXn,t)

= M1(Xn, Xny Xne1, ). M1(Xn , X, Xnt) +
Mz(Yn, Ynr Yns,t)
2 My(%n, Xn, Xns1,0t) + Ma(Yn, Yo, Ynent)
Which implies

Ml(xn! Xn,Xn+1,qt) 2 MZ(ym Yns yn+1,t) """"""" (3)
Similarly, by (2)
2Mo(Yn, YnYnen,Ot) = 2Mo(TXne1, TXn1, TXn, OF)

= 2My(TXp-1, TXn.1, TSYn,0L)
2 Mz(yn.

ymTSyn:t) -MZ(Yn:
yl‘hTXn-l’t) +
M1 (Xn-1, Xn-1,SYn,t)
= MZ(ynl Yn,Yn+1,t)- MZ(Yn, yniynit) +

M1(Xn-1, Xn-1.Xn,t)
2 Mz(yn, ynxyn+11qt)+ Ml(xn—lx Xn-
lanyt)
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Which implies
Ma(Yn, Y Yne2,08) 2 Mi(Xqo1, X1, Xp,t) ====-=-===- 4)
Therefore, by (3) and (4)
Ml(Xn,Xn,XrH.l,qt) 2 Mz(YmYmYnﬂ,t)
> M]_(Xn—ll Xn-luxmt/q)

> My(Xo, Xo, Xp,t/q") — 1 as
n—oo

Thus {x,} is a Cauchy sequence in X. Since (X, My,*)
is complete, {X,} converges to a point z in X
Similarly we prove {y,} converges to a pointwin Y.
Again by (2) we have
2My(T2,TZ,Yn+1,0t) = My(TZ,TZ,TSy,,qt)

2 M(YnYn TSYn)-Mo(Ynyn Tzit)  +
M;(z,z2,Syn,t)

= M2(Yn,Yn,Yn+1,8)-M2(Yn,Yn, TZ,) +
My(z,2,xn,t) --(5)
Lettingn — o in (5) we have
2M,(Tz,Tz,w,qt) 2 My(w,w,Tz,qt) +1
That is M,(Tz,Tz,w,qt) > 1
which implies that M»(Tz,Tz,w,qt) =1 so that Tz = w.
On the other hand, by (1) we have
2M(Sw, SW, Xn.1,0t) = 2M1(SwW,Sw,STX,t)

2> M1 (X0, Xn, STXn,t). M1 (X0, X0, SW, ) +
M, (wW,w, TXp,t)

(:6|\)/|1(Xn,Xn,Xn+1,t).M1(Xn,Xn,SW,t)+M2(W,W,yn+1,t)--
Letting n—oo in (6), it follows that Sw = z.
Therefore we have STz=Sw=zand TSw =Tz = w,
which means that the point z is a fixed point of ST and
the point w is a fixed point of TS.
To prove the uniqueness of the fixed point z, let z” be
the second fixed point of ST.
By (1) we have
2My(z ,z, z",qt) = 2My(Sw, Sw, STz',qt)
2 My(z',z’,STz"t). My(z',z",Sw,t) +
My(w,w,Tz’",t)
= M(z’,z",Z" t).
My(w,w,Tz’",t)
2 My(z',z",2,qt) + My(w,w, Tz t)
Which implies that
My(z ,z, 2",qt) 2 My(w,w ,TZ’,t)
Similarly by (2), we have
2My(w,w, Tz’ ,qt) = 2My(Tz,Tz,TSTZ ,qt)
2 My(Tz", Tz",TSTz ,t).My(Tz", Tz Tz,t)+
Mi(z,z,STz’,t)
2 My(Tz',Tz",w,qt)+ My(z,2,2",t)
Which implies that

My(w,w,Tz",qt) 2 My(z,2,2",t) ------ (8)
Therefore by (7) and (8)

Mi(z, z, z',qt) >
Mi(z,z,z’ ,t/q) (since q< 1),
which is a contradiction.

Thus z=2z".

So the point z is the unique fixed point of ST in X.
Similarly, we prove the point w is also a unique fixed
pointof TSinY.

My(z',z",z2,t) +

My(w, w,Tz"t) >

Theorem 2.2: Let (X, My,*) and (Y, M,,*) be two
complete M-fuzzy metric spaces with continuous t-
norm * is defined by

a*b = min {a, b}. Let A, B be mappings of X into Y
and S, T be mappings of Y into X satisfying the
inequalities.

M1(SAx, SAx, TBx',qt) 2 min{ My(x,x,x’,t),
M1(X,X,SAX,t),
M (x', x",TBx’,t), M1(x,x,TBx',2t).My(x/,
x',SAx,2t),
My(Ax,Ax,Bx',t)}
M,(BSy,BSy, ATy',qt) =min{ My(y.y,y".t),
Ma(y.y.BSy.1),
Ma(y', y',ATy',t), Ma(y,y,ATy’,2t).Ma(y',
y',BSy,2t),
Ml(SY?Sy’Ty’at) }

for all x, x"in X and y, y’" in Y. If one of the mappings
A, B, Sand T is continuous, then SA and TB have a
common fixed point z in X and BS and AT have a
common fixed point w in Y. Further, Az = Bz = w and
Sw=Tw=z.

Proof: Let Xq be an arbitrary point in X and we define
the sequences {x,} in X and {y,} in Y by

AXon2 = Yona, SYan1 = Xon-1, BXona = Yon, TYon = Xon
forn=1,2,3.....

Now we have
M1 (Xan+1, Xone1, Xon, Ot) = M1(SAXzn, SAXzn, TBXzn.1,q1)
2 min{ M1(Xzn, Xan, X2n-1,t), M1(Xan, Xan,
SAXZn,t),
Mi(X2n-1, Xon-1, TBXon-1,t), Ma(Xan, Xan,
TBX2n.1,21).
Ml(XZn-la Xon-1y SAXZnIZt)x MZ(AXZn,
AX2n,BXon 1 1)}
= min{ My (Xan, XonX2n-1,t), Ma(Xan, Xan,

Xon+1,1),
M1(X2n-1, X2n-1, X2n,t), M1(Xzn,
XonX2n,21).
M1(Xan.1, Xan-1,:X2n+1,21), Ma(Yan+1,
Yon+1,Yon )}

Z mln{ Ml(XZn: X2I’11X2n-l,t)l Ml(XZm
XonXan+1,1),
Ml(XZI’]—ll X2I’1—11X2n1t)1 Ml(XZH—1| Xon-15

XZnIt)*
M1(X2n, Xon,Xzn+1,1), Ma(Yan+1,
Yone1,Yon )}
= Min{M(Xzn.1, X2n-1,X2n,t) » Ma(Yan+1,
an+1,an,'€)}
Now

Ma(Yans1r Yones,Yon,dt) = Ma(Yon, YonYan+1,01t)
= My(BSYzn.1, BSYan-1, ATYan, Qt)
2 min{ Ma(Yan, Yons Yon-1,t), Ma(Yon-1, Yon-
1,BSyan1,1),
MZ(yZny Yans ATan,t), MZ(yZn—lx Yon-
1LATY,21).
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Ma(Yans Yon,BSY2n-1,2t), M1(SY2n-1,SYon-1,

TyZn:t)}
> min{ MZ(yZn, yZn:yZn—lut)v MZ(yZn—ln Yon-1
y2n:t).
M2(Yzn, Yan Yon+1:t), Ma(Yana, Yoo,
Y2n.t)*

Ma(Yans YonYon+1,t), M1(Xan-1,
Xon-1.X2n )}
2 min{ Ma(Yan-1, Yan-1,Yon ), M1(Xan-1, Xon-
1Xon )} -eemee- @)

Hence
M1 (Xan+1, Xone1,Xen,dt) = Min{ M1 (Xzn.1,X2n-1,X2n,t) ,

Ma(Y2n+1:Y2n+1,Yonit) }
2 min{ My (X1, Xzn-1,X2n,t) » Ma(Y2n-1, Yon-
1,Yan,t/0),
Mi1(Xzn.1,  Xon-
1Xon /) }
2 min{ My(Xzn.1, Xzn-1,X2n,t) » Ma(Y2n-1, Yon-
1,y2n,t/Q)}
Similarly we have
M1(Xan, Xan,Xon-1,0t) =
min{ Mi(Xzn-2, Xan-2, Xan-1,t) \Ma(Yan-1, Yon-
1Yan0)}
Ma(Yan, Yon,Yon-1,0t) =
min {Ma(Y2n2, Yon2: Yon-1.t), M1(Xan1, Xon-
1Xon2,0)}
Hence
M1(Xan, Xon, X2n-1,0t) =
min{ My(Xan-2, Xzn-2, Xen-1,8) » Ma(Yan-1, Yon-
1Yan0)}
2Min{M1(Xzn-2, Xzn-2, Xzn-1,) ,M2(Yan-2, Yon-2,
y2n-l:UQ)y """"" (6)
from inequalities (3), (4), (5) and (6), we have
Ml(xn+1n Xn+1an-qt)
Z min{ Ml(Xnn Xns Xn—lat) ,Mz(Yn,yn,Yn-Lt/Q)}

Z mln{Ml(Xll X1, X01t/qn—1) le(yl! Y1, yO:t/qn) }
—1las
n—oo

Thus {x,} is a Cauchy sequence in X. Since (X, My,*)
is complete, it converges to a point z in X. Similarly
we can prove that the sequence {y.} is a Cauchy
sequence in Y and it converges to a pointwin'Y.
Suppose A is continuous, then
lim Axy, = Az = lim Yon+1 = W.
n—co n—co
Now we prove SAz = z. .
Suppose SAz # z.
We have

M1(SAz,SAz,z, qt) = lim My(SAz,SAZ, TBX1, qt)
n—oo

> lim min{ My(z,z,Xon.

n—o0
u1),My(z,2,SAz,Y),
M1(X2n-1, X2n-1, TBXon-1,1),
M1(z,2,TBXzp.1,21).
M (Xzn-1, Xon-1,SAZ,2t),
M,(Az,Az,Bxyn.1,1)}

= lim min{ My(z,2,2,}),

n—co

M;(z,z,SAz,1),
M1(Xan-1, X2n-1:X2n,t),

M1(z,2,X2n,2t).

M1(Xon-1, X2n-1,SAZ,2t),
M, (Az,AzZ,y,n, 1)}

=min{ 1, My(z,2,SAz/t), 1, 1,

M,(z,z,SAz,2t),1}

= My(z,2,SAz,t) (since g<1)
which is a contradiction.
Thus SAz = z.
Hence Sw =z. (Since Az =w)
Now we prove BSw = w.
Suppose BSw # w.
We have

My(BSw,BSw,w,qt) = lim My(BSw,BSW,Yon.1,0t)
n—co

= |im My(BSw,BSw,ATy,,,qt)

n—w

Z Iim min{Mz(WaW:Yvat)a

n—co
Mz(WvW,BSW,t):MZ(yZn:yvaATYvat)v
MZ(WvW:ATyZmZt)-
MZ(YvaYvaBSW:Zt)aMl(SW,SWyTYZn,t)}
= min{1, My(w,w,BSw,t), 1,

My(w,w,BSw,2t),1}
= My(w,w,BSw,t) (Since q<
1) which is a contradiction.
Thus BSw =w
Hence Bz = w. (Since Sw = z)
Now we prove TBz = z.
Suppose TBz # z.

M, (z,2,TBz,qt) = lim Mi(Xon+1, Xan+1, TBZ,qt)
n—co

= lim My(SAX,,,SAX,,, TBZ,gt)

n—on

> lim min{ My(Xzn, Xon.Z,1),

n—wo
M1(Xon, Xon,SAXon 1), M1(z,2,TBZ,t),
Ml(XZm
Xon, TBZ,2t).M1(2,2,SAX;p,21),
M, (AXon, A
Xon,BZ,1)}
= min{1, 1, My(z,2,Bz,t),
M(z,2,TBz,2t),1}
> My(z,2,TBz,t) (Sinceg<1)
which is a contradiction.
Thus TBz = z.
Hence Tw=1z. (Since Bz =w)
Now we prove ATw = w.
Suppose ATw # w.

Ma(w,w,ATw,qt) = lim Ma(Yan, Yon ATW,qL)
n—w

= lim My(BSyzq.1, BSy2n1,ATW,qt)

n—co

> r!im min{ M1(Yan-1,Y2n-1,W,t),
—> w0
Ma(Yzn-1: Y2n-1,BSYon-
1|t)|M2(W1W|ATW|t)!
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Mi(Yan-1, Yon-

1,ATW,2t).MZ(W,W,BSyZn_l,Zt),

M1(SY2n-1,SYan-
Tw,t)}

> My(w,w,ATw,t) (Since q<1)

which is a contradiction.
Thus ATw = w.
The same results hold if one of the mappings B, S and
T is continuous.

Remark: 2.3 In the above theoremif A=Band S=T,
we have the following corollary.

Corollary: 2.4 Let (X,M, *) and (Y, M,,*) be two
complete M-fuzzy metric spaces . Let A be a mapping
of X into Y and T be a mapping of Y into X satisfying
the inequalities.

My(TAx, TAx, TAX',qt) 2 min{ My(x,x,x’,t),
M1 (X, X, TAX,1),

M (x', x',TAX',t),
M (x,x, TAX',2t).

M (x',
x', TAx,2t),M,(Ax,Ax,Ax',t)}
MZ(ATyaATy3 ATy,vqt) Zmln{ Ml(yayay,st)n
Ma(y,y, ATy, 1),

Mz(Y’, yliATylrt):
Ma(y.y,ATy’,2t).

Ma(y',

y,aATy:Zt)nMl(Ty3Ty3Ty,’t)}

for all x, x"in X and y, y’ in Y. If one of the mappings
Aand T is continuous, then TA have a fixed point z in
X and AT have a fixed point w in Y. Further, Az =w
and Tw=z.

Theorem 2.5: Let (X, My,*) and (Y, M,*) be two
complete M-fuzzy metric spaces . Let A, B be
mappings of X into Y and S, T be mappings of Y into
X satisfying the inequalities.

4 My(SAx, SAx,TBx',qt) = My(x,x,x',t) +
M( X,X,SAX,t) +

My (x', x",TBx",t) +
[M1( X,X,SAX,t).

M,(x’, x',TBx",t)] /
Mi(x,x,x,t) e (1)
4 MZ(BSys BSy5 ATy"qt) Z MZ (Y7 Y, y”t) + MZ (y! \
BSy,t)

+ M2 (yla y’,ATy’,t)"' [MZ(y:
y,BSy,t).
MZ(y,s ylaATy"t)] / MZ(yy

¥, ¥t

for all x, x"in X and y, y' in Y where 0< q< 1. If one
of the mappings A, B, S and T is continuous, then SA
and TB have a unique common fixed point z in X and
BS and AT have a unique common fixed point win'Y.
Further, Az=Bz=wand Sw=Tw = z.

Proof: Let xq be an arbitrary point in X and we define
the sequences {x,} in X and {y,} in Y by
AXzn2 = Yon1, SYan-1 = Xon-1, BXon.1 = Yon; TY2n = Xan
forn=1,2,3.....
Now from (1) we have
4 My (Xon+1, Xon+1, Xon,Gt) = M1(SAXzn, SAXzn, TBXn.1,0t)
2 M1(XanXan,X2n-1,t) + M1(Xan, Xan, SAXan,t)
+ M1 (Xan-1, Xan-1, TBXon.1,8) + [M1(Xan, Xon,
SAXZn,t).
) M1 (Xzn-1, Xzn-1, TBXzn-1,)] / M1(Xan, Xzn,Xzn-
1t
= M1 (Xan, Xon,Xan-1,t) + M1(Xan, Xon,Xzn+1,t)
+ Mi(Xan.1, Xon-1, Xon,t) + [M1(Xzn,
X2n:X2n+1:t) .
M1(Xzn-1, Xzn-1, Xon,1)] / M1 (Xa,
XanX2n-1,t)
=2 My(Xan, Xon,Xon1,t) + 2 My(Xan, Xon,Xons1,t)
22 My(Xan, XonXon-1,t) + 2 My(Xan,
X2n1X2n+1:qt)
Which implies My(Xan+1, Xans1, X2n,0t) 2= M1(Xzn,
XonXan-1,t)
Similarly we prove that
(4)M1(X2n7 Xan, Xon-1,0t) 2= M1(Xon.1, Xon-1,Xon2,t) ===
From inequalities (3) and (4) we have
Ml(xn+la Xn+1s qut) Z Ml(xn: anxn-l!t)
2 Mi(Xp.1, Xp.1,%n-2,t/Q)

Z M]_(X]_, X]_,Xo,t/qn_l) —1
as N—o

Thus {x,} is a Cauchy sequence in X. Since X is
complete, it converges to a point z in X.

Similarly {y.} is a Cauchy sequence in Y and it
converges to a pointwin Y .

Suppose A is continuous, then

lim Ax,, = Az =w.

n—w
Now we prove SAz = z.
We have
4 My(SAz, SAz, z,qt) = lim 4 My(SAz, SAzZ, TBX,.
n—co
1,qt)
= lim 4 My(SAz, SAZ,X5,qt)
n—o
Z Iim Ml(zl Z, X2n-1vt) + Ml(ZlZl
n—o0
SAzt) +
M1(Xan-1, Xon-1, TBX2n.1,t) + [M4(z, 2,
SAz).
M1(Xan-1, Xan-1, TBXan.1,8)] / Ma(z, Z,
Xan-1,t)

2> 2 + 2My(z, z, SAz, qt)
Therefore M;(SAz, SAz, z,qt) > 1
Which implies M;(SAz, SAz, z,qt) =1 foreacht > 0.
Thus SAz = z.
Hence Sw =z. (Since Az =w)
Now we prove BSw = w.
We have
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4 M,(BSw, BSw, w,qt) = lim 4 My(BSw, BSw,
n—eco

ATyZn:qt)
2 Iim Mz(W,WyYZn:t) + MZ(W'
n—ow

w,BSw,t)+
MZ(yZm Yon, ATVth) + [Mz(W,W,
BSw,t).
MZ(yZn: Yan, ATyZn :t)] /
Ma( W, W,Y2n,t)

Therefore M,(BSw, BSw, w,qt) > 1

Which implies M,(BSw, BSw, w,qt) =1 for each
t >0.

Thus BSw = w.

Hence Bz = w. (Since Sw = z)

Now we prove TBz = z.

We have

4 My(2,2,TBz,qt) = lim 4 My (SAXzn, SAXz,, TBz,qt)
n—ow

> Ilm Ml(Xan X2n,Z,t) + Ml(in,

n—w
X2n,SAX2n,t) +
M(z,z,TBz,t) +[M1(Xon,
Xon, TBZ,1).
M1(z,2,SAXzn,1)] / Mi(Xan,
XonZ,1)
Which implies M;(z,z2,TBz,qt) =1 foreacht >0.
Thus TBz= z.
Hence Tw=1z. (Since Bz =w)
Now we prove ATw = w.
We have

4 Mz(W,W,ATW,qt) = Iim 4 Mz(BsyZn.l,’ BSyZn.
n—coo

1L ATw,qt)
2 [|1im Ma(Yan-1,Yon-1, W, t) + Ma(Yon-1, Yon-1,
—> 0

BSyZn-lyt)

+ MZ(W’ W,ATW,t) +[M2(Y2n.1, Yon-
LATWE).

Ma(W,W,BSY2n.1,1)] / Ma(Yan.

1Y2n-1, Wi 1)
Which implies M (w,w,ATw,qt) =1 foreacht > 0.
Thus ATw =w.
The same results hold if one of the mappings B, S and
T is continuous.

Uniqueness: Let z' be another common fixed point of
SA and TB in X, w' be another common fixed point of
BSand AT inY.
We have
4My(z,z,7',qt) = M1(SAz,SAz, TBZ',qt)
= My(z,2,2' t)+ My(z,2,SAZ 1)+

M(z', z’,TBZ't)+
[My(z,2,SAz,1).
M(z, z', TBZ',t)] /
Mi(z,z,Z',t)
= My(z,z,Zt) + 1+ 1+ 1/
Mi(z,z,Z',t)

Mi(z,z,2' t) + 2+ 1/ My(z,2,7',t)
Ml(Z,Z,Z',t) +2+ 1
Mi(z,z,Z',t) + 3

T \VART

Therefore My(z,z,z',qt) =1

That is My(z,z,7',qt) =1 for each t > 0.

Thus z= 7.

So the point z is the unique fixed point of ST.
Similarly we prove the point w is also a unique fixed
point of TS.

Remark: 2.6 In the above theorem if A=Band S=T,
we have the following corollary.

Corollary: 2.7 Let (X,M, *) and (Y, M,,*) be two
complete M-fuzzy metric spaces . Let A be a mapping
of Xinto Y and T be a mapping of Y into X satisfying
the inequalities.

Mi(TAx, TAx, TAX',qt) =M;(x,x,x’,t) +
Mi( X, X, TAX,t) +
My(x', X', TAX',t) + [M1( X,x, TAX,1).
My (X', x',TBx",t)] /

Mi(x,x,x",t)
MZ(ATyaATya ATy’:qt) Z MZ (ya Y, y’at) + MZ (yv yv
ATy,t) +

MZ (y'n y(’ATy’) + [MZ(yl yv
ATy, 1).

Mz(}", Y’»ATY',t)] / MZ(y;

¥, Y50

for all x, x" in X and y, y' in Y. If one of the mappings
A and T is continuous, then TA have a unique fixed
point z in X and AT have a unique common fixed
point win Y. Further, Az =wand Tw=2.

Theorem 2.8: Let (X, My,*) and (Y, M,, *) be two
complete M- fuzzy metric spaces. Let A and B be
mappings from X to Y and S and T be mappings from
Y to X satisfying the following inequalities

M (X, x,x",1).M1(SAX,SAX, TBX',qt) = min{My(x, X, X,
t).
M (X', X', TBX',t), My(X, X,SAX,t).My(X,
X', TBx',t),
M,(AX, Ax,BX't). My(x, X', TBX,
1),

) .. (1)
Ma(y, Y, Y'.1). Ma(BSY' ,ATY,ATy,qt) = min{Mx(y, Y,
y'.0.

MZ(y’a Y', BSY', t), MZ(y! y,ATy, t)MZ(yl y’l
BSy’, 1),

My(x, X', X',1). My(x, X', TBX,

My(y, y',BSY', 1).My(Sy’, Sy,
Ty, 1),

0}...

. Ma(y, Y, Y's £)-Ma(y, y', BSY',

forall x, x" in Xandy,y inY and 0 < g < 1. If one of
the mappings A, B, S and T is continuous then SA and
TB have a common fixed point z in X and BS and AT
have a common fixed point w in Y. Further Az = Bz =
wand Sw=Tw = z.
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Proof: Let X, be an arbitrary point in X. We define
the sequences {X,} in X and {y,} in Y by

AXon-2 = Yon-1; SYan-1 = Xon-1; BXon-1 = Yan; TY2n = Xon
forn=1,2,3,...

Now we have
M1{Xzn, Xon, Xzn-1, 1) - M1(SAXzq, SAXzn, TBXzn-1, Qt)
= min

{M1(Xzn, Xan, Xan-1, t) -M1(Xon-1,
Xon-1, TBXzn_1,1),

M1(X2n, X2n, SAXzn,t).My(Xzn,

Xon-1, TBXzn_1,1),

Ma(AXzn, AXan,BXan.1, 1).M1(Xzn,
Xon-1, TBXzn 1, 1),

M1(X2n, Xon-1, X2n-1, 1)-M(X2n, X2n-1, TBX2n_1,

)}
2 min {My(Xzn, Xan, X2n-1, t) - M1(Xn-1, X2n-1,
Xans t)v
) M1(Xan, Xan, Xons1, t) - M1(Xn, Xan-1, Xan,
t),
Ma(Yan+1, Yonets Yons 1), Ma(Xan, Xon-1,
Xans t)v
M1(X2n, Xon-1, X2n-1, 1) - M1(Xan, Xon-1,
Xon, t)}

which implies

Ml(X2n+l X2n+1s Xons qt) Z min{MZ(yZm Yon, Yon+1s t),
Mi(Xan, Xon, Xon-1, O} . . .

3)

Also we have
MZ(yZn: Yons Yon-1, t) : Mz(BSyer, ATyZm ATyan qt) Z

min{MZ(yZny Yons Yon-1 t) : M2(y2n—1|
y2n—l:BSy2n—ly t)!

MZ(yZn, Yon, ATyan t)-Mz(Y2n, Yon-1,

BSyzn-1, 1),

Ma(Yan-1, Yon-1,BSYan-1, 1) - M1(SY2n.1 SYana
TyZn: t),

M2 (Yans Yan, Yon-1, 1) - Ma(Yan, Yan1,

BSy,n-1, )}
2 min{MZ(yZna Yon: Yon- 1 t) MZ(yZn-l y Yon-1
y2n- t),
Mz (Yans Yan, Yon+1, 1). Ma(Yan, Yon 1,
y2n- t),
Ma(Yan-1, Yan-1, Yo 1) - M1(Xan-1, Xon-1,
Xon, t),
Mz (Yans Yans Yon-1, 1) - Ma(Yan, Yon-a,
y2n- t)}

which implies
MZ(yZn: Yon+1, Yon+1s qt) Z min{MZ(yZn—la Yons Yon, t),
M1 (Xan_1, Xon, Xon, 1) . . .
4)
Using (3) and (4) we have
M3 (Xn, Xn, Xn+1, Gt) = MIin{M1(Xn_1, Xn_1, Xn,1),
MZ(yn! yn,
Yoo 1Q)}. . . (5)
Ma(Yn, Yo Yoes, Q) 2 Min{Ma(Yn -1, Yn-1, Yo 1),
Ml(xn—lx Xn—l; Xn;
t)}. .. (6)

Using inequalities (5) and (6) we have

Ml(xn: Xny Xn+1s qt) Z min{Ml(Xn—lnxn—ln Xny t),MZ(yn’
yﬂy yn+11t)}

. t
Z mln{Ml(XOI Xos X1, F )l Mz(yll Y1, Yo,

t
L= )}
—>lasn—-w
Thus {x,} is a Cauchy Sequences in X. Similarly we
prove {y,} is a Cauchy sequence in Y respectively.
Since ,(X, My, *) and (Y, M,, *) are complete, {X,}
converges to a point z in X and {y,} converges to a
pointwin Y.
Suppose A is continuous, then M Axy, = Az = yoni
n—oo

=w
Applying inequality (1), we have

M(z, Z, Xon-1, 1) - M1(SAz, SAZ, TBXz, 1, qt)
>

min{M(z, Z, Xzn-1, 1) - M1(Xn-1, X2n-1,
TBXzn-1, 1),
M1(z,2,SAzZ,t).M1(z, Xon-1, TBXon 1,

1),

M(Az, Az, BXon.1, 1) -M1(zZ, Xon-1, TBXzn1,
1),

M1(Z, Xan-1, Xon-1, t) - M1(Z, Xon-1, TBXon-1,
0}

Taking limit as n — oo, we have
M1(SAz, SAz, z, qt) = My(z, z, SAz, 1)
which is a contradiction since g < 1.
Thus SAz = z.
Hence Sw = z (Since Az = w)
Applying inequality (2) we have
MZ(yva Yon, W, t)- MZ(BSW! ATyZn: ATan, qt)
= Min{M,(Yan, Yon, W, t).M,(w, w, BSw, t),
) Ma(Yzn, W, BSW, t).Ma(Yan, Yan, ATYzn,
t),
My(w, w, BSw, t) . My(Sw, Sw,Ty,,, t),
M2(Yan, Yans W, 1) Ma(Yan, W, BSw, 1)}
Taking limit as n—oo, we have
M,(BSw, w, w, qt) = M,(w,w,BSw, t)
Thus BSw = w.
Hence Bz = w (Since Sw = z).
Applying inequality (1) again, we have
M1(Xan, Xon, Z, t)-M1(SAXzn, SAX,,, TBZ, qt)
2 min{My(Xon, Xan, Z, t) - My(z, 2, TBz,
v,
M (Xan, X2n,SAXzn, 1) Mi(Xan, ,TBZ, 1),
My (AXzn, AXon, Bz, t) - My(Xan, Z, TBZ, 1),
Mi(Xon, 2, Z, 1) - My(Xon, Z, TBZ, 1)}
Taking limit as n—o, we have
My(z, z, TBz, qt) = My(z, z, TBz, t) (since q < 1)
which is a contradiction
Thus TBz =z
Hence Tw =z (Since Bz = w)
Applying inequality (2), we have
Ma(W, W, Yo, 1, 1) - Ma(BSya, 1, ATw, ATw, qt)
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2 min{Ma(W, W, Yan1, 1).Ma(Y2n-1, Yon-1, BSY2n-1,

1),
My(w, w, ATw, t).My(W, Yo 1,
BSyzn-1, 1),
M2(Y2n-1, Yon-1, BSY2n 1, t) - M1(Syan 1,
SYon-1,TW, 1),
Ma(W, W, Yon1, 1) - Ma(W, Yon.1,
BSyzn-1, )}

Taking limit as n — oo, we have

M,(w, ATw, ATw, gt) > M, (w, w, ATw, t)
which is a contradiction, since q < 1.
Thus ATw = w.
The same results hold if one of the mappings B, S and
T is continuous.
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