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1.INTRODUCTION 

It proved a turning point in the development 

of mathematics when the notion of fuzzy set was 

introduced by Zadeh[9] which laid the foundation of 

fuzzy mathematics. Since then to use this concept in 

topology and analysis many authors have expansively 

developed the theory of fuzzy sets and application. 

George and Veeramani [2] andKramosil and Michalek 

[3] introduced the concept of fuzzy topological spaces 

induced by fuzzy metric which have very important 

applications in quantum particle physics particularly 

in connections with both string and E-infinity theory 

which were given and studied by El Naschie [4-7]. 

Dhage [1] introduced the notion of generalized metric 

or D-metric spaces and proved several fixed point 

theorems in it. Recently Sedghi and Shobe [8] 

introduced D*-metric space as a probable 

modification of D-metric space and studied some 

topological properties . In this paper we prove some 

common fixed point theorems in two M-Fuzzy Metric 

Spaces. 

 

Definition:1.1[8]. Let X be a nonempty set. A 

generalized metric (or D’ - metric) on X is a function: 

D’: X
3
 → [0,∞), that satisfies the following conditions 

for each x, y, z, a  X 

(i)   D’(x, y, z) ≥ 0,  

(ii)  D’(x, y, z) = 0   iff   x = y = z, 

(iii) D’(x, y, z) = D’(p{x, y, z}), s(symmetry) where p 

is a 

       permutation function,  

(iv) D’(x, y, z) ≤ D’(x, y, a) + D’(a, z, z).  

The pair (X, D’), is called a generalized metric (or D’ 

- metric) space. 

 

Examples of D’ - metric are 

(a) D’ (x, y, z) = max {d(x, y), d(y, z), d(z, x) },  

(b) D’ (x, y, z) = d(x, y) + d(y, z) + d(z, x).  

Here, d is the ordinary metric on X. 

 

Definition: 1.2 A fuzzy set M  in an arbitrary set X is 

a function with domain X and values in [0, 1]. 

 

Definition: 1.3 A binary operation *: [0, 1] × [0, 1] → 

[0, 1] is a continuous t-norm if it satisfies the 

following conditions 

(i) * is associative and commutative,  

(ii) * is continuous,  

(iii) a * 1 = a for all a  [0, 1],  

(iv) a*b ≤ c*d whenever a ≤ c and b ≤ d, for each a, b, 

c, d  [0, 1].  

 

Two typical examples for continuous t-norm are a*b = 

ab and a*b = min {a, b}. 

 

Definition: 1.4 A 3-tuple (X, M, ) is called a M- 

fuzzy metric space. if X is an arbitrary non-empty set, 

* is a continuous t-norm, and M is a fuzzy set on X
3
 × 

(0,∞), satisfying the following conditions for each x, 

y, z, a  X and t, s > 0 

(FM – 1) M (x, y, z, t) > 0 

(FM – 2) M (x, y, z, t) = 1 iff x = y = z 

(FM – 3) M (x, y, z, t) = M (p{x, y, z}, t), where p  is 

a   

                permutation function  

 (FM – 4) M (x, y, a, t) * M (a, z, z, s) ≤ M (x, y, z, 

t+s) 

 (FM – 5) M (x, y, z, ) : (0,∞) →  [0,1]is  continuous 

 (FM – 6) limt → ∞ M (x, y, z, t) = 1. 

  

Example: 1.5 Let X be a nonempty set and D* is the 

D* - metric on X. Denote a*b = a.b for all a, b  [0,1]. 

For each t  (0,∞), define 

              M (x, y, z, t)  =  t / (t+D
*
(x,y.z)) 

for all x, y, z  X, then (X, M, *) is a M- fuzzy metric 

space.  

 

Lemma: 1.6 Let (X, M, ) be a M- fuzzy metric 

space. . Then for every  t > 0 and for every x, y  X 
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we have 

 M(x, x, y, t) = M(x, y, y,t). 

 

Proof:  

For each  > 0 by triangular inequality 

We have 

(i) M (x, x, y,  + t ) ≥ M(x, x, x, ) * M (x, y, y, t) 

                                   = M( x, y, y, t) 

(ii)M (y, y, x,  + t ) ≥ M (y, y, y, )* M (y, x, x, t) 

                                 = M( y, x, x, t). 

By taking limits of (i) and (ii) when  → 0, 

we obtain M(x, x, y, t ) = M( x, y, y, t) 

 

Lemma: 1.7 Let(X, M, ∗)is a fuzzy metric space. If 

we defineM : X
3
×(0,∞) → [0, 1] by M(x, y, z, t) = 

M(x, y, t) ∗ M(y, z, t) ∗ M(z, x, t) for every x, y,z in X, 

then (X,M, ∗) is a M-fuzzy metric space.  

 

Lemma: 1.8 Let (X, M, ) be a M- fuzzy metric 

space.  Then M (x, y, z, t) is non-decreasing with 

respect to t, for all x, y, z in X. 

 

Proof:   
For each  x, y, z, a  X and  t, s > 0 we have 

       M (x, y, a, t)  M (a, z, z, s) ≤ M (x, y, z, t +s) 

 If set a=z we get 

       M (x, y, z, t)  M (z, z, z, s) ≤ M (x, y, z, t +s) 

That is M (x, y, z, t +s) ≥ M (x, y, z, t). 

 

Definition: 1.9 Let (X, M, ) be a M- fuzzy metric 

space.  For t > 0, the open ball BM (x, r, t) with center 

x  X and radius 0 < r < 1 is defined by 

BM(x, r, t) = {y  X: M (x, y, y, t) > 1 - r}. 

A subset A of X is called open set if for each x  A 

there exist t > 0 and 0 <  r < 1 such that  BM  (x, r, t) 

 A. 

 

Definition: 1.10 Let (X, M, ) be a M- fuzzy metric 

space.  and {xn} be a sequence in X 

(a) {xn} is said to converge to a point x  X if  

               limn → ∞ M (x, x, xn, t) =1 for all t > 0  

(b) {xn} is said to be a Cauchy sequence  if limn 

→ ∞   

M (xn+p, xn+p, xn, t) = 1   for all t > 0 and p > 

0 . 

 

Remark: 1.11 A M- fuzzy metric space in which 

every Cauchy sequence is convergent is said to be 

complete. 

 

Remark: 1.12 since  is continuous, it follows from 

(FM-4) that the limit of the sequence is uniquely 

determined. 

 

Lemma: 1.13 [4] Let {xn} be a sequence in a M- 

fuzzy metric space. (X, M, ) with the condition(FM-

6). If there exists a number q  (0,1) such that 

M (xn, xn, xn+1, t)   ≥   M (xn-1, xn-1, xn, t/q) 

for all t > 0 and n = 1, 2, 3, …, then {xn} is  a  Cauchy 

sequence. 

 

Lemma 1.14 [4] Let (X, M, ) be a M- fuzzy metric 

space.  with condition (FM-6). If for all x, y, z X, t 

> 0 with positive number q  (0,1) and M (x, y, z, qt) 

≥ M (x, y, z, t), then x = y = z. 

  

Definition: 1.15 A point x in X is a common fixed 

point of two maps T1, T2: X → X  if T1 (x) = T2 (x) = 

x. 

2.MAIN RESULTS 

Theorem 2.1: Let (X, M1,*) and (Y, M2,*) be two 

complete M- fuzzy metric spaces.  If T is a mapping 

from X into Y and S is a mapping from Y into X 

satisfying 

 

2M1(Sy,Sy,STx,qt)  

M1(x,x,STx,t).M1(x,x,Sy,t)+M2(y,y,Tx,t)    ---- (1) 

2M2(Tx,Tx,TSy,qt) M2(y,y,TSy,t).M2(y,y,Tx,t)+ 

M1(x,x,Sy,t)  ----- (2) 

 

for all  x in X and y in Y where  q < 1, then ST has a 

unique  fixed point z in X and TS has a unique fixed 

point w in Y. Further Tz = w and Sw  = z. 

 

Proof: Let x0 be an arbitrary point in X. Define two 

sequences {xn} and {yn} in X and Y, respectively, as 

follows: 

xn = (ST)
n
 x0 ,  yn = T(xn-1) 

for n = 1,2,… . By (1) we have  

 2M1(xn , xn ,xn+1,qt)  =  2M1((ST)
n
 x0 , (ST)

n
 x0 , 

(ST)
n+1 

x0),qt) 

            =2M1(S(T(ST)
n-1

x0,S(T(ST)
n-

1
x0,ST(ST)

n
 x0 ,qt) 

    =  2M1(ST(xn-1) , ST(xn-1) , STxn, 

qt) 

    =   2M1 (Syn , Syn , STxn ,qt ) 

                     M1(xn, xn, STxn,t). M1(xn, xn, Syn,t) + 

                                M2(yn, yn,Txn,t) 

  = M1(xn , xn, xn+1,t).M1(xn , xn, xn,t) + 

   M2(yn, yn, yn+1,t) 

     M1(xn , xn, xn+1,qt) + M2(yn, yn, yn+1,t) 

Which implies 

     M1(xn, xn,xn+1,qt)   M2(yn,  yn, yn+1,t) ------------- (3) 

Similarly, by (2) 

2M2(yn, yn,yn+1,qt)     =   2M2(Txn-1, Txn-1, Txn, qt) 

                          =   2M2(Txn-1, Txn-1, TSyn,qt) 

                        M2(yn, yn,TSyn,t) .M2(yn, 

yn,Txn-1,t) +  

                         M1(xn-1, xn-1,Syn,t) 

     = M2(yn, yn,yn+1,t). M2(yn, yn,yn,t) +                              

M1(xn-1, xn-1,xn,t) 

                                   M2(yn, yn,yn+1,qt)+ M1(xn-1, xn-

1,xn,t) 
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Which implies 

     M2(yn, yn, yn+1,qt)   M1(xn-1, xn-1, xn,t) ----------- (4) 

Therefore, by (3) and (4) 

     M1(xn,xn,xn+1,qt)    M2(yn,yn,yn+1,t) 

                       M1(xn-1, xn-1,xn,t/q) 

                                                     
                                    M1(x0, x0, x1,t/q

n
) → 1  as 

n→∞ 

 

Thus {xn} is a Cauchy sequence in X. Since (X, M1,*) 

is complete, {xn} converges to a point z in X. 

Similarly we prove {yn} converges to a point w in Y. 

Again by (2) we have 

2M2(Tz,Tz,yn+1,qt) =  M2(Tz,Tz,TSyn,qt) 

                   M2(yn,yn,TSyn,t).M2(yn,yn,Tz,t) + 

M1(z,z,Syn,t) 

                  = M2(yn,yn,yn+1,t).M2(yn,yn,Tz,t) + 

M1(z,z,xn,t) --(5) 

Letting n → ∞ in  (5)  we have 

 2M2(Tz,Tz,w,qt)   M2(w,w,Tz,qt) + 1 

That is M2(Tz,Tz,w,qt)  1  

which implies that M2(Tz,Tz,w,qt) =1 so that Tz = w.  

On the other hand, by (1) we have 

 2M1(Sw, Sw, xn+1,qt)  =  2M1(Sw,Sw,STxn,t) 

                  M1(xn,xn,STxn,t).M1(xn,xn,Sw,t) + 

M2(w,w,Txn,t) 

          

=M1(xn,xn,xn+1,t).M1(xn,xn,Sw,t)+M2(w,w,yn+1,t)--

(6) 

Letting n→∞ in (6), it follows that Sw = z. 

Therefore we have STz = Sw = z and TSw = Tz = w, 

which means that the point z is a fixed point of ST and 

the point w is a fixed point of TS. 

To prove the uniqueness of the fixed point z, let z΄ be 

the second fixed point of ST.  

By (1) we have  

  2M1(z ,z, z΄,qt)  =  2M1(Sw, Sw, STz΄,qt)   

                     M1(z΄,z΄,STz΄,t). M1(z΄,z΄,Sw,t) + 

M2(w,w,Tz΄,t) 

                      =  M1(z΄,z΄,z΄,t). M1(z΄,z΄,z,t)  + 

M2(w,w,Tz΄,t) 

                       M1(z΄,z΄,z,qt) + M2(w,w,Tz΄,t)  

Which implies that 

      M1(z ,z, z΄,qt)   M2(w,w ,Tz΄,t)  ----- (7) 

  Similarly by (2), we have 

   2M2(w,w,Tz΄,qt) = 2M2(Tz,Tz,TSTz΄,qt) 

            M2(Tz΄,Tz΄,TSTz΄,t).M2(Tz΄,Tz΄Tz,t)+ 

M1(z,z,STz΄,t) 

             M2(Tz΄,Tz΄,w,qt)+ M1(z,z,z΄,t)  

Which implies that  

      M2(w,w,Tz΄,qt)   M1(z,z,z΄,t) ------ (8) 

Therefore by (7) and (8) 

              M1(z, z, z΄,qt)  ≥  M2(w, w,Tz΄,t) ≥  

M1(z,z,z΄,t/q) (since q< 1), 

which is a contradiction. 

Thus  z = z΄.  

So the point z is the unique fixed point of ST in X. 

Similarly, we prove the point w is also a unique fixed 

point of TS in Y.  

 

Theorem 2.2: Let (X, M1,*) and (Y, M2,*) be two 

complete M-fuzzy metric spaces with continuous t-

norm * is defined by 

a*b = min {a, b}.  Let A, B be mappings of X into Y 

and S, T be mappings of Y into X satisfying the 

inequalities. 

 

M1(SAx, SAx, TBx′,qt)  min{ M1(x,x,x′,t), 

M1(x,x,SAx,t), 

                M1(x′, x′,TBx′,t), M1(x,x,TBx′,2t).M1(x′, 

x′,SAx,2t), 

                              M2(Ax,Ax,Bx′,t)}      ------ (1) 

M2(BSy,BSy, ATy′,qt) min{ M1(y,y,y′,t), 

M2(y,y,BSy,t),  

                M2(y′, y′,ATy′,t), M2(y,y,ATy′,2t).M2(y′, 

y′,BSy,2t),  

                                M1(Sy,Sy,Ty′,t) }      -------(2) 

 

for all x, x′ in X and y, y′ in Y. If one of the mappings 

A, B, S and T is continuous, then SA and TB have a 

common fixed point z in X and BS and AT have a  

common fixed point w in Y. Further, Az = Bz = w and 

Sw = Tw = z.  

  

Proof:  Let x0 be an arbitrary point in X and we define 

the sequences {xn} in X and {yn} in Y by 

Ax2n-2 = y2n-1, Sy2n-1 = x2n-1, Bx2n-1 = y2n; Ty2n = x2n                 

           for  n = 1, 2, 3 . . . . . 

 

Now we have 

M1(x2n+1, x2n+1, x2n, qt) = M1(SAx2n, SAx2n, TBx2n-1,qt) 

                        min{ M1(x2n, x2n, x2n-1,t ),  M1(x2n, x2n, 

SAx2n,t),  

                        M1(x2n-1, x2n-1, TBx2n-1,t), M1(x2n, x2n, 

TBx2n-1,2t). 

                        M1(x2n-1, x2n-1, SAx2n,2t), M2(Ax2n, 

Ax2n,Bx2n-1,t )} 

                      = min{ M1(x2n, x2n,x2n-1,t ), M1(x2n, x2n, 

x2n+1,t),  

                                    M1(x2n-1, x2n-1, x2n,t), M1(x2n, 

x2n,x2n,2t). 

                              M1(x2n-1, x2n-1,x2n+1,2t), M2(y2n+1, 

y2n+1,y2n,t)} 

                      min{ M1(x2n, x2n,x2n-1,t ), M1(x2n, 

x2n,x2n+1,t),   

                                M1(x2n-1, x2n-1,x2n,t),  M1(x2n-1, x2n-1, 

x2n,t)* 

                                    M1(x2n, x2n,x2n+1,t), M2(y2n+1, 

y2n+1,y2n,t)}  

                     min{M1(x2n-1, x2n-1,x2n,t) , M2(y2n+1, 

y2n+1,y2n,t)} 

Now 

M2(y2n+1, y2n+1,y2n,qt) = M2(y2n, y2n,y2n+1,qt)  

                 = M2(BSy2n-1, BSy2n-1, ATy2n, qt) 

                 min{ M2(y2n, y2n, y2n-1,t), M2(y2n-1, y2n-

1,BSy2n-1,t),  

                          M2(y2n, y2n, ATy2n,t), M2(y2n-1, y2n-

1,ATy2n,2t). 
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                         M2(y2n, y2n,BSy2n-1,2t), M1(Sy2n-1,Sy2n-1, 

Ty2n,t)} 

                 min{ M2(y2n, y2n,y2n-1,t), M2(y2n-1, y2n-1, 

y2n,t),  

                                M2(y2n, y2n, y2n+1,t),  M2(y2n-1, y2n-1, 

y2n,t)*  

                                     M2(y2n, y2n,y2n+1,t), M1(x2n-1, 

x2n-1,x2n,t)} 

                 min{ M2(y2n-1, y2n-1,y2n,t), M1(x2n-1, x2n-

1,x2n,t)}   ---------- (3) 

Hence 

 M1(x2n+1, x2n+1,x2n,qt)   min{ M1(x2n-1,x2n-1,x2n,t) ,    

                                                                  

M2(y2n+1,y2n+1,y2n,t) } 

                   min{ M1(x2n-1, x2n-1,x2n,t) , M2(y2n-1, y2n-

1,y2n,t/q),  

                                                               M1(x2n-1, x2n-

1,x2n,t/q)} 

                   min{ M1(x2n-1, x2n-1,x2n,t) , M2(y2n-1, y2n-

1,y2n,t/q)}                        ---------- (4)  

Similarly we have  

 M1(x2n, x2n,x2n-1,qt)  

                      min{ M1(x2n-2, x2n-2, x2n-1,t) ,M2(y2n-1, y2n-

1,y2n,t)} 

 M2(y2n, y2n,y2n-1,qt)   

                    min {M2(y2n-2, y2n-2, y2n-1,t), M1(x2n-1, x2n-

1,x2n-2,t)}                          ------------ (5) 

Hence 

 M1(x2n, x2n, x2n-1,qt)  

                   min{ M1(x2n-2, x2n-2, x2n-1,t) , M2(y2n-1, y2n-

1,y2n,t)} 

             min{M1(x2n-2, x2n-2, x2n-1,t) ,M2(y2n-2, y2n-2,  

y2n-1,t/q),                      ---------- (6) 

from inequalities (3), (4), (5) and (6), we have 

 M1(xn+1, xn+1,xn,qt) 

           min { M1(xn, xn, xn-1,t) ,M2(yn,yn,yn-1,t/q)} 

                                           
          min{M1(x1, x1, x0,t/q

n-1
) ,M2(y1, y1, y0,t/q

n
) } 

→ 1 as                                                                                                                                                                           

n→∞ 

 

Thus {xn} is a Cauchy sequence in X. Since (X, M1,*) 

is complete, it converges to a point z in X. Similarly 

we can prove that the sequence {yn} is a Cauchy 

sequence in Y and it converges to a point w in Y. 

Suppose A is continuous, then  

    
n
lim Ax2n = Az = 

n
lim y2n+1 = w. 

Now we prove SAz = z. . 

Suppose SAz ≠ z. 

We have 

   M1(SAz,SAz,z, qt) = 
n
lim M1(SAz,SAz,TBx2n-1, qt) 

                             
n
lim  min{ M1(z,z,x2n-

1,t),M1(z,z,SAz,t),  

                          M1(x2n-1, x2n-1,TBx2n-1,t), 

M1(z,z,TBx2n-1,2t). 

                             M1(x2n-1, x2n-1,SAz,2t), 

M2(Az,Az,Bx2n-1,t)} 

                            =  
n
lim  min{ M1(z,z,z,t), 

M1(z,z,SAz,t),                                             

                                    M1(x2n-1, x2n-1,x2n,t), 

M1(z,z,x2n,2t).  

                                  M1(x2n-1, x2n-1,SAz,2t), 

M2(Az,Az,y2n,t)} 

                            = min{ 1, M1(z,z,SAz,t), 1, 1, 

                                                                      

M1(z,z,SAz,2t),1} 

                            M1(z,z,SAz,t)  (since q<1)   

which is a contradiction. 

Thus SAz = z.    

Hence Sw = z.  (Since Az = w) 

Now we prove BSw = w. 

Suppose BSw ≠ w. 

We have 

   M2(BSw,BSw,w,qt) = 
n
lim M2(BSw,BSw,y2n+1,qt) 

                                     =  
n
lim M2(BSw,BSw,ATy2n,qt) 

                                     
n
lim  min{M2(w,w,y2n,t),  

M2(w,w,BSw,t),M2(y2n,y2n,ATy2n,t), 

                                                       M2(w,w,ATy2n,2t). 

M2(y2n,y2n,BSw,2t),M1(Sw,Sw,Ty2n,t)}  

                                    =  min{1, M2(w,w,BSw,t), 1,  

                                                             

M2(w,w,BSw,2t),1}  

                                      M2(w,w,BSw,t)    (Since q < 

1) which is a contradiction. 

Thus BSw = w 

Hence Bz = w.  (Since Sw = z) 

Now we prove TBz = z. 

Suppose TBz ≠ z. 

M1(z,z,TBz,qt) = 
n
lim M1(x2n+1, x2n+1,TBz,qt) 

                         = 
n
lim M1(SAx2n,SAx2n,TBz,qt) 

                         
n
lim min{ M1(x2n, x2n,z,t),  

                              M1(x2n, x2n,SAx2n,t), M1(z,z,TBz,t),  

                                 M1(x2n, 

x2n,TBz,2t).M1(z,z,SAx2n,2t),  

                                                              M2(Ax2n,A 

x2n,Bz,t)}                    

                        =   min{1, 1, M1(z,z,Bz,t), 

M1(z,z,TBz,2t),1} 

                         M1(z,z,TBz,t)   (Since q< 1)  

which is a contradiction. 

Thus TBz = z. 

Hence Tw = z.   (Since Bz = w) 

Now we prove ATw = w. 

Suppose ATw ≠  w. 

M2(w,w,ATw,qt) = 
n
lim M2(y2n, y2n,ATw,qt) 

                            = 
n
lim M2(BSy2n-1,BSy2n-1,ATw,qt) 

                           
n
lim min{ M1(y2n-1,y2n-1,w,t),  

                                 M2(y2n-1, y2n-1,BSy2n-

1,t),M2(w,w,ATw,t),  
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                              M1(y2n-1, y2n-

1,ATw,2t).M2(w,w,BSy2n-1,2t),  

                                                               M1(Sy2n-1,Sy2n-

1Tw,t)} 

                             M2(w,w,ATw,t)   (Since q < 1)  

which is a contradiction. 

Thus ATw = w. 

The same results hold if one of  the mappings B, S and 

T is continuous. 

 

 

Remark: 2.3 In the above theorem if A = B and S = T, 

we have the following corollary. 

 

Corollary: 2.4 Let (X,M, ) and (Y, M2,*) be two 

complete M-fuzzy metric spaces . Let A be a mapping 

of X into Y and T be a mapping of Y into X satisfying 

the inequalities. 

 

M1(TAx, TAx, TAx′,qt)  min{ M1(x,x,x′,t), 

M1(x,x,TAx,t),  

                                          M1(x′, x′,TAx′,t), 

M1(x,x,TAx′,2t). 

                                           M1(x′, 

x′,TAx,2t),M2(Ax,Ax,Ax′,t)}       

M2(ATy,ATy, ATy′,qt) min{ M1(y,y,y′,t), 

M2(y,y,ATy,t), 

                                           M2(y′, y′,ATy′,t), 

M2(y,y,ATy′,2t). 

                                            M2(y′, 

y′,ATy,2t),M1(Ty,Ty,Ty′,t)}  

    

for all x, x′ in X and y, y′ in Y. If one of the mappings 

A and T is continuous, then TA have a fixed point z in 

X and AT have a  fixed point w in Y. Further, Az  = w 

and  Tw = z.   

 

Theorem 2.5: Let (X, M1,*) and (Y, M2,*) be two 

complete M-fuzzy metric spaces . Let A, B be 

mappings of X into Y and S, T be mappings of Y into 

X satisfying the inequalities. 

 

4 M1(SAx, SAx,TBx′,qt)   M1(x,x,x′,t) + 

M1( x,x,SAx,t) +  

                                           M1(x′, x′,TBx′,t) + 

[M1( x,x,SAx,t).   

                                           M1(x′, x′,TBx′,t)]  /  

M1(x,x,x′,t)                             ---------- (1) 

4 M2(BSy, BSy, ATy′,qt)     M2 (y, y, y′,t) + M2 (y, y, 

BSy,t) 

                                         + M2 (y′, y′,ATy′,t)+ [M2(y, 

y,BSy,t). 

                                               M2(y′, y′,ATy′,t)] / M2(y, 

y, y′,t)           ---------- (2) 

 

for all x, x′ in X and y, y′ in Y where 0< q < 1. If one 

of the mappings A, B, S and T is continuous, then SA 

and TB have a unique common fixed point z in X and 

BS and AT have a unique common fixed point w in Y. 

Further, Az = Bz = w and Sw = Tw = z.   

 

Proof:  Let x0 be an arbitrary point in X and we define 

the sequences {xn} in X and {yn} in Y by 

Ax2n-2 = y2n-1, Sy2n-1 = x2n-1, Bx2n-1 = y2n; Ty2n = x2n               

    for  n = 1, 2, 3 . . . . . 
Now from (1) we have 

4 M1(x2n+1, x2n+1, x2n,qt) = M1(SAx2n, SAx2n, TBx2n-1,qt) 

               M1(x2n,x2n,x2n-1 ,t) + M1(x2n, x2n,SAx2n,t) 

                     + M1(x2n-1, x2n-1,TBx2n-1,t) + [M1(x2n, x2n, 

SAx2n,t). 

                      M1(x2n-1, x2n-1,TBx2n-1,t)] / M1(x2n, x2n,x2n-

1 ,t) 

             = M1(x2n, x2n,x2n-1,t ) + M1(x2n, x2n,x2n+1,t)  

                    + M1(x2n-1, x2n-1, x2n,t) + [M1(x2n, 

x2n,x2n+1,t) .    

                            M1(x2n-1, x2n-1, x2n,t)] /  M1(x2n, 

x2n,x2n-1,t ) 

             = 2 M1(x2n, x2n,x2n-1,t )  +  2 M1(x2n, x2n,x2n+1,t ) 

            2 M1(x2n, x2n,x2n-1,t )  +  2 M1(x2n, 

x2n,x2n+1,qt ) 

Which implies M1(x2n+1, x2n+1,  x2n,qt)  M1(x2n, 

x2n,x2n-1,t )             ------ (3) 

Similarly we prove that  

        M1(x2n, x2n,  x2n-1,qt)  M1(x2n-1, x2n-1,x2n-2,t )  ----

-- (4) 

From inequalities (3) and (4) we have 

        M1(xn+1, xn+1,  xn,qt)  M1(xn, xn,xn-1,t )  

                                          M1(xn-1, xn-1,xn-2,t /q)  

                                                            

                                          M1(x1, x1,x0,t /q
n-1

) → 1  

as n→∞ 

 

Thus {xn} is a Cauchy sequence in X. Since X is 

complete, it converges to a point z in X.  

Similarly {yn} is a Cauchy sequence in Y and it 

converges to a point w in Y . 

Suppose A is continuous, then  

    
n
lim Ax2n = Az = w. 

 Now we prove SAz = z. 

We have 

 4 M1(SAz, SAz, z,qt) = 
n
lim 4 M1(SAz, SAz,TBx2n-

1,qt) 

                          =  
n
lim 4 M1(SAz, SAz,x2n,qt) 

                          
n
lim  M1(z, z, x2n-1,t) + M1(z,z, 

SAz,t) +  

                              M1(x2n-1, x2n-1,TBx2n-1,t) + [M1(z, z, 

SAz,t). 

                              M1(x2n-1, x2n-1, TBx2n-1,t)] / M1(z, z, 

x2n-1,t) 

                          2  +  2 M1(z, z, SAz, qt) 

Therefore M1(SAz, SAz, z,qt)  1   

Which implies M1(SAz, SAz, z,qt) = 1  for each t  > 0. 

Thus SAz = z.    

Hence Sw = z.  (Since Az = w) 

Now we prove BSw = w. 

We have 
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 4 M2(BSw, BSw, w,qt) = 
n
lim 4 M2(BSw, BSw, 

ATy2n,qt) 

                          
n
lim M2(w,w,y2n,t) + M2(w, 

w,BSw,t)+  

                                   M2(y2n, y2n, ATy2n,t) + [M2(w,w, 

BSw,t). 

                                        M2(y2n, y2n, ATy2n ,t)] / 

M2( w,w,y2n,t)  

Therefore M2(BSw, BSw, w,qt)  1   

Which implies  M2(BSw, BSw, w,qt)  = 1  for each 

t  > 0. 

Thus BSw = w. 

Hence Bz =  w.  (Since Sw = z) 

Now we prove TBz = z. 

We have 

4 M1(z,z,TBz,qt) = 
n
lim 4 M1(SAx2n, SAx2n, TBz,qt) 

                        
n
lim  M1(x2n, x2n,z,t) + M1(x2n, 

x2n,SAx2n,t) + 

                                   M1(z,z,TBz,t) +[M1(x2n, 

x2n,TBz,t). 

                                       M1(z,z,SAx2n,t)] /  M1(x2n, 

x2n,z,t)  

Which implies   M1(z,z,TBz,qt)   = 1  for each t  > 0. 

Thus TBz =  z . 

Hence Tw = z.   (Since Bz = w) 

Now we prove ATw = w. 

We have 

 4 M2(w,w,ATw,qt) = 
n
lim 4 M2(BSy2n-1,, BSy2n-

1,,ATw,qt) 

              
n
lim M2(y2n-1,y2n-1,,w,t) + M2(y2n-1, y2n-1, 

BSy2n-1,t)  

                             + M2(w, w,ATw,t) +[M2(y2n-1, y2n-

1,,ATw,t).   

                                   M2(w,w,BSy2n-1,t)]  / M2(y2n-

1,y2n-1,,w,t) 

 Which implies  M (w,w,ATw,qt)  = 1  for each t  > 0. 

Thus ATw = w. 

The same results hold if one of the mappings B, S and 

T is continuous. 

 

Uniqueness: Let z′ be another common fixed point of 

SA and TB in X, w′ be another common fixed point of 

BS and AT in Y. 

We have  

       4M1(z,z,z′,qt)  = M1(SAz,SAz,TBz′,qt) 

                                M1(z,z,z′,t)+ M1(z,z,SAz,t)+  

                                       M1(z′, z′,TBz′,t)+ 

[M1(z,z,SAz,t). 

                                               M1(z′, z′,TBz′,t)] / 

M1(z,z,z′,t) 

                               =  M1(z,z,z′,t) + 1+ 1+  1 / 

M1(z,z,z′,t) 

                               =  M1(z,z,z′,t) +  2 +  1 / M1(z,z,z′,t) 

                               M1(z,z,z′,t) +  2 +  1  

                               =  M1(z,z,z′,t) + 3   

 

Therefore  M1(z,z,z′,qt) 1 

That is  M1(z,z,z′,qt) = 1 for each t  > 0. 

Thus z = z′. 

So the point z is the unique fixed point of ST. 

Similarly we prove the point w is also a unique fixed 

point of TS. 

 

Remark: 2.6 In the above theorem if A = B and S = T, 

we have the following corollary. 

 

Corollary:  2.7 Let (X,M, ) and (Y, M2,*) be two 

complete M-fuzzy metric spaces . Let A be a mapping 

of X into Y and T be a mapping of Y into X satisfying 

the inequalities. 

 

M1(TAx, TAx, TAx′,qt) M1(x,x,x′,t) + 

M1( x,x,TAx,t) +  

                        M1(x′, x′,TAx′,t) + [M1( x,x,TAx,t).  

                                            M1(x′, x′,TBx′,t)]  /  

M1(x,x,x′,t) 

M2(ATy,ATy, ATy′,qt)    M2 (y, y, y′,t) + M2 (y, y, 

ATy,t) + 

                                        M2 (y′, y′,ATy′) +  [M2(y, y, 

ATy,t).  

                                              M2(y′, y′,ATy′,t)] / M2(y, 

y, y′,t) 

 

for all x, x′ in X and y, y′ in Y. If one of the mappings 

A and T is continuous, then TA have a unique  fixed 

point z in X and AT have a unique common fixed 

point w in Y. Further, Az  = w and  Tw = z.   

Theorem 2.8: Let (X, M1, ) and (Y, M2, ) be two 

complete M- fuzzy metric spaces. Let A and B be 

mappings from X to Y and S and T be mappings from 

Y to X satisfying the following inequalities 

 

M1(x, x,x ,t).M1(SAx,SAx,TBx ,qt)  min{M1(x, x, x , 

t). 

             M1(x , x ,TBx ,t), M1(x, x,SAx,t).M1(x, 

x ,TBx ,t),   

                                M2(Ax, Ax,Bx ,t). M1(x, x ,TBx , 

t), 

                               M1(x, x , x ,t). M1(x, x ,TBx , 

t)}.  . . (1) 

M2(y, y, y ,t). M2(BSy ,ATy,ATy,qt)  min{M2(y, y, 

y ,t).  

         M2(y , y , BSy , t), M2(y, y,ATy, t).M2(y, y , 

BSy , t),  

                                   M2(y , y ,BSy , t).M1(Sy , Sy , 

Ty, t), 

                                  M2(y, y, y , t).M2(y, y , BSy , 

t)} . . . (2) 

 

for all x, x  in X and y, y  in Y and 0 < q < 1. If one of 

the mappings A, B, S and T is continuous then SA and 

TB have a common fixed point z in X and BS and AT 

have a common fixed point w in Y. Further Az = Bz = 

w and Sw = Tw = z. 

http://www.ijmttjournal.org/


International Journal of Mathematics Trends and Technology- Volume23 Number1 – July 2015 

ISSN: 2231-5373                         http://www.ijmttjournal.org                                    Page 60 

Proof:  Let x0 be an arbitrary point in X. We define 

the sequences {xn} in X and {yn} in Y by  

Ax2n 2 = y2n 1; Sy2n 1 = x2n 1; Bx2n 1 = y2n; Ty2n = x2n 

for n = 1, 2, 3, . . . 

 

Now we have 

M1{x2n, x2n, x2n 1, t)  M1(SAx2n, SAx2n, TBx2n 1, qt) 

 min 

                  {M1(x2n, x2n, x2n 1, t) M1(x2n 1, 

x2n 1,TBx2n 1,t),             

                   M1(x2n, x2n, SAx2n,t).M1(x2n, 

x2n 1,TBx2n 1,t), 

                 M2(Ax2n, Ax2n,Bx2n-1, t).M1(x2n, 

x2n 1,TBx2n 1, t), 

                  M1(x2n, x2n 1, x2n 1, t) M(x2n, x2n 1,TBx2n 1, 

t)} 

              min {M1(x2n, x2n, x2n 1, t)  M1(x2n 1, x2n 1, 

x2n, t), 

                          M1(x2n, x2n, x2n+1, t)  M1(x2n, x2n 1, x2n, 

t),  

                             M2(y2n+1, y2n+1, y2n, t).  M1(x2n, x2n 1, 

x2n, t),  

                         M1(x2n, x2n 1, x2n 1, t)  M1(x2n, x2n 1, 

x2n, t)}. 

which implies 

M1(x2n+1 ,x2n+1, x2n, qt)  min{M2(y2n, y2n, y2n+1, t), 

                                                M1(x2n, x2n, x2n 1, t)} . . . 

(3) 

Also we have 

M2(y2n, y2n, y2n 1, t)  M2(BSy2n 1, ATy2n, ATy2n, qt)   

              min{M2(y2n, y2n, y2n 1, t)  M2(y2n 1, 

y2n 1,BSy2n 1, t),   

                      M2(y2n, y2n, ATy2n, t).M2(y2n, y2n 1, 

BSy2n 1, t),   

              M2(y2n 1, y2n 1,BSy2n 1, t)  M1(Sy2n-1 Sy2n-1 

Ty2n, t),  

                           M2(y2n, y2n, y2n–1, t)  M2(y2n, y2n-1, 

BSy2n 1, t)} 

                   min{M2(y2n, y2n, y2n  1, t) M2(y2n-1 , y2n 1, 

y2n, t),  

                              M2(y2n, y2n, y2n+1, t). M2(y2n, y2n 1, 

y2n, t), 

                         M2(y2n 1, y2n 1, y2n, t)  M1(x2n 1, x2n 1, 

x2n, t),  

                               M2(y2n, y2n, y2n 1, t)  M2(y2n, y2n-1, 

y2n, t)} 

which implies 

M2(y2n, y2n+1, y2n+1, qt)  min{M2(y2n 1, y2n, y2n, t), 

                                                   M1(x2n 1, x2n, x2n, t) . . .  

(4) 

Using (3) and (4) we have 

M1(xn, xn, xn+1, qt)  min{M1(xn 1, xn 1, xn,t), 

                                                     M2(yn, yn, 

yn+1,t/q)}. . . (5) 

M2(yn, yn, yn+1, qt)  min{M2(yn 1, yn 1, yn, t),  

                                                      M1(xn 1, xn 1, xn, 

t)}. . . (6) 

Using inequalities (5) and (6) we have 

M1(xn, xn, xn+1, qt)  min{M1(xn 1,xn 1, xn, t),M2(yn, 

yn, yn+1,t)} 

          

                   min{M1(x0, x0, x1, 1nq

t
), M2(y1, y1, y2, 

1nq

t
)}  

                              1 as n    

Thus {xn} is a Cauchy Sequences in X. Similarly we 

prove {yn} is a Cauchy sequence in Y respectively. 

Since ,(X, M1, ) and (Y, M2, ) are complete, {xn} 

converges to a point z in X and {yn} converges to a 

point w in Y. 

Suppose A is continuous, then 
n
lim Ax2n = Az = y2n+1 

= w 

Applying inequality (1), we have 

 M1(z, z, x2n 1, t)  M1(SAz, SAz, TBx2n 1, qt) 

  

               min{M1(z, z, x2n 1, t)  M1(x2n 1, x2n 1, 

TBx2n 1, t), 

                                M1(z,z,SAz,t).M1(z, x2n 1, TBx2n 1, 

t),  

                    M2(Az, Az, Bx2n-1, t) M1(z, x2n 1, TBx2n 1, 

t),                                                         

                    M1(z, x2n 1, x2n 1, t)  M1(z, x2n 1, TBx2n 1, 

t)} 

Taking limit as n  , we have 

 M1(SAz, SAz, z, qt)  M1(z, z, SAz, t) 

which is a contradiction since q < 1. 

Thus SAz = z. 

Hence Sw = z (Since Az = w) 

Applying inequality (2) we have 

M2(y2n, y2n, w, t). M2(BSw, ATy2n, ATy2n, qt)  

              min{M2(y2n, y2n, w, t).M2(w, w, BSw, t),   

                         M2(y2n, w, BSw, t).M2(y2n, y2n, ATy2n, 

t),  

              M2(w, w, BSw, t) . M1(Sw, Sw,Ty2n, t),   

              M2(y2n, y2n, w, t)  M2(y2n, w, BSw, t)} 

Taking limit as n , we have 

 M2(BSw, w, w, qt)  M2(w,w,BSw, t) 

Thus BSw = w. 

Hence Bz = w (Since Sw = z). 

Applying inequality (1) again, we have 

M1(x2n, x2n, z, t) M1(SAx2n, SAx2n, TBz, qt)  

                        min{M1(x2n, x2n, z, t)  M1(z, z,TBz, 

t), 

                      M1(x2n, x2n,SAx2n, t) M1(x2n, z,TBz, t),  

                  M2(Ax2n, Ax2n, Bz, t)  M1(x2n, z, TBz, t),                          

                           M1(x2n, z, z, t)  M1(x2n, z, TBz, t)} 

Taking limit as n , we have 

M1(z, z, TBz, qt)  M1(z, z, TBz, t) (since q < 1) 

which is a contradiction 

Thus TBz = z 

Hence Tw = z (Since Bz = w) 

Applying inequality (2), we have 

M2(w, w, y2n 1, t)  M2(BSy2n 1, ATw, ATw, qt)  
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          min{M2(w, w, y2n 1, t).M2(y2n 1, y2n 1, BSy2n 1, 

t),                                                

                           M2(w, w, ATw, t).M2(w, y2n 1, 

BSy2n 1, t),  

               M2(y2n 1, y2n 1, BSy2n 1, t) . M1(Sy2n 1, 

Sy2n 1,Tw, t),   

                              M2(w, w, y2n 1, t)  M2(w, y2n-1, 

BSy2n 1, t)} 

Taking  limit as n  , we have 

 M2(w, ATw, ATw, qt)  M2 (w, w, ATw, t) 

which is a contradiction, since q < 1. 

Thus ATw = w. 

The same results hold if one of the mappings B, S and 

T is continuous. 
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