Fixed and Common Fixed Point Theorems in two M- Fuzzy Metric Spaces

T.Veerapandi ${ }^{1}$, T.Thiripura Sundari ${ }^{2}$, J.Paulraj Joseph ${ }^{3}$
Associate Professor of Mathematics(Retd) ,P.M.T. College
Melaneelithanallur-627953, India
Department of Mathematics,Sri K.G.S Arts College Srivaikuntam, India
Professor and H.O.D of Mathematics,Manonmaniam Sundaranar University
Tirunelveli, India

Abstract

The purpose of this paper is to obtain some common fixed point theorems in two M- fuzzy metric spaces.

Keywords: fixed point, common fixed point, complete M- Fuzzy Metric Space,

(2000) Mathematics Subject Classification : 54H25,

 47 HlO .
1.INTRODUCTION

It proved a turning point in the development of mathematics when the notion of fuzzy set was introduced by Zadeh[9] which laid the foundation of fuzzy mathematics. Since then to use this concept in topology and analysis many authors have expansively developed the theory of fuzzy sets and application. George and Veeramani [2] andKramosil and Michalek [3] introduced the concept of fuzzy topological spaces induced by fuzzy metric which have very important applications in quantum particle physics particularly in connections with both string and E-infinity theory which were given and studied by El Naschie [4-7]. Dhage [1] introduced the notion of generalized metric or D-metric spaces and proved several fixed point theorems in it. Recently Sedghi and Shobe [8] introduced D^{*}-metric space as a probable modification of D-metric space and studied some topological properties. In this paper we prove some common fixed point theorems in two M-Fuzzy Metric Spaces.

Definition:1.1[8]. Let X be a nonempty set. A generalized metric (or D^{\prime} - metric) on X is a function: $\mathrm{D}^{\prime}: \mathrm{X}^{3} \rightarrow[0, \infty)$, that satisfies the following conditions for each $x, y, z, a \in X$
(i) $\mathrm{D}^{\prime}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \geq 0$,
(ii) $\mathrm{D}^{\prime}(\mathrm{x}, \mathrm{y}, \mathrm{z})=0$ iff $\mathrm{x}=\mathrm{y}=\mathrm{z}$,
(iii) $\mathrm{D}^{\prime}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{D}^{\prime}(\mathrm{p}\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}), \mathrm{s}($ symmetry $)$ where p is a
permutation function,
(iv) $\mathrm{D}^{\prime}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \leq \mathrm{D}^{\prime}(\mathrm{x}, \mathrm{y}, \mathrm{a})+\mathrm{D}^{\prime}(\mathrm{a}, \mathrm{z}, \mathrm{z})$.

The pair ($\mathrm{X}, \mathrm{D}^{\prime}$), is called a generalized metric (or D^{\prime} - metric) space.

Examples of D' - metric are
(a) $\mathrm{D}^{\prime}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\max \{\mathrm{d}(\mathrm{x}, \mathrm{y}), \mathrm{d}(\mathrm{y}, \mathrm{z}), \mathrm{d}(\mathrm{z}, \mathrm{x})\}$, (b) $D^{\prime}(x, y, z)=d(x, y)+d(y, z)+d(z, x)$.

Here, d is the ordinary metric on X .
Definition: 1.2 A fuzzy set M in an arbitrary set X is a function with domain X and values in $[0,1]$.

Definition: 1.3 A binary operation *: $[0,1] \times[0,1] \rightarrow$ $[0,1]$ is a continuous t-norm if it satisfies the following conditions
(i) * is associative and commutative,
(ii) * is continuous,
(iii) $\mathrm{a} * 1=\mathrm{a}$ for all $\mathrm{a} \in[0,1]$,
(iv) $\mathrm{a}^{*} \mathrm{~b} \leq \mathrm{c}^{*} \mathrm{~d}$ whenever $\mathrm{a} \leq \mathrm{c}$ and $\mathrm{b} \leq \mathrm{d}$, for each a, b, $\mathrm{c}, \mathrm{d} \in[0,1]$.

Two typical examples for continuous t-norm are $a * b=$ $a b$ and $a * b=\min \{a, b\}$.

Definition: 1.4 A 3-tuple ($\mathrm{X}, \mathrm{M}, *$) is called a Mfuzzy metric space. if X is an arbitrary non-empty set, * is a continuous t-norm, and M is a fuzzy set on $X^{3} \times$ $(0, \infty)$, satisfying the following conditions for each x , $\mathrm{y}, \mathrm{z}, \mathrm{a} \in \mathrm{X}$ and $\mathrm{t}, \mathrm{s}>0$
$(F M-1) M(x, y, z, t)>0$
$(F M-2) M(x, y, z, t)=1$ iff $x=y=z$
$(F M-3) M(x, y, z, t)=M(p\{x, y, z\}, t)$, where p is a

> permutation function
(FM - 4) M (x, y, a, t) ${ }^{*} \mathrm{M}(\mathrm{a}, \mathrm{z}, \mathrm{z}, \mathrm{s}) \leq \mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{z}$, $\mathrm{t}+\mathrm{s}$)
$(\mathrm{FM}-5) \mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \cdot \cdot):(0, \infty) \rightarrow[0,1]$ is continuous
$(F M-6) \lim _{t \rightarrow \infty} M(x, y, z, t)=1$.
Example: 1.5 Let X be a nonempty set and D* is the D^{*} - metric on X . Denote $\mathrm{a}^{*} \mathrm{~b}=\mathrm{a} . \mathrm{b}$ for all $\mathrm{a}, \mathrm{b} \in[0,1]$. For each $t \in(0, \infty)$, define

$$
\mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})=\mathrm{t} /\left(\mathrm{t}+\mathrm{D}^{*}(\mathrm{x}, \mathrm{y} . \mathrm{z})\right)
$$

for all $x, y, z \in X$, then $\left(X, M,{ }^{*}\right)$ is a M- fuzzy metric space.

Lemma: 1.6 Let (X, M, *) be a M- fuzzy metric space. . Then for every $t>0$ and for every $x, y \in X$
we have
$M(x, x, y, t)=M(x, y, y, t)$.

Proof:

For each $\in>0$ by triangular inequality
We have
(i) $\mathrm{M}(\mathrm{x}, \mathrm{x}, \mathrm{y}, \in+\mathrm{t}) \geq \mathrm{M}(\mathrm{x}, \mathrm{x}, \mathrm{x}, \in)^{*} \mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{y}, \mathrm{t})$

$$
=\mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{y}, \mathrm{t})
$$

(ii) $\mathrm{M}(\mathrm{y}, \mathrm{y}, \mathrm{x}, \in+\mathrm{t}) \geq \mathrm{M}(\mathrm{y}, \mathrm{y}, \mathrm{y}, \in)^{*} \mathrm{M}(\mathrm{y}, \mathrm{x}, \mathrm{x}, \mathrm{t})$ $=\mathrm{M}(\mathrm{y}, \mathrm{x}, \mathrm{x}, \mathrm{t})$.
By taking limits of (i) and (ii) when $\in \rightarrow 0$,
we obtain $\mathrm{M}(\mathrm{x}, \mathrm{x}, \mathrm{y}, \mathrm{t})=\mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{y}, \mathrm{t})$
Lemma: 1.7 $\operatorname{Let}(\mathrm{X}, \mathrm{M}, *)$ is a fuzzy metric space. If we defineM : $X^{3} \times(0, \infty) \rightarrow[0,1]$ by $\mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})=$ $\mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{t}) * \mathrm{M}(\mathrm{y}, \mathrm{z}, \mathrm{t}) * \mathrm{M}(\mathrm{z}, \mathrm{x}, \mathrm{t})$ for every $\mathrm{x}, \mathrm{y}, \mathrm{z}$ in X, then $(X, M, *)$ is a M -fuzzy metric space.

Lemma: 1.8 Let (X, M,*) be a M- fuzzy metric space. Then $M(x, y, z, t)$ is non-decreasing with respect to t, for all x, y, z in X.

Proof:

For each $x, y, z, a \in X$ and $t, s>0$ we have

$$
\mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{a}, \mathrm{t}) * \mathrm{M}(\mathrm{a}, \mathrm{z}, \mathrm{z}, \mathrm{~s}) \leq \mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t}+\mathrm{s})
$$

If set $\mathrm{a}=\mathrm{z}$ we get

$$
\mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t}) * \mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{z}, \mathrm{~s}) \leq \mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t}+\mathrm{s})
$$

That is $M(x, y, z, t+s) \geq M(x, y, z, t)$.
Definition: 1.9 Let ($\mathrm{X}, \mathrm{M}, *$) be a M- fuzzy metric space. For $t>0$, the open ball $B_{M}(x, r, t)$ with center $\mathrm{x} \in \mathrm{X}$ and radius $0<\mathrm{r}<1$ is defined by

$$
B_{M}(x, r, t)=\{y \in X: M(x, y, y, t)>1-r\} .
$$

A subset A of X is called open set if for each $x \in A$ there exist $\mathrm{t}>0$ and $0<\mathrm{r}<1$ such that $\mathrm{B}_{\mathrm{M}}(\mathrm{x}, \mathrm{r}, \mathrm{t})$ $\subseteq \mathrm{A}$.

Definition: 1.10 Let (X, M, *) be a M- fuzzy metric space. and $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ be a sequence in X
(a) $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ is said to converge to a point $\mathrm{x} \in \mathrm{X}$ if $\lim _{n \rightarrow \infty} M\left(x, x, x_{n}, t\right)=1$ for all $t>0$
(b) $\left\{x_{n}\right\}$ is said to be a Cauchy sequence if $\lim _{n}$ $\stackrel{\rightharpoonup}{\mathrm{M}}\left(\mathrm{x}_{\mathrm{n}+\mathrm{p}}, \mathrm{x}_{\mathrm{n}+\mathrm{p}}, \mathrm{x}_{\mathrm{n}}, \mathrm{t}\right)=1 \quad$ for all $\mathrm{t}>0$ and $\mathrm{p}>$ 0 .

Remark: 1.11 A M- fuzzy metric space in which every Cauchy sequence is convergent is said to be complete.

Remark: $\mathbf{1 . 1 2}$ since * is continuous, it follows from (FM-4) that the limit of the sequence is uniquely determined.

Lemma: 1.13 [4] Let $\left\{x_{n}\right\}$ be a sequence in a Mfuzzy metric space. (X, M, *) with the condition(FM6). If there exists a number $q \in(0,1)$ such that $M\left(x_{n}, x_{n}, x_{n+1}, t\right) \geq M\left(x_{n-1}, x_{n-1}, x_{n}, t / q\right)$ for all $\mathrm{t}>0$ and $\mathrm{n}=1,2,3, \ldots$, then $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ is a Cauchy
sequence.
Lemma 1.14 [4] Let (X, M, *) be a M- fuzzy metric space. with condition (FM-6). If for all $x, y, z \in X, t$ >0 with positive number $\mathrm{q} \in(0,1)$ and $\mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{qt})$ $\geq \mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})$, then $\mathrm{x}=\mathrm{y}=\mathrm{z}$.

Definition: 1.15 A point x in X is a common fixed point of two maps $T_{1}, T_{2}: X \rightarrow X$ if $T_{1}(x)=T_{2}(x)=$ x.

2.MAIN RESULTS

Theorem 2.1: Let ($\mathrm{X}, \mathrm{M}_{1},{ }^{*}$) and ($\mathrm{Y}, \mathrm{M}_{2},{ }^{*}$) be two complete M - fuzzy metric spaces. If T is a mapping from X into Y and S is a mapping from Y into X satisfying

$$
\begin{array}{ll}
2 \mathrm{M}_{1}(S y, S y, S T x, q t) \\
\mathrm{M}_{1}(\mathrm{x}, \mathrm{x}, \mathrm{STx}, \mathrm{t}) \cdot \mathrm{M}_{1}(\mathrm{x}, \mathrm{x}, \mathrm{Sy}, \mathrm{t})+\mathrm{M}_{2}(\mathrm{y}, \mathrm{y}, \mathrm{Tx}, \mathrm{t}) & ----(1) \\
2 \mathrm{M}_{2}(\mathrm{Tx}, T \mathrm{~T}, \mathrm{TSy}, \mathrm{qt}) & \geq \quad \mathrm{M}_{2}(\mathrm{y}, \mathrm{y}, \mathrm{TSy}, \mathrm{t}) \cdot \mathrm{M}_{2}(\mathrm{y}, \mathrm{y}, \mathrm{Tx}, \mathrm{t})+ \\
\mathrm{M}_{1}(\mathrm{x}, \mathrm{x}, \mathrm{Sy}, \mathrm{t})----(2)
\end{array}
$$

for all x in X and y in Y where $\mathrm{q}<1$, then ST has a unique fixed point z in X and TS has a unique fixed point w in Y. Further $T z=w$ and $S w=z$.

Proof: Let x_{0} be an arbitrary point in X . Define two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X and Y, respectively, as follows:

$$
\mathrm{x}_{\mathrm{n}}=(\mathrm{ST})^{\mathrm{n}} \mathrm{x}_{0}, \mathrm{y}_{\mathrm{n}}=\mathrm{T}\left(\mathrm{x}_{\mathrm{n}-1}\right)
$$

for $\mathrm{n}=1,2, \ldots$. By (1) we have
$2 \mathrm{M}_{1}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{qt}\right)=2 \mathrm{M}_{1}\left((\mathrm{ST})^{\mathrm{n}} \mathrm{x}_{0},(\mathrm{ST})^{\mathrm{n}} \mathrm{x}_{0}\right.$, (ST) ${ }^{\mathrm{n}+1} \mathrm{x}_{0}$), qt)

$$
=2 \mathrm{M}_{1}\left(\mathrm { S } \left(\mathrm{~T}(\mathrm{ST})^{\mathrm{n}-1} \mathrm{x}_{0}, \mathrm{~S}\left(\mathrm{~T}(\mathrm{ST})^{\mathrm{n}-}\right.\right.\right.
$$

$\left.{ }^{1} \mathrm{x}_{0}, \mathrm{ST}(\mathrm{ST})^{\mathrm{n}} \mathrm{x}_{0}, \mathrm{qt}\right)$

$$
\begin{aligned}
& \text { qt) } \\
& =2 \mathrm{M}_{1}\left(\mathrm{ST}\left(\mathrm{x}_{\mathrm{n}-1}\right), \mathrm{ST}\left(\mathrm{x}_{\mathrm{n}-1}\right), \mathrm{STx}_{\mathrm{n}},\right. \\
& =2 \mathrm{M}_{1}\left(\mathrm{Sy}_{\mathrm{n}}, \mathrm{Sy}_{\mathrm{n}}, \mathrm{STx}_{\mathrm{n}}, \mathrm{qt}\right) \\
& \geq M_{1}\left(x_{n}, x_{n}, S T x_{n}, t\right) . M_{1}\left(x_{n}, x_{n}, S y_{n}, t\right)+ \\
& \mathrm{M}_{2}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}, \mathrm{Tx}_{\mathrm{n}}, \mathrm{t}\right) \\
& =\mathrm{M}_{1}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{t}\right) \cdot \mathrm{M}_{1}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}, \mathrm{t}\right)+ \\
& M_{2}\left(y_{n}, y_{n}, y_{n+1}, t\right) \\
& \geq M_{1}\left(x_{n}, x_{n}, x_{n+1}, q t\right)+M_{2}\left(y_{n}, y_{n}, y_{n+1}, t\right)
\end{aligned}
$$

Which implies

$$
M_{1}\left(x_{n}, x_{n}, x_{n+1}, q t\right) \geq M_{2}\left(y_{n}, y_{n}, y_{n+1}, t\right) \cdots-\cdots-\cdots-\cdots(3)
$$

Similarly, by (2)

$$
\begin{aligned}
& 2 \mathrm{M}_{2}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}, \mathrm{qt}\right)=2 \mathrm{M}_{2}\left(\mathrm{Tx}_{\mathrm{n}-1}, T \mathrm{Tx}_{\mathrm{n}-1}, T \mathrm{x}_{\mathrm{n}}, \mathrm{qt}\right) \\
&=2 \mathrm{M}_{2}\left(T x_{n-1}, T x_{n-1}, T S y_{n}, q t\right) \\
& \geq \mathrm{M}_{2}\left(\mathrm{y}_{\mathrm{n}}, \quad \mathrm{y}_{\mathrm{n}}, T S y_{\mathrm{n}}, \mathrm{t}\right) \quad . \mathrm{M}_{2}\left(\mathrm{y}_{\mathrm{n}},\right. \\
&\left.\mathrm{y}_{\mathrm{n}}, \mathrm{Tx}_{\mathrm{n}-1}, \mathrm{t}\right)+\quad
\end{aligned}
$$

Which implies

$\mathrm{M}_{2}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}, \mathrm{qt}\right) \geq \mathrm{M}_{1}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}, \mathrm{t}\right)$
Therefore, by (3) and (4)

$$
\begin{aligned}
\mathrm{M}_{1}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{qt}\right) & \geq \mathrm{M}_{2}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}, \mathrm{t}\right) \\
& \geq \mathrm{M}_{1}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}, \mathrm{t} / \mathrm{q}\right) \\
& \vdots \\
& \geq \mathrm{M}_{1}\left(\mathrm{x}_{0}, \mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{t} / \mathrm{q}^{\mathrm{n}}\right) \rightarrow 1 \text { as }
\end{aligned}
$$

$n \rightarrow \infty$

Thus $\left\{x_{n}\right\}$ is a Cauchy sequence in X. Since (X, M_{1}, ${ }^{*}$) is complete, $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ converges to a point z in X . Similarly we prove $\left\{y_{n}\right\}$ converges to a point w in Y.
Again by (2) we have
$2 \mathrm{M}_{2}\left(\mathrm{Tz}, \mathrm{Tz}, \mathrm{y}_{\mathrm{n}+1}, \mathrm{qt}\right)=\mathrm{M}_{2}\left(\mathrm{Tz}, \mathrm{Tz}, \mathrm{TS} \mathrm{y}_{\mathrm{n}}, \mathrm{qt}\right)$
$\begin{aligned} \stackrel{\geq}{2} & \mathrm{M}_{2}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}, \mathrm{TS} \mathrm{y}_{\mathrm{n}}, \mathrm{t}\right) \cdot \mathrm{M}_{2}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}, \mathrm{Tz}, \mathrm{t}\right) \\ \mathrm{M}_{1}\left(\mathrm{z}, \mathrm{z}, \mathrm{Sy} \mathrm{y}_{\mathrm{n}}, \mathrm{t}\right) & \\ = & \mathrm{M}_{2}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}, \mathrm{t}\right) \cdot \mathrm{M}_{2}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}, \mathrm{Tz}, \mathrm{t}\right)\end{aligned}$
$\mathrm{M}_{1}\left(\mathrm{z}, \mathrm{z}, \mathrm{x}_{\mathrm{n}}, \mathrm{t}\right)--(5)$
Letting $n \rightarrow \infty$ in (5) we have
$2 \mathrm{M}_{2}(\mathrm{Tz}, \mathrm{Tz}, \mathrm{w}, \mathrm{qt}) \geq \mathrm{M}_{2}(\mathrm{w}, \mathrm{w}, \mathrm{Tz}, \mathrm{qt})+1$
That is $\mathrm{M}_{2}(\mathrm{Tz}, \mathrm{Tz}, \mathrm{w}, \mathrm{qt}) \geq 1$
which implies that $\mathrm{M}_{2}(\mathrm{Tz}, \mathrm{Tz}, \mathrm{w}, \mathrm{qt})=1$ so that $\mathrm{Tz}=\mathrm{w}$.
On the other hand, by (1) we have
$2 \mathrm{M}_{1}\left(\mathrm{Sw}, \mathrm{Sw}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{qt}\right)=2 \mathrm{M}_{1}\left(\mathrm{Sw}, \mathrm{Sw}, \mathrm{STx}_{\mathrm{n}}, \mathrm{t}\right)$
$\geq \quad M_{1}\left(x_{n}, x_{n}, S T x_{n}, t\right) \cdot M_{1}\left(x_{n}, x_{n}, S w, t\right)$
$\mathrm{M}_{2}\left(\mathrm{w}, \mathrm{w}, \mathrm{Tx}_{\mathrm{n}}, \mathrm{t}\right)$

$$
=\mathrm{M}_{1}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{t}\right) \cdot \mathrm{M}_{1}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}, \mathrm{Sw}, \mathrm{t}\right)+\mathrm{M}_{2}\left(\mathrm{w}, \mathrm{w}, \mathrm{y}_{\mathrm{n}+1}, \mathrm{t}\right)--
$$

(6)

Letting $n \rightarrow \infty$ in (6), it follows that $S w=z$.
Therefore we have $\mathrm{STz}=\mathrm{Sw}=\mathrm{z}$ and $\mathrm{TSw}=\mathrm{Tz}=\mathrm{w}$, which means that the point z is a fixed point of ST and the point w is a fixed point of TS.
To prove the uniqueness of the fixed point z , let z^{\prime} be the second fixed point of ST.
By (1) we have
$2 \mathrm{M}_{1}\left(\mathrm{z}, \mathrm{z}, \mathrm{z}^{\prime}, \mathrm{qt}\right)=2 \mathrm{M}_{1}(\mathrm{Sw}, \mathrm{Sw}$, STz', qt $)$
$\geq \mathrm{M}_{1}\left(\mathrm{z}^{\prime}, \mathrm{z}^{\prime}, S T z^{\prime}, \mathrm{t}\right) . \quad \mathrm{M}_{1}\left(\mathrm{z}^{\prime}, \mathrm{z}^{\prime}, S w, \mathrm{t}\right) \quad+$
M_{2} (w,w,Tz',t)
$=\quad \mathrm{M}_{1}\left(\mathrm{z}^{\prime}, \mathrm{z}^{\prime}, \mathrm{z}^{\prime}, \mathrm{t}\right) . \quad \mathrm{M}_{1}\left(\mathrm{z}^{\prime}, \mathrm{z}^{\prime}, \mathrm{z}, \mathrm{t}\right) \quad+$
$\mathrm{M}_{2}\left(\mathrm{w}, \mathrm{w}, \mathrm{Tz}^{\prime}, \mathrm{t}\right)$

$$
\geq \mathrm{M}_{1}\left(\mathrm{z}^{\prime}, \mathrm{z}^{\prime}, \mathrm{z}, \mathrm{q} \mathrm{t}\right)+\mathrm{M}_{2}\left(\mathrm{w}, \mathrm{w}, T z^{\prime}, \mathrm{t}\right)
$$

Which implies that

$$
\mathrm{M}_{1}\left(\mathrm{z}, \mathrm{z}, \mathrm{z}^{\prime}, \mathrm{qt}\right) \geq \mathrm{M}_{2}\left(\mathrm{w}, \mathrm{w}, \mathrm{Tz}^{\prime}, \mathrm{t}\right) \text {----- (7) }
$$

Similarly by (2), we have
$2 \mathrm{M}_{2}\left(\mathrm{w}, \mathrm{w}, \mathrm{Tz}^{\prime}, \mathrm{qt}\right)=2 \mathrm{M}_{2}\left(\mathrm{Tz}, \mathrm{Tz}^{\prime}, \mathrm{TSTz}^{\prime}, \mathrm{qt}\right)$
$\geq \quad \mathrm{M}_{2}\left(\mathrm{Tz}^{\prime}, \mathrm{Tz}^{\prime}, \mathrm{TSTz}, \mathrm{t}\right) \cdot \mathrm{M}_{2}\left(\mathrm{Tz}^{\prime}, \mathrm{Tz}^{\prime} \mathrm{Tz}, \mathrm{t}\right)+$
$\mathrm{M}_{1}\left(\mathrm{z}, \mathrm{z}, \mathrm{STz}^{\prime}, \mathrm{t}\right)$

$$
\geq \mathrm{M}_{2}\left(\mathrm{Tz}^{\prime}, \mathrm{Tz}^{\prime}, \mathrm{w}, \mathrm{qt}\right)+\mathrm{M}_{1}\left(\mathrm{z}, \mathrm{z}, \mathrm{z}^{\prime}, \mathrm{t}\right)
$$

Which implies that

$$
\mathrm{M}_{2}\left(\mathrm{w}, \mathrm{w}, \mathrm{Tz}^{\prime}, \mathrm{qt}\right) \geq \mathrm{M}_{1}\left(\mathrm{z}, \mathrm{z}, \mathrm{z}^{\prime}, \mathrm{t}\right) \text {------ (8) }
$$

Therefore by (7) and (8)

$$
\mathrm{M}_{1}\left(\mathrm{z}, \quad \mathrm{z}, \quad \mathrm{z}^{\prime}, \mathrm{qt}\right) \geq \mathrm{M}_{2}(\mathrm{w}, \quad \mathrm{w}, \mathrm{Tz}, \mathrm{t}) \geq
$$

$\mathrm{M}_{1}\left(\mathrm{z}, \mathrm{z}, \mathrm{z}^{\prime}, \mathrm{t} / \mathrm{q}\right)($ since $\mathrm{q}<1)$,
which is a contradiction.
Thus $\mathrm{z}=\mathrm{z}^{\prime}$.
So the point z is the unique fixed point of ST in X . Similarly, we prove the point w is also a unique fixed point of TS in Y.
(4) Theorem 2.2: Let $\left(\mathrm{X}, \mathrm{M}_{1},{ }^{*}\right)$ and $\left(\mathrm{Y}, \mathrm{M}_{2},{ }^{*}\right)$ be two complete M-fuzzy metric spaces with continuous t norm * is defined by
$\mathrm{a} * \mathrm{~b}=\min \{\mathrm{a}, \mathrm{b}\}$. Let A, B be mappings of X into Y and S , T be mappings of Y into X satisfying the inequalities.
$M_{1}\left(S A x, S A x, T B x^{\prime}, q t\right) \geq \min \left\{M_{1}\left(x, x, x^{\prime}, t\right)\right.$,
$\mathrm{M}_{1}(\mathrm{x}, \mathrm{x}, \mathrm{SAx}, \mathrm{t})$,

$$
\mathrm{M}_{1}\left(\mathrm{x}^{\prime}, \mathrm{x}^{\prime}, \mathrm{TBx}^{\prime}, \mathrm{t}\right), \mathrm{M}_{1}\left(\mathrm{x}, \mathrm{x}, \mathrm{TBx}^{\prime}, 2 \mathrm{t}\right) \cdot \mathrm{M}_{1}\left(\mathrm{x}^{\prime},\right.
$$

$\left.x^{\prime}, S A x, 2 t\right)$,

$$
\left.\mathrm{M}_{2}\left(\mathrm{Ax}, \mathrm{Ax}, \mathrm{Bx}^{\prime}, \mathrm{t}\right)\right\} \quad------(1)
$$

$\mathrm{M}_{2}\left(\mathrm{BSy}, \mathrm{BSy}, \mathrm{ATy}^{\prime}, \mathrm{qt}\right) \geq \min \left\{\mathrm{M}_{1}\left(\mathrm{y}, \mathrm{y}, \mathrm{y}^{\prime}, \mathrm{t}\right)\right.$,
$\mathrm{M}_{2}(\mathrm{y}, \mathrm{y}, \mathrm{BSy}, \mathrm{t})$,
$\mathrm{M}_{2}\left(\mathrm{y}^{\prime}, \mathrm{y}^{\prime}, A T y^{\prime}, \mathrm{t}\right), \mathrm{M}_{2}\left(\mathrm{y}, \mathrm{y}, A T \mathrm{y}^{\prime}, 2 \mathrm{t}\right) \cdot \mathrm{M}_{2}\left(\mathrm{y}^{\prime}\right.$, $\left.y^{\prime}, B S y, 2 t\right)$,

$$
\begin{equation*}
\left.\mathrm{M}_{1}\left(\mathrm{Sy}, \mathrm{Sy}, \mathrm{Ty} y^{\prime}, \mathrm{t}\right)\right\} \tag{2}
\end{equation*}
$$

for all x, x^{\prime} in X and y, y^{\prime} in Y. If one of the mappings $\mathrm{A}, \mathrm{B}, \mathrm{S}$ and T is continuous, then SA and TB have a common fixed point z in X and BS and AT have a common fixed point w in Y . Further, $\mathrm{Az}=\mathrm{Bz}=\mathrm{w}$ and $\mathrm{Sw}=\mathrm{Tw}=\mathrm{z}$.

Proof: Let x_{0} be an arbitrary point in X and we define the sequences $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ in X and $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ in Y by

$$
\begin{aligned}
& \mathrm{Ax}_{2 n-2}=y_{2 n-1}, S y_{2 n-1}=x_{2 n-1}, B x_{2 n-1}=y_{2 n} ; T y_{2 n}=x_{2 n} \\
& \quad \text { for } n=1,2,3 \ldots .
\end{aligned}
$$

Now we have
$M_{1}\left(x_{2 n+1}, x_{2 n+1}, x_{2 n}, q t\right)=M_{1}\left(S A x_{2 n}, S A x_{2 n,}, T B x_{2 n-1}, q t\right)$
$\geq \min \left\{M_{1}\left(x_{2 n}, x_{2 n}, x_{2 n-1}, t\right), M_{1}\left(x_{2 n}, x_{2 n}\right.\right.$,
$\left.\operatorname{SAx}_{2 \mathrm{n}}, \mathrm{t}\right)$,
$\mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}-1}, \operatorname{TBx}_{2 \mathrm{n}-1}, \mathrm{t}\right), \mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}}\right.$,
$\left.\mathrm{TBx}_{2 \mathrm{n}-1}, 2 \mathrm{t}\right)$.
$\mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}-1}, \mathrm{SAx}_{2 \mathrm{n}}, 2 \mathrm{t}\right), \mathrm{M}_{2}\left(\mathrm{Ax}_{2 \mathrm{n}}\right.$,
$\left.\left.\mathrm{Ax}_{2 \mathrm{n}}, \mathrm{Bx}_{2 \mathrm{n}-1, \mathrm{t}} \mathrm{t}\right)\right\}$
$=\min \left\{\mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}}, \mathrm{X}_{2 \mathrm{n}-1}, \mathrm{t}\right), \mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{X}_{2 \mathrm{n}}\right.\right.$,
$\left.\mathrm{X}_{2 \mathrm{n}+1}, \mathrm{t}\right)$,
$\left.\mathrm{x}_{2 \mathrm{n}}, \mathrm{X}_{2 \mathrm{n}}, 2 \mathrm{t}\right)$.

$$
\mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}, \mathrm{t}\right), \mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}},\right.
$$

$\mathrm{x}_{2}, \mathrm{x}_{2}, 2 \mathrm{t}$,
$\mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}+1}, 2 \mathrm{t}\right), \mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}+1}\right.$,
$\left.\left.\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{t}\right)\right\}$
$\geq \min \left\{M_{1}\left(x_{2 n}, x_{2 n}, x_{2 n-1}, t\right), M_{1}\left(x_{2 n}\right.\right.$,
$\left.\mathrm{X}_{2 \mathrm{n}}, \mathrm{X}_{2 \mathrm{n}+1}, \mathrm{t}\right)$,
$\mathrm{x}_{2 \mathrm{n}}, \mathrm{t}$)*
$\mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}, \mathrm{t}\right), \mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}-1}\right.$,

$$
\mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}+1}, \mathrm{t}\right), \mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}+1},\right.
$$

$\left.\left.\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{t}\right)\right\}$

$$
\geq \min \left\{M_{1}\left(x_{2 n-1}, x_{2 n-1}, x_{2 n}, t\right), M_{2}\left(y_{2 n+1},\right.\right.
$$

$\left.\left.\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{t}\right)\right\}$
Now
$\mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{qt}\right)=\mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}+1}, \mathrm{qt}\right)$
$=\mathrm{M}_{2}\left(\mathrm{BSy}_{2 \mathrm{n}-1}, \mathrm{BSy}_{2 \mathrm{n}-1}\right.$, ATy $\left._{2 \mathrm{n}}, \mathrm{qt}\right)$
$\geq \min \left\{\mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}-1}, \mathrm{t}\right), \mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right.\right.$
$\left.{ }_{1}, \mathrm{BSy}_{2 \mathrm{n}-1}, \mathrm{t}\right)$,
$\mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{ATy}_{2 \mathrm{n}}, \mathrm{t}\right), \mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right.$
$\left.{ }_{1}, \mathrm{ATy}_{2 \mathrm{n}}, 2 \mathrm{t}\right)$.

```
                \(\mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{BSy}_{2 \mathrm{n}-1}, 2 \mathrm{t}\right), \mathrm{M}_{1}\left(\mathrm{Sy}_{2 \mathrm{n}-1}, \mathrm{Sy}_{2 \mathrm{n}-1}\right.\),
\(\left.\left.T y_{2 n}, t\right)\right\}\)
            \(\geq \min \left\{\mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}-1}, \mathrm{t}\right), \mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}-1}\right.\right.\),
\(\left.y_{2 n}, t\right)\),
    \(\mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}+1}, \mathrm{t}\right), \mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}-1}\right.\),
\(\mathrm{y}_{2 \mathrm{n}}, \mathrm{t}\) )*
    \(\mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}+1}, \mathrm{t}\right), \mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}-1}\right.\),
\(\left.\left.\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}, \mathrm{t}\right)\right\}\)
\(\geq \min \left\{\mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{t}\right), \mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}-}\right.\right.\)
\(\left.\left.{ }_{1}, \mathrm{X}_{2 \mathrm{n}}, \mathrm{t}\right)\right\}\)----------(3)
Hence
\(\mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}}, \mathrm{qt}\right) \geq \min \left\{\mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}, \mathrm{t}\right)\right.\),
\(\left.\mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{t}\right)\right\}\)
    \(\geq \min \left\{\mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}, \mathrm{t}\right), \mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}-}\right.\right.\)
\(\left.{ }_{1}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{t} / \mathrm{q}\right)\),
\(\quad M_{1}\left(x_{2 n-1}, \quad x_{2 n}\right.\)
\(\left.\left.{ }_{1}, \mathrm{x}_{2 \mathrm{n}}, \mathrm{t} / \mathrm{q}\right)\right\}\)
    \(\geq \min \left\{\mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}, \mathrm{t}\right), \mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}-}\right.\right.\)
\(\left.\left.{ }_{1}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{t} / \mathrm{q}\right)\right\} \quad\)---------- (4)
Similarly we have
\(\mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}-1}, \mathrm{qt}\right) \geq\)
    \(\min \left\{\mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}-2}, \mathrm{x}_{2 \mathrm{n}-2}, \mathrm{x}_{2 \mathrm{n}-1}, \mathrm{t}\right), \mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}-}\right.\right.\)
\(\left.{ }_{1}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{t}\right)\) \}
\(\mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}-1}, \mathrm{qt}\right) \geq\)
        \(\min \left\{\mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}-2}, \mathrm{y}_{2 \mathrm{n}-2}, \mathrm{y}_{2 \mathrm{n}-1}, \mathrm{t}\right), \mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right.\right.\)
\(\left.\left.{ }_{1}, \mathrm{x}_{2 \mathrm{n}-2}, \mathrm{t}\right)\right\}\)
Hence
```

```
\(\mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}-1}, \mathrm{qt}\right) \geq\)
```

$\mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}-1}, \mathrm{qt}\right) \geq$
$\min \left\{\mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}-2}, \mathrm{x}_{2 \mathrm{n}-2}, \mathrm{x}_{2 \mathrm{n}-1}, \mathrm{t}\right), \mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}-}\right.\right.$
$\min \left\{\mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}-2}, \mathrm{x}_{2 \mathrm{n}-2}, \mathrm{x}_{2 \mathrm{n}-1}, \mathrm{t}\right), \mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}-}\right.\right.$
$\left.\left.{ }_{1}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{t}\right)\right\}$
$\left.\left.{ }_{1}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{t}\right)\right\}$
$\geq \min \left\{\mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}-2}, \mathrm{x}_{2 \mathrm{n}-2}, \mathrm{x}_{2 \mathrm{n}-1}, \mathrm{t}\right), \mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}-2}, \mathrm{y}_{2 \mathrm{n}-2}\right.\right.$,
$\geq \min \left\{\mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}-2}, \mathrm{x}_{2 \mathrm{n}-2}, \mathrm{x}_{2 \mathrm{n}-1}, \mathrm{t}\right), \mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}-2}, \mathrm{y}_{2 \mathrm{n}-2}\right.\right.$,
$\left.y_{2 n-1}, t / q\right)$,
$\left.y_{2 n-1}, t / q\right)$,
-(6)
-(6)
from inequalities (3), (4), (5) and (6), we have
from inequalities (3), (4), (5) and (6), we have
$\mathrm{M}_{1}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}}, \mathrm{qt}\right)$
$\mathrm{M}_{1}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}}, \mathrm{qt}\right)$
$\geq \min \left\{\mathrm{M}_{1}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}-1}, \mathrm{t}\right), \mathrm{M}_{2}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}-1}, \mathrm{t} / \mathrm{q}\right)\right\}$
$\geq \min \left\{\mathrm{M}_{1}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}-1}, \mathrm{t}\right), \mathrm{M}_{2}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}-1}, \mathrm{t} / \mathrm{q}\right)\right\}$
$\geq \min \left\{\mathrm{M}_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{1}, \mathrm{x}_{0}, \mathrm{t} / \mathrm{q}^{\mathrm{n}-1}\right), \mathrm{M}_{2}\left(\mathrm{y}_{1}, \mathrm{y}_{1}, \mathrm{y}_{0}, \mathrm{t} / \mathrm{q}^{\mathrm{n}}\right)\right\}$
$\geq \min \left\{\mathrm{M}_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{1}, \mathrm{x}_{0}, \mathrm{t} / \mathrm{q}^{\mathrm{n}-1}\right), \mathrm{M}_{2}\left(\mathrm{y}_{1}, \mathrm{y}_{1}, \mathrm{y}_{0}, \mathrm{t} / \mathrm{q}^{\mathrm{n}}\right)\right\}$
$\rightarrow 1$ as
$\mathrm{n} \rightarrow \infty$
Thus $\left\{x_{n}\right\}$ is a Cauchy sequence in X. Since ($X, M_{1},{ }^{*}$) is complete, it converges to a point z in X . Similarly we can prove that the sequence $\left\{y_{n}\right\}$ is a Cauchy sequence in Y and it converges to a point w in Y .
Suppose A is continuous, then

$$
\lim _{n \rightarrow \infty} \mathrm{Ax}_{2 \mathrm{n}}=\mathrm{Az}=\lim _{n \rightarrow \infty} \mathrm{y}_{2 \mathrm{n}+1}=\mathrm{w}
$$

Now we prove $S A z=z$. .
Suppose $\mathrm{SAz} \neq \mathrm{z}$.
We have

```
```

$\mathrm{M}_{1}(\mathrm{SAz}, \mathrm{SAz}, \mathrm{z}, \mathrm{qt})=\lim _{n \rightarrow \infty} \mathrm{M}_{1}\left(\mathrm{SAz}, \mathrm{SAz}, \mathrm{TBx}_{2 \mathrm{n}-1}, \mathrm{qt}\right)$

```
\(\mathrm{M}_{1}(\mathrm{SAz}, \mathrm{SAz}, \mathrm{z}, \mathrm{qt})=\lim _{n \rightarrow \infty} \mathrm{M}_{1}\left(\mathrm{SAz}, \mathrm{SAz}, \mathrm{TBx}_{2 \mathrm{n}-1}, \mathrm{qt}\right)\)
    \(\geq \lim _{n \rightarrow \infty} \min \left\{\mathrm{M}_{1}\left(\mathrm{z}, \mathrm{z}, \mathrm{x}_{2 \mathrm{n}}-\right.\right.\)
    \(\geq \lim _{n \rightarrow \infty} \min \left\{\mathrm{M}_{1}\left(\mathrm{z}, \mathrm{z}, \mathrm{x}_{2 \mathrm{n}}-\right.\right.\)
\(\left.{ }_{1, \mathrm{t}}\right), \mathrm{M}_{1}(\mathrm{z}, \mathrm{z}, \mathrm{SAz}, \mathrm{t})\),
\(\left.{ }_{1, \mathrm{t}}\right), \mathrm{M}_{1}(\mathrm{z}, \mathrm{z}, \mathrm{SAz}, \mathrm{t})\),
    \(\mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}-1}, \mathrm{TBx}_{2 \mathrm{n}-1}, \mathrm{t}\right)\),
    \(\mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}-1}, \mathrm{TBx}_{2 \mathrm{n}-1}, \mathrm{t}\right)\),
\(\mathrm{M}_{1}\left(\mathrm{z}, \mathrm{z}, \mathrm{TBx}_{2 \mathrm{n}-1}, 2 \mathrm{t}\right)\).
\(\mathrm{M}_{1}\left(\mathrm{z}, \mathrm{z}, \mathrm{TBx}_{2 \mathrm{n}-1}, 2 \mathrm{t}\right)\).
    \(\mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}-1}, \mathrm{SAz}, 2 \mathrm{t}\right)\),
    \(\mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}-1}, \mathrm{SAz}, 2 \mathrm{t}\right)\),
\(\left.\mathrm{M}_{2}\left(\mathrm{Az}, \mathrm{Az}, \mathrm{Bx}_{2 \mathrm{n}-1}, \mathrm{t}\right)\right\}\)
```

$\left.\mathrm{M}_{2}\left(\mathrm{Az}, \mathrm{Az}, \mathrm{Bx}_{2 \mathrm{n}-1}, \mathrm{t}\right)\right\}$

```
\(\mathrm{M}_{1}(\mathrm{z}, \mathrm{z}, \mathrm{SAz}, \mathrm{t})\),
\(M_{1}\left(z, z, x_{2 n}, 2 t\right)\).
\(\left.\mathrm{M}_{2}\left(\mathrm{Az}, \mathrm{Az}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{t}\right)\right\}\)

\[
=\min \left\{1, \mathrm{M}_{1}(\mathrm{z}, \mathrm{z}, \mathrm{SAz}, \mathrm{t}), 1,1,\right.
\]
\(\left.\mathrm{M}_{1}(\mathrm{z}, \mathrm{z}, \mathrm{SAz}, 2 \mathrm{t}), 1\right\}\)
\(\geq \mathrm{M}_{1}(\mathrm{z}, \mathrm{z}, \mathrm{SAz}, \mathrm{t}) \quad(\) since \(\mathrm{q}<1)\)
which is a contradiction.
Thus \(\mathrm{SAz}=\mathrm{z}\).
Hence \(S w=\) z. \((\) Since \(A z=w)\)
Now we prove BSw \(=\mathrm{w}\).
Suppose BSw \(\neq \mathrm{w}\).
We have
\[
\begin{align*}
& \mathrm{M}_{2}(\mathrm{BSw}, \mathrm{BSw}, \mathrm{w}, \mathrm{qt})=\lim _{n \rightarrow \infty} \mathrm{M}_{2}\left(\mathrm{BSw}, \mathrm{BSw}, \mathrm{y}_{2 \mathrm{n}+1}, \mathrm{qt}\right) \\
& =\lim _{n \rightarrow \infty} \mathrm{M}_{2}\left(\mathrm{BSw}, \mathrm{BSw}, \mathrm{ATy}_{2 \mathrm{n}}, \mathrm{qt}\right) \\
& \geq \lim _{n \rightarrow \infty} \min \left\{\mathrm{M}_{2}\left(\mathrm{w}, \mathrm{w}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{t}\right),\right. \\
& \mathrm{M}_{2}(\mathrm{w}, \mathrm{w}, \mathrm{BSw}, \mathrm{t}), \mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{ATy}_{2 \mathrm{n}}, \mathrm{t}\right) \text {, } \\
& \mathrm{M}_{2}\left(\mathrm{w}, \mathrm{w}, \mathrm{ATy}_{2 \mathrm{n}}, 2 \mathrm{t}\right) \text {. } \\
& \left.\mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{BSw}, 2 \mathrm{t}\right), \mathrm{M}_{1}\left(\mathrm{Sw}, \mathrm{Sw}, \mathrm{Ty}_{2 \mathrm{n}}, \mathrm{t}\right)\right\} \\
& =\min \left\{1, \mathrm{M}_{2}(\mathrm{w}, \mathrm{w}, \mathrm{BSw}, \mathrm{t}), 1\right. \text {, } \\
& \left.\mathrm{M}_{2}(\mathrm{w}, \mathrm{w}, \mathrm{BSw}, 2 \mathrm{t}), 1\right\}  \tag{5}\\
& \geq \mathrm{M}_{2}(\mathrm{w}, \mathrm{w}, \mathrm{BS} \mathrm{w}, \mathrm{t}) \quad \text { (Since } \mathrm{q}<
\end{align*}
\]
1) which is a contradiction.

Thus BSw = w
Hence \(\mathrm{Bz}=\mathrm{w}\). \((\) Since \(\mathrm{Sw}=\mathrm{z}\) )
Now we prove \(\mathrm{TBz}=\mathrm{z}\).
Suppose \(\mathrm{TBz} \neq \mathrm{z}\).
\(\mathrm{M}_{1}(\mathrm{z}, \mathrm{z}, \mathrm{TBz}, \mathrm{qt})=\lim _{n \rightarrow \infty} \mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}+1}, \mathrm{TBz}, \mathrm{qt}\right)\)
\[
=\lim _{n \rightarrow \infty} \mathrm{M}_{1}\left(\mathrm{SAx}_{2 \mathrm{n}}, \mathrm{SAx} \mathrm{~S}_{2 \mathrm{n}}, \mathrm{TBz}, \mathrm{qt}\right)
\]
\(\geq \lim _{n \rightarrow \infty} \min \left\{\mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}}, \mathrm{z}, \mathrm{t}\right)\right.\),
\(M_{1}\left(x_{2 n}, x_{2 n}, S A x_{2 n}, t\right), M_{1}(z, z, T B z, t)\),
\(\mathrm{M}_{1}\left(\mathrm{X}_{2 \mathrm{n}}\right.\),
\(\left.\mathrm{x}_{2 \mathrm{n}}, \mathrm{TBz}, 2 \mathrm{t}\right) \cdot \mathrm{M}_{1}\left(\mathrm{z}, \mathrm{z}, \mathrm{SAx}_{2 \mathrm{n}}, 2 \mathrm{t}\right)\),
\(\left.\left.\mathrm{x}_{2 \mathrm{n}}, \mathrm{Bz}, \mathrm{t}\right)\right\}\)
\[
\mathrm{M}_{2}\left(\mathrm{Ax}_{2 \mathrm{n}}, \mathrm{~A}\right.
\]
\(=\min \left\{1,1, M_{1}(z, z, B z, t)\right.\),
\(\left.\mathrm{M}_{1}(\mathrm{z}, \mathrm{z}, \mathrm{TBz}, 2 \mathrm{t}), 1\right\}\)
\(\geq \mathrm{M}_{1}(\mathrm{z}, \mathrm{z}, \mathrm{TB} \mathrm{z}, \mathrm{t}) \quad(\) Since \(\mathrm{q}<1)\)
which is a contradiction.
Thus \(\mathrm{TBz}=\mathrm{z}\).
Hence \(T w=z\). (Since Bz=w)
Now we prove ATw = w.
Suppose ATw \(\neq \mathrm{w}\).
\(\mathrm{M}_{2}(\mathrm{w}, \mathrm{w}, \mathrm{ATw}, \mathrm{qt})=\lim _{n \rightarrow \infty} \mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{ATw}, \mathrm{qt}\right)\)
\[
\begin{aligned}
= & \lim _{n \rightarrow \infty} \mathrm{M}_{2}\left(\mathrm{BSy}_{2 \mathrm{n}-1}, \mathrm{BSy}_{2 \mathrm{n}-1}, \mathrm{ATw}, \mathrm{qt}\right) \\
\geq & \lim _{n \rightarrow \infty} \min \left\{\mathrm{M}_{1}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}-1}, \mathrm{w}, \mathrm{t}\right),\right. \\
& \mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}-1}, \mathrm{BSy}_{2 \mathrm{n}-}\right.
\end{aligned}
\]
\(\left.{ }_{1}, \mathrm{t}\right), \mathrm{M}_{2}(\mathrm{w}, \mathrm{w}, \mathrm{ATw}, \mathrm{t})\),
\(\mathrm{M}_{1}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right.\)
\(\left.{ }_{1}, \mathrm{ATw}, 2 \mathrm{t}\right) \cdot \mathrm{M}_{2}\left(\mathrm{w}, \mathrm{w}, \mathrm{BSy}_{2 \mathrm{n}-1}, 2 \mathrm{t}\right)\),
\({ }_{1}\) Tw,t) \}
\[
\geq \mathrm{M}_{2}(\mathrm{w}, \mathrm{w}, \mathrm{ATw}, \mathrm{t}) \quad(\text { Since } \mathrm{q}<1)
\]
which is a contradiction.
Thus ATw = w.
The same results hold if one of the mappings B, S and T is continuous.

Remark: 2.3 In the above theorem if \(\mathrm{A}=\mathrm{B}\) and \(\mathrm{S}=\mathrm{T}\), we have the following corollary.

Corollary: 2.4 Let (X,M, *) and (Y, \(\mathrm{M}_{2}\), *) be two complete M-fuzzy metric spaces . Let A be a mapping of X into Y and T be a mapping of Y into X satisfying the inequalities.
\(M_{1}(T A x, T A x, T A x ', q t) \geq \min \left\{M_{1}\left(x, x, x^{\prime}, t\right)\right.\), \(\mathrm{M}_{1}(\mathrm{x}, \mathrm{x}, \mathrm{TAx}, \mathrm{t})\),
\[
\mathrm{M}_{1}\left(\mathrm{x}^{\prime}, \mathrm{x}^{\prime}, \mathrm{TAx} x^{\prime}, \mathrm{t}\right)
\]
\(M_{1}(x, x, T A x \prime, 2 t)\).

for all \(x, x^{\prime}\) in \(X\) and \(y, y^{\prime}\) in \(Y\). If one of the mappings A and T is continuous, then TA have a fixed point z in X and AT have a fixed point w in Y . Further, \(\mathrm{Az}=\mathrm{w}\) and \(\mathrm{Tw}=\mathrm{z}\).

Theorem 2.5: Let \(\left(\mathrm{X}, \mathrm{M}_{1},{ }^{*}\right)\) and ( \(\mathrm{Y}, \mathrm{M}_{2},{ }^{*}\) ) be two complete M-fuzzy metric spaces . Let A, B be mappings of \(X\) into \(Y\) and \(S\), T be mappings of \(Y\) into X satisfying the inequalities.
\[
\begin{aligned}
& 4 \mathrm{M}_{1}\left(\mathrm{SAx}, \mathrm{SAx}, \mathrm{TBx} \mathrm{x}^{\prime}, \mathrm{q}\right) \quad \geq \mathrm{M}_{1}\left(\mathrm{x}, \mathrm{x}, \mathrm{x}^{\prime}, \mathrm{t}\right)+ \\
& \mathrm{M}_{1}(\mathrm{x}, \mathrm{x}, \mathrm{SAx}, \mathrm{t})+ \\
& \mathrm{M}_{1}\left(\mathrm{x}^{\prime}, \mathrm{x}^{\prime}, \mathrm{TBx}^{\prime}, \mathrm{t}\right)+ \\
& {\left[M_{1}(x, x, S A x, t) .\right.} \\
& \left.\mathrm{M}_{1}\left(\mathrm{x}^{\prime}, \mathrm{x}^{\prime}, \mathrm{TBx}^{\prime}, \mathrm{t}\right)\right] / \\
& \mathrm{M}_{1}\left(\mathrm{x}, \mathrm{x}, \mathrm{x}^{\prime}, \mathrm{t}\right) \quad \text {---------- (1) } \\
& 4 \mathrm{M}_{2}\left(\text { BSy, BSy, ATy', qt) } \geq \mathrm{M}_{2}\left(\mathrm{y}, \mathrm{y}, \mathrm{y}^{\prime}, \mathrm{t}\right)+\mathrm{M}_{2}(\mathrm{y}, \mathrm{y},\right. \\
& \text { BSy,t) } \\
& +\mathrm{M}_{2}\left(\mathrm{y}^{\prime}, \mathrm{y}^{\prime}, \mathrm{ATy}^{\prime}, \mathrm{t}\right)+\left[\mathrm{M}_{2}(\mathrm{y},\right. \\
& \text { y,BSy,t). } \\
& \left.y, y^{\prime}, t\right) \\
& \left.\mathrm{M}_{2}\left(\mathrm{y}^{\prime}, \mathrm{y}^{\prime}, A T y^{\prime}, \mathrm{t}\right)\right] / \mathrm{M}_{2}(\mathrm{y},
\end{aligned}
\]
for all \(x, x^{\prime}\) in \(X\) and \(y, y^{\prime}\) in \(Y\) where \(0<q<1\). If one of the mappings \(\mathrm{A}, \mathrm{B}, \mathrm{S}\) and T is continuous, then SA and TB have a unique common fixed point z in X and BS and AT have a unique common fixed point w in Y . Further, \(\mathrm{Az}=\mathrm{Bz}=\mathrm{w}\) and \(\mathrm{Sw}=\mathrm{Tw}=\mathrm{z}\).

Proof: Let \(x_{0}\) be an arbitrary point in \(X\) and we define the sequences \(\left\{x_{n}\right\}\) in \(X\) and \(\left\{y_{n}\right\}\) in \(Y\) by
\[
\mathrm{Ax}_{2 \mathrm{n}-2}=\mathrm{y}_{2 \mathrm{n}-1}, S \mathrm{y}_{2 \mathrm{n}-1}=\mathrm{x}_{2 \mathrm{n}-1}, B \mathrm{Bx}_{2 \mathrm{n}-1}=\mathrm{y}_{2 \mathrm{n}} ; \mathrm{Ty}_{2 \mathrm{n}}=\mathrm{x}_{2 \mathrm{n}}
\] for \(n=1,2,3 \ldots\).
Now from (1) we have
\(4 \mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}}, \mathrm{qt}\right)=\mathrm{M}_{1}\left(\mathrm{SAx}_{2 \mathrm{n},} \mathrm{SAx}_{2 \mathrm{n}}, \mathrm{TBx}_{2 \mathrm{n}-1}, \mathrm{qt}\right)\)
\[
\geq M_{1}\left(x_{2 n}, x_{2 n}, x_{2 n-1}, t\right)+M_{1}\left(x_{2 n}, x_{2 n}, S A x_{2 n}, t\right)
\]
\[
+M_{1}\left(x_{2 n-1}, x_{2 n-1}, T B x_{2 n-1}, t\right)+\left[M _ { 1 } \left(x_{2 n}, x_{2 n}\right.\right.
\]

SAx \(_{2 n}, t\).
\[
\left.M_{1}\left(x_{2 n-1}, x_{2 n-1}, T B x_{2 n-1}, t\right)\right] / M_{1}\left(x_{2 n}, x_{2 n}, x_{2 n-}\right.
\]

1,t)
\[
=\mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}-1}, \mathrm{t}\right)+\mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}+1}, \mathrm{t}\right)
\]
\[
+M_{1}\left(x_{2 n-1}, x_{2 n-1}, x_{2 n}, t\right)+\left[M _ { 1 } \left(x_{2 n}\right.\right.
\]
\(\left.\mathrm{x}_{2 \mathrm{n}}, \mathrm{X}_{2 \mathrm{n}+1}, \mathrm{t}\right)\).
\[
\left.\mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}, \mathrm{t}\right)\right] / \mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}}\right.
\]
\(\mathrm{X}_{2 \mathrm{n}}, \mathrm{X}_{2 \mathrm{n}-1, \mathrm{t}}\) )
\[
=2 \mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}-1}, \mathrm{t}\right)+2 \mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}+1}, \mathrm{t}\right)
\]
\[
\geq 2 \mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}-1}, \mathrm{t}\right)+2 \mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}},\right.
\]
\(\left.\mathrm{x}_{2 \mathrm{n}}, \mathrm{X}_{2 \mathrm{n}+1}, \mathrm{qt}\right)\)
Which implies \(\mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}}, \mathrm{qt}\right) \geq \mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}}\right.\),
\(\mathrm{x}_{2 \mathrm{n}}, \mathrm{X}_{2 \mathrm{n}-1}, \mathrm{t}\) ) ------ (3)
Similarly we prove that
\[
M_{1}\left(x_{2 n}, x_{2 n}, x_{2 n-1}, q t\right) \geq M_{1}\left(x_{2 n-1}, x_{2 n-1}, x_{2 n-2}, t\right) \cdots---
\]
-- (4)
From inequalities (3) and (4) we have
\[
\begin{aligned}
\mathrm{M}_{1}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}}, \mathrm{qt}\right) & \geq \mathrm{M}_{1}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}-1}, \mathrm{t}\right) \\
& \geq \mathrm{M}_{1}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}-2}, \mathrm{t} / \mathrm{q}\right) \\
& \vdots \\
& \geq \mathrm{M}_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{1}, \mathrm{x}_{0}, \mathrm{t} / \mathrm{q}^{\mathrm{n}-1}\right) \rightarrow 1
\end{aligned}
\]
as \(n \rightarrow \infty\)
Thus \(\left\{x_{n}\right\}\) is a Cauchy sequence in \(X\). Since \(X\) is complete, it converges to a point z in X .
Similarly \(\left\{\mathrm{y}_{\mathrm{n}}\right\}\) is a Cauchy sequence in Y and it converges to a point w in Y .
Suppose A is continuous, then
\[
\lim _{n \rightarrow \infty} \mathrm{Ax}_{2 \mathrm{n}}=\mathrm{Az}=\mathrm{w}
\]

Now we prove \(\mathrm{SAz}=\mathrm{z}\).
We have
\(4 \mathrm{M}_{1}(\mathrm{SAz}, \mathrm{SAz}, \mathrm{z}, \mathrm{qt})=\lim _{n \rightarrow \infty} 4 \mathrm{M}_{1}\left(\mathrm{SAz}, \mathrm{SAz}, T B x_{2 n-}\right.\)
\[
\begin{align*}
& =\lim _{n \rightarrow \infty} 4 \mathrm{M}_{1}\left(\mathrm{SAz}, \mathrm{SAz}, \mathrm{x}_{2 \mathrm{n}}, \mathrm{qt}\right) \\
& \geq \lim _{n \rightarrow \infty} \mathrm{M}_{1}\left(\mathrm{z}, \mathrm{z}, \mathrm{x}_{2 \mathrm{n}-1}, \mathrm{t}\right)+\mathrm{M}_{1}(\mathrm{z}, \mathrm{z}
\end{align*}
\]

SAz,t) +
SAz,t).
\[
\mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}-1}, \mathrm{TBx}_{2 \mathrm{n}-1}, \mathrm{t}\right)+\left[\mathrm{M}_{1}(\mathrm{z}, \mathrm{z},\right.
\]
\[
\left.\mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}-1}, T B \mathrm{x}_{2 \mathrm{n}-1}, \mathrm{t}\right)\right] / \mathrm{M}_{1}(\mathrm{z}, \mathrm{z},
\]
\(\mathrm{X}_{2 \mathrm{n}-1}, \mathrm{t}\) )
\[
\geq 2+2 \mathrm{M}_{1}(\mathrm{z}, \mathrm{z}, \mathrm{SAz}, \mathrm{qt})
\]

Therefore \(\mathrm{M}_{1}(\mathrm{SAz}, \mathrm{SAz}, \mathrm{z}, \mathrm{q} \mathrm{t}) \geq 1\)
Which implies \(M_{1}(S A z, S A z, z, q t)=1\) for each \(t>0\). Thus SAz = z.
Hence \(S w=z\). \((\) Since \(A z=w)\)
Now we prove BSw = w.
We have
\(4 \mathrm{M}_{2}(\mathrm{BSw}, \mathrm{BSw}, \mathrm{w}, \mathrm{qt})=\lim _{n \rightarrow \infty} 4 \mathrm{M}_{2}(\mathrm{BSw}, \mathrm{BSw}\),
\(\left.A T y_{2 n}, q t\right)\)
\[
\geq \lim _{n \rightarrow \infty} \mathrm{M}_{2}\left(\mathrm{w}, \mathrm{w}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{t}\right)+\mathrm{M}_{2}(\mathrm{w},
\]
w,BSw,t)+
\[
\mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}}, A T \mathrm{y}_{2 \mathrm{n}}, \mathrm{t}\right)+\left[\mathrm{M}_{2}(\mathrm{w}, \mathrm{w},\right.
\]

BSw,t).
\[
\left.\mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{ATy}_{2 \mathrm{n}}, \mathrm{t}\right)\right] /
\]
\(\mathrm{M}_{2}\left(\mathrm{w}, \mathrm{w}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{t}\right)\)
Therefore \(\mathrm{M}_{2}(\mathrm{BSw}, \mathrm{BSw}, \mathrm{w}, \mathrm{qt}) \geq 1\)
Which implies \(\mathrm{M}_{2}(\mathrm{BSw}, \mathrm{BSw}, \mathrm{w}, \mathrm{qt})=1\) for each \(\mathrm{t}>0\).
Thus BSw = w.
Hence \(B z=w\). (Since \(S w=z)\)
Now we prove TBz = z.
We have
\(4 \mathrm{M}_{1}(\mathrm{z}, \mathrm{z}, \mathrm{TBz}, \mathrm{qt})=\lim _{n \rightarrow \infty} 4 \mathrm{M}_{1}\left(\mathrm{SAx}_{2 \mathrm{n}}, \mathrm{SAx}_{2 \mathrm{n}}, \mathrm{TBz}, \mathrm{qt}\right)\)
\[
\geq \lim _{n \rightarrow \infty} \mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}}, \mathrm{z}, \mathrm{t}\right)+\mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}},\right.
\]
\(\left.\mathrm{x}_{2 \mathrm{n}}, \mathrm{SAx}_{2 \mathrm{n}}, \mathrm{t}\right)+\)
\(\left.\mathrm{x}_{2 \mathrm{n}}, \mathrm{TBz}, \mathrm{t}\right)\).
\[
\mathrm{M}_{1}(\mathrm{z}, \mathrm{z}, \mathrm{~TB}, \mathrm{t})+\left[\mathrm { M } _ { 1 } \left(\mathrm{x}_{2 \mathrm{n}},\right.\right.
\]
(2n,
\[
\left.\mathrm{M}_{1}\left(\mathrm{z}, \mathrm{z}, \mathrm{SAx}_{2 \mathrm{n}}, \mathrm{t}\right)\right] / \mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}},\right.
\]
\(\left.\mathrm{x}_{2 \mathrm{n}}, \mathrm{z}, \mathrm{t}\right)\)
Which implies \(\mathrm{M}_{1}(\mathrm{z}, \mathrm{z}, \mathrm{TB} z, \mathrm{qt})=1\) for each \(\mathrm{t}>0\).
Thus \(\mathrm{TB} \mathrm{z}=\mathrm{z}\).
Hence Tw = z. (Since Bz=w)
Now we prove ATw = w.
We have
\(4 \mathrm{M}_{2}(\mathrm{w}, \mathrm{w}, \mathrm{ATw}, \mathrm{qt})=\lim _{n \rightarrow \infty} 4 \mathrm{M}_{2}\left(\mathrm{BSy}_{2 \mathrm{n}-1}, \mathrm{BSy}_{2 \mathrm{n}-}\right.\)
1, ATw,qt)
\[
\geq \lim _{n \rightarrow \infty} \mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}-1}, \mathrm{w}, \mathrm{t}\right)+\mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}-1},\right.
\]
\(B S y_{2 n-1}\), t)
\[
\begin{gathered}
+M_{2}(w, w, A T w, t)+\left[M _ { 2 } \left(y_{2 n-1}, y_{2 n-}\right.\right. \\
\left.M_{2}\left(w, w, B S y_{2 n-1}, t\right)\right] / M_{2}\left(y_{2 n-}\right.
\end{gathered}
\]

1, ATw,t).
\(\left.{ }_{1}, \mathrm{y}_{2 \mathrm{n}-1}, \mathrm{w}, \mathrm{t}\right)\)
Which implies \(\mathrm{M}(\mathrm{w}, \mathrm{w}, \mathrm{ATw}, \mathrm{qt})=1\) for each \(\mathrm{t}>0\). Thus ATw = w.
The same results hold if one of the mappings \(B, S\) and T is continuous.

Uniqueness: Let \(z^{\prime}\) be another common fixed point of SA and TB in \(\mathrm{X}, \mathrm{w}^{\prime}\) be another common fixed point of BS and AT in Y.
We have
\[
4 \mathrm{M}_{1}\left(\mathrm{z}, \mathrm{z}, \mathrm{z}^{\prime}, \mathrm{qt}\right)=\mathrm{M}_{1}\left(\mathrm{SAz}, \mathrm{SAz}, \mathrm{TBz}^{\prime}, \mathrm{qt}\right)
\]
\[
\geq \mathrm{M}_{1}\left(\mathrm{z}, \mathrm{z}, \mathrm{z}^{\prime}, \mathrm{t}\right)+\mathrm{M}_{1}(\mathrm{z}, \mathrm{z}, \mathrm{SAz}, \mathrm{t})+
\]
\[
\mathrm{M}_{1}\left(\mathrm{z}^{\prime}, \mathrm{z}^{\prime}, \mathrm{TBz} z^{\prime}, \mathrm{t}\right)+
\]
[ \(\mathrm{M}_{1}(\mathrm{z}, \mathrm{z}, \mathrm{SAz}, \mathrm{t})\).
\[
\left.\mathrm{M}_{1}\left(\mathrm{z}^{\prime}, \mathrm{z}^{\prime}, \mathrm{TBz} z^{\prime}, \mathrm{t}\right)\right] /
\]
\(\mathrm{M}_{1}\left(\mathrm{z}, \mathrm{z}, \mathrm{z}^{\prime}, \mathrm{t}\right)\)
\[
=\mathrm{M}_{1}\left(\mathrm{z}, \mathrm{z}, \mathrm{z}^{\prime}, \mathrm{t}\right)+1+1+1 /
\]
\(\mathrm{M}_{1}\left(\mathrm{z}, \mathrm{z}, \mathrm{z}^{\prime}, \mathrm{t}\right)\)
\[
=\mathrm{M}_{1}\left(\mathrm{z}, \mathrm{z}, \mathrm{z}^{\prime}, \mathrm{t}\right)+2+1 / \mathrm{M}_{1}\left(\mathrm{z}, \mathrm{z}, \mathrm{z}^{\prime}, \mathrm{t}\right)
\]
\[
\geq \mathrm{M}_{1}\left(\mathrm{z}, \mathrm{z}, \mathrm{z}^{\prime}, \mathrm{t}\right)+2+1
\]
\[
=\mathrm{M}_{1}\left(\mathrm{z}, \mathrm{z}, \mathrm{z}^{\prime}, \mathrm{t}\right)+3
\]

Therefore \(\mathrm{M}_{1}\left(\mathrm{z}, \mathrm{z}, \mathrm{z}^{\prime}, \mathrm{qt}\right) \geq 1\)
That is \(\mathrm{M}_{1}\left(\mathrm{z}, \mathrm{z}, \mathrm{z}^{\prime}, \mathrm{q} \mathrm{t}\right)=1\) for each \(\mathrm{t}>0\).
Thus \(\mathrm{z}=\mathrm{z}^{\prime}\).
So the point \(z\) is the unique fixed point of ST. Similarly we prove the point w is also a unique fixed point of TS.

Remark: 2.6 In the above theorem if \(\mathrm{A}=\mathrm{B}\) and \(\mathrm{S}=\mathrm{T}\), we have the following corollary.

Corollary: 2.7 Let (X,M, *) and ( \(\mathrm{Y}, \mathrm{M}_{2},{ }^{*}\) ) be two complete M -fuzzy metric spaces . Let A be a mapping of X into Y and T be a mapping of Y into X satisfying the inequalities.
\(\mathrm{M}_{1}(\mathrm{TAx}, \mathrm{TAx}, \mathrm{TAx}, \mathrm{qt}) \geq \mathrm{M}_{1}\left(\mathrm{x}, \mathrm{x}, \mathrm{x}^{\prime}, \mathrm{t}\right)+\)
\(\mathrm{M}_{1}(\mathrm{x}, \mathrm{x}, \mathrm{TAx}, \mathrm{t})+\)
\[
\begin{gathered}
\mathrm{M}_{1}\left(\mathrm{x}^{\prime}, \mathrm{x}^{\prime}, \mathrm{TAx} \mathrm{TA}^{\prime}, \mathrm{t}\right)+\left[\mathrm{M}_{1}(\mathrm{x}, \mathrm{x}, \mathrm{TAx}, \mathrm{t}) .\right. \\
\left.\mathrm{M}_{1}\left(\mathrm{x}^{\prime}, \mathrm{x}^{\prime}, \mathrm{TBx} \mathrm{x}^{\prime}, \mathrm{t}\right)\right] /
\end{gathered}
\]
\(\mathrm{M}_{1}\left(\mathrm{x}, \mathrm{x}, \mathrm{x}^{\prime}, \mathrm{t}\right)\)
\(\mathrm{M}_{2}\) (ATy,ATy, ATy',qt) \(\geq \mathrm{M}_{2}\left(\mathrm{y}, \mathrm{y}, \mathrm{y}^{\prime}, \mathrm{t}\right)+\mathrm{M}_{2}(\mathrm{y}, \mathrm{y}\), ATy,t) +
\[
\mathrm{M}_{2}\left(\mathrm{y}^{\prime}, \mathrm{y}^{\prime}, \mathrm{ATy}^{\prime}\right)+\left[\mathrm{M}_{2}(\mathrm{y}, \mathrm{y},\right.
\]

ATy,t).
\[
\left.\mathrm{M}_{2}\left(\mathrm{y}^{\prime}, \mathrm{y}^{\prime}, \mathrm{ATy}^{\prime}, \mathrm{t}\right)\right] / \mathrm{M}_{2}(\mathrm{y},
\]
\(\left.\mathrm{y}, \mathrm{y}^{\prime}, \mathrm{t}\right)\)
for all \(x, x^{\prime}\) in \(X\) and \(y, y^{\prime}\) in Y. If one of the mappings \(A\) and \(T\) is continuous, then TA have a unique fixed point z in X and AT have a unique common fixed point \(w\) in \(Y\). Further, \(A z=w\) and \(T w=z\).
Theorem 2.8: Let ( \(\mathrm{X}, \mathrm{M}_{1}, *\) ) and ( \(\mathrm{Y}, \mathrm{M}_{2}, *\) ) be two complete M- fuzzy metric spaces. Let A and B be mappings from X to Y and S and T be mappings from Y to X satisfying the following inequalities
\(M_{1}\left(x, x, x^{\prime}, t\right) . M_{1}\left(S A x, S A x, T B x^{\prime}, q t\right) \geq \min \left\{M_{1}\left(x, x, x^{\prime}\right.\right.\), \(\mathrm{t})\).
\[
\mathrm{M}_{1}\left(\mathrm{x}^{\prime}, \mathrm{x}^{\prime}, T B x^{\prime}, \mathrm{t}\right), \mathrm{M}_{1}(\mathrm{x}, \mathrm{x}, \mathrm{SAx}, \mathrm{t}) \cdot \mathrm{M}_{1}(\mathrm{x},
\]
\(\left.\mathrm{x}^{\prime}, \mathrm{TBx}^{\prime}, \mathrm{t}\right)\),
\[
\mathrm{M}_{2}\left(\mathrm{Ax}, \mathrm{Ax}, \mathrm{Bx}^{\prime}, \mathrm{t}\right) . \mathrm{M}_{1}\left(\mathrm{x}, \mathrm{x}^{\prime}, \mathrm{TBx}^{\prime},\right.
\]
t),
\[
\begin{equation*}
\mathrm{M}_{1}\left(\mathrm{x}, \mathrm{x}^{\prime}, \mathrm{x}^{\prime}, \mathrm{t}\right) . \mathrm{M}_{1}\left(\mathrm{x}, \mathrm{x}^{\prime}, \mathrm{TB} x^{\prime},\right. \tag{1}
\end{equation*}
\]
\(\mathrm{M}_{2}\left(\mathrm{y}, \mathrm{y}, \mathrm{y}^{\prime}, \mathrm{t}\right) . \mathrm{M}_{2}\left(\mathrm{BSy}^{\prime}, \mathrm{ATy}, \mathrm{ATy}, \mathrm{qt}\right) \geq \min \left\{\mathrm{M}_{2}(\mathrm{y}, \mathrm{y}\right.\), \(\left.y^{\prime}, \mathrm{t}\right)\).
\(\mathrm{M}_{2}\left(\mathrm{y}^{\prime}, \mathrm{y}^{\prime}, \mathrm{BSy}^{\prime}, \mathrm{t}\right), \mathrm{M}_{2}(\mathrm{y}, \mathrm{y}, \mathrm{ATy}, \mathrm{t}) . \mathrm{M}_{2}\left(\mathrm{y}, \mathrm{y}^{\prime}\right.\), \(\mathrm{BSy}^{\prime}, \mathrm{t}\) ),
\[
\mathrm{M}_{2}\left(\mathrm{y}^{\prime}, \mathrm{y}^{\prime}, \mathrm{BSy}^{\prime}, \mathrm{t}\right) \cdot \mathrm{M}_{1}\left(\mathrm{Sy}^{\prime}, \mathrm{Sy}^{\prime},\right.
\]

Ty, t),
\(\mathrm{M}_{2}\left(\mathrm{y}, \mathrm{y}, \mathrm{y}^{\prime}, \mathrm{t}\right) \cdot \mathrm{M}_{2}\left(\mathrm{y}, \mathrm{y}^{\prime}, \mathrm{BSy}^{\prime}\right.\),
for all \(\mathrm{x}, \mathrm{x}^{\prime}\) in X and \(\mathrm{y}, \mathrm{y}^{\prime}\) in Y and \(0<\mathrm{q}<1\). If one of the mappings \(\mathrm{A}, \mathrm{B}, \mathrm{S}\) and T is continuous then SA and TB have a common fixed point \(z\) in \(X\) and BS and AT have a common fixed point w in Y . Further \(\mathrm{Az}=\mathrm{Bz}=\) w and \(\mathrm{Sw}=\mathrm{Tw}=\mathrm{z}\).

Proof: Let \(x_{0}\) be an arbitrary point in X . We define the sequences \(\left\{x_{n}\right\}\) in \(X\) and \(\left\{y_{n}\right\}\) in \(Y\) by
\(A x_{2 n-2}=y_{2 n-1} ; S y_{2 n-1}=x_{2 n-1} ; B x_{2 n-1}=y_{2 n} ; T y_{2 n}=x_{2 n}\) for \(\mathrm{n}=1,2,3, \ldots\).

Now we have
\(\mathrm{M}_{1}\left\{\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}-1}, \mathrm{t}\right) \cdot \mathrm{M}_{1}\left(\mathrm{SAx}_{2 \mathrm{n}}, \mathrm{SAx}_{2 \mathrm{n}}, \mathrm{TBx}_{2 \mathrm{n}-1}, \mathrm{qt}\right)\) \(\geq\) min
\[
\left\{\mathrm { M } _ { 1 } ( \mathrm { x } _ { 2 \mathrm { n } } , \mathrm { x } _ { 2 \mathrm { n } } , \mathrm { x } _ { 2 \mathrm { n } - 1 } , \mathrm { t } ) \cdot \mathrm { M } _ { 1 } \left(\mathrm{x}_{2 \mathrm{n}-1},\right.\right.
\]
\(\left.\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{TBx}_{2 \mathrm{n}-1}, \mathrm{t}\right)\),
\(\mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}}, \operatorname{SAx}_{2 \mathrm{n}}, \mathrm{t}\right) \cdot \mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}}\right.\),
\(\left.\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{TBx}_{2 \mathrm{n}-1}, \mathrm{t}\right)\),
\(\mathrm{M}_{2}\left(\mathrm{Ax}_{2 \mathrm{n}}, \mathrm{Ax}_{2 \mathrm{n}}, \mathrm{Bx}_{2 \mathrm{n}-1}, \mathrm{t}\right) \cdot \mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}}\right.\),
\(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{TBx}_{2 \mathrm{n}-1}, \mathrm{t}\), \(\mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}-1}, \mathrm{t}\right) \cdot \mathrm{M}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}-1}, \mathrm{TBx}_{2 \mathrm{n}-1}\right.\),
t) \(\}\)
\[
\geq \min \left\{M _ { 1 } ( x _ { 2 n } , x _ { 2 n } , x _ { 2 n - 1 } , t ) \cdot M _ { 1 } \left(x_{2 n-1}, x_{2 n-1},\right.\right.
\]
\(\mathrm{X}_{2 \mathrm{n}}, \mathrm{t}\) ),
\[
\mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}+1}, \mathrm{t}\right) \cdot \mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}},\right.
\]
t),
\(M_{2}\left(y_{2 n+1}, y_{2 n+1}, y_{2 n}, t\right) . M_{1}\left(x_{2 n}, x_{2 n-1}\right.\),
\(\left.x_{2 n}, t\right)\),
\[
\mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}-1}, \mathrm{t}\right) \cdot \mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}-1},\right.
\]
\(\left.\left.x_{2 n}, t\right)\right\}\).
which implies
\(M_{1}\left(x_{2 n+1}, x_{2 n+1}, x_{2 n}, q t\right) \geq \min \left\{M_{2}\left(y_{2 n}, y_{2 n}, y_{2 n+1}, t\right)\right.\), \(\left.\mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}-1}, \mathrm{t}\right)\right\}\).
(3)

Also we have
\(\mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}-1}, \mathrm{t}\right) \cdot \mathrm{M}_{2}\left(\mathrm{BSy}_{2 \mathrm{n}-1}\right.\), ATy \(_{2 \mathrm{n}}\), ATy \(\left._{2 \mathrm{n}}, \mathrm{qt}\right) \geq\) \(\min \left\{\mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}-1}, \mathrm{t}\right) \cdot \mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}-1}\right.\right.\),
\(\left.y_{2 n-1}, B S y_{2 n-1}, t\right)\),
\[
\mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}}, \text { ATy }_{2 \mathrm{n}}, \mathrm{t}\right) \cdot \mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}-1},\right.
\]
\(\mathrm{BSy}_{2 \mathrm{n}-1}, \mathrm{t}\),
\(\mathrm{M}_{2}\left(\mathrm{y}_{2 n-1}, \mathrm{y}_{2 \mathrm{n}-1}, B S y_{2 n-1}, \mathrm{t}\right) \cdot \mathrm{M}_{1}\left(\mathrm{Sy}_{2 \mathrm{n}-1} \mathrm{Sy}_{2 \mathrm{n}-1}\right.\)
\(\left.T y_{2 n}, t\right)\),
\[
\mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}-1}, \mathrm{t}\right) \cdot \mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}-1},\right.
\]
\(\left.\left.\mathrm{BSy}_{2 \mathrm{n}-1}, \mathrm{t}\right)\right\}\)
\[
\geq \min \left\{\mathrm { M } _ { 2 } ( \mathrm { y } _ { 2 \mathrm { n } } , \mathrm { y } _ { 2 \mathrm { n } } , \mathrm { y } _ { 2 \mathrm { n } - 1 } , \mathrm { t } ) \mathrm { M } _ { 2 } \left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}-1},\right.\right.
\]
\(\left.y_{2 n}, t\right)\),
\(\mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}+1}, \mathrm{t}\right) . \mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}-1}\right.\),
\(\left.y_{2 n}, t\right)\),
\[
\mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{t}\right) \cdot \mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}-1},\right.
\]
\(\mathrm{x}_{2 \mathrm{n}}, \mathrm{t}\),
\[
\mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}-1}, \mathrm{t}\right) \cdot \mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}-1},\right.
\]
\(\left.\mathrm{y}_{2 \mathrm{n}}, \mathrm{t}\right)\) \}
which implies
\(M_{2}\left(y_{2 n}, y_{2 n+1}, y_{2 n+1}, q t\right) \geq \min \left\{M_{2}\left(y_{2 n-1}, y_{2 n}, y_{2 n}, t\right)\right.\), \(\mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}}, \mathrm{t}\right) \ldots\)
(4)

Using (3) and (4) we have
\(M_{1}\left(x_{n}, x_{n}, x_{n+1}, q t\right) \geq \min \left\{M_{1}\left(x_{n-1}, x_{n-1}, x_{n}, t\right)\right.\),
\[
\mathrm{M}_{2}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}},\right.
\]
\[
\left.\left.\mathrm{y}_{\mathrm{n}+1}, \mathrm{t} / \mathrm{q}\right)\right\} \ldots(5)
\]
\(\mathrm{M}_{2}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}, \mathrm{qt}\right) \geq \min \left\{\mathrm{M}_{2}\left(\mathrm{y}_{\mathrm{n}-1}, \mathrm{y}_{\mathrm{n}-1}, \mathrm{y}_{\mathrm{n}}, \mathrm{t}\right)\right.\),
\[
\begin{equation*}
\mathrm{M}_{1}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}},\right. \tag{6}
\end{equation*}
\]

Using inequalities (5) and (6) we have
\(\mathrm{M}_{1}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{qt}\right) \geq \min \left\{\mathrm{M}_{1}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}, \mathrm{t}\right), \mathrm{M}_{2}\left(\mathrm{y}_{\mathrm{n}}\right.\right.\), \(\left.\left.\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}, \mathrm{t}\right)\right\}\)
\[
\begin{aligned}
& \geq \min \left\{\mathrm{M}_{1}\left(\mathrm{x}_{0}, \mathrm{x}_{0}, \mathrm{x}_{1}, \frac{t}{q^{n-1}}\right), \mathrm{M}_{2}\left(\mathrm{y}_{1}, \mathrm{y}_{1}, \mathrm{y}_{2}\right.\right. \\
& \left.\left.\frac{t}{q^{n-1}}\right)\right\}
\end{aligned}
\]

\section*{\(\rightarrow 1\) as \(n \rightarrow \infty\)}

Thus \(\left\{x_{n}\right\}\) is a Cauchy Sequences in \(X\). Similarly we prove \(\left\{\mathrm{y}_{\mathrm{n}}\right\}\) is a Cauchy sequence in Y respectively. Since , \(\left(X, M_{1}, *\right)\) and \(\left(Y, M_{2}, *\right)\) are complete, \(\left\{\mathrm{X}_{\mathrm{n}}\right\}\) converges to a point z in X and \(\left\{\mathrm{y}_{\mathrm{n}}\right\}\) converges to a point w in Y.
Suppose \(A\) is continuous, then \(\lim _{n \rightarrow \infty} \mathrm{Ax}_{2 n}=A z=y_{2 n+1}\) \(=\mathrm{w}\)
Applying inequality (1), we have
\(\mathrm{M}_{1}\left(\mathrm{z}, \mathrm{z}, \mathrm{x}_{2 \mathrm{n}-1}, \mathrm{t}\right) \cdot \mathrm{M}_{1}\left(\mathrm{SAz}, \mathrm{SAz}, \mathrm{TBx}_{2 \mathrm{n}-1}, \mathrm{qt}\right)\)
\(\geq\)
\[
\min \left\{M _ { 1 } ( z , z , x _ { 2 n - 1 } , t ) \cdot M _ { 1 } \left(x_{2 n-1}, x_{2 n-1},\right.\right.
\]
\(\left.\mathrm{TBx}_{2 n-1}, \mathrm{t}\right)\),
\[
\mathrm{M}_{1}(\mathrm{z}, \mathrm{z}, \mathrm{SAz}, \mathrm{t}) \cdot \mathrm{M}_{1}\left(\mathrm{z}, \mathrm{x}_{2 \mathrm{n}-1}, \mathrm{TBx}_{2 \mathrm{n}-1},\right.
\]
t),
\[
\mathrm{M}_{2}\left(\mathrm{Az}, \mathrm{Az}, \mathrm{Bx}_{2 \mathrm{n}-1}, \mathrm{t}\right) \cdot \mathrm{M}_{1}\left(\mathrm{z}, \mathrm{x}_{2 \mathrm{n}-1}, \mathrm{TBx}_{2 \mathrm{n}-1},\right.
\]
t),
\[
\mathrm{M}_{1}\left(\mathrm{z}, \mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}-1}, \mathrm{t}\right) \cdot \mathrm{M}_{1}\left(\mathrm{z}, \mathrm{x}_{2 \mathrm{n}-1}, \mathrm{TBx}_{2 \mathrm{n}-1},\right.
\]
t) \(\}\)

Taking limit as \(\mathrm{n} \rightarrow \infty\), we have
\(\mathrm{M}_{1}(\mathrm{SAz}, \mathrm{SAz}, \mathrm{z}, \mathrm{qt}) \geq \mathrm{M}_{1}(\mathrm{z}, \mathrm{z}, \mathrm{SAz}, \mathrm{t})\)
which is a contradiction since \(\mathrm{q}<1\).
Thus \(\mathrm{SAz}=\mathrm{z}\).
Hence \(S w=z(\) Since \(A z=w)\)
Applying inequality (2) we have
\(\mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{w}, \mathrm{t}\right) . \mathrm{M}_{2}\left(\mathrm{BSw}\right.\), ATy \(_{2 \mathrm{n}}\), ATy \(\left.\mathrm{y}_{2 \mathrm{n}}, \mathrm{qt}\right)\)
\(\geq \min \left\{\mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{w}, \mathrm{t}\right) . \mathrm{M}_{2}(\mathrm{w}, \mathrm{w}, \mathrm{BSw}, \mathrm{t})\right.\),
\(\mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{w}, \mathrm{BSw}, \mathrm{t}\right) \cdot \mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}}, A T y_{2 \mathrm{n}}\right.\),
t),
\[
\mathrm{M}_{2}(\mathrm{w}, \mathrm{w}, \mathrm{BSw}, \mathrm{t}) . \mathrm{M}_{1}\left(\mathrm{Sw}, \mathrm{Sw}, \mathrm{Ty}_{2 \mathrm{n}}, \mathrm{t}\right)
\]
\(\left.\mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{w}, \mathrm{t}\right) \cdot \mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{w}, \mathrm{BSw}, \mathrm{t}\right)\right\}\)
Taking limit as \(\mathrm{n} \rightarrow \infty\), we have
\[
\mathrm{M}_{2}(\mathrm{BSw}, \mathrm{w}, \mathrm{w}, \mathrm{qt}) \geq \mathrm{M}_{2}(\mathrm{w}, \mathrm{w}, \mathrm{BSw}, \mathrm{t})
\]

Thus BSw = w.
Hence \(\mathrm{Bz}=\mathrm{w}\) (Since \(\mathrm{Sw}=\mathrm{z}\) ).
Applying inequality (1) again, we have
\(\mathrm{M}_{1}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}}, \mathrm{z}, \mathrm{t}\right) \cdot \mathrm{M}_{1}\left(\mathrm{SAx}_{2 \mathrm{n}}, \mathrm{SAx}_{2 \mathrm{n}}, \mathrm{TBz}, \mathrm{qt}\right)\)
\(\geq \min \left\{M_{1}\left(x_{2 n}, x_{2 n}, z, t\right) \cdot M_{1}(z, z, T B z\right.\),
t),
\[
\begin{array}{r}
M_{1}\left(x_{2 n}, x_{2 n}, S A x_{2 n}, t\right) M_{1}\left(x_{2 n}, z, T B z, t\right), \\
M_{2}\left(A x_{2 n}, A x_{2 n}, B z, t\right) \cdot M_{1}\left(x_{2 n}, z, T B z, t\right), \\
\left.M_{1}\left(x_{2 n}, z, z, t\right) \cdot M_{1}\left(x_{2 n}, z, T B z, t\right)\right\}
\end{array}
\]

Taking limit as \(\mathrm{n} \rightarrow \infty\), we have
\(\mathrm{M}_{1}(\mathrm{z}, \mathrm{z}, \mathrm{TBz}, \mathrm{qt}) \geq \mathrm{M}_{1}(\mathrm{z}, \mathrm{z}, \mathrm{TBz}, \mathrm{t})(\) since \(\mathrm{q}<1\) )
which is a contradiction
Thus \(\mathrm{TBz}=\mathrm{z}\)
Hence \(\mathrm{Tw}=\mathrm{z}(\) Since \(\mathrm{Bz}=\mathrm{w})\)
Applying inequality (2), we have
\(M_{2}\left(w, w, y_{2 n-1}, t\right) \cdot M_{2}\left(\right.\) BSy \(\left._{2 n-1}, A T w, A T w, q t\right)\) t),
\(\geq \min \left\{\mathrm{M}_{2}\left(\mathrm{w}, \mathrm{w}, \mathrm{y}_{2 \mathrm{n}-1}, \mathrm{t}\right) \cdot \mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}-1}, B S \mathrm{y}_{2 \mathrm{n}-1}\right.\right.\),
\[
\mathrm{M}_{2}(\mathrm{w}, \mathrm{w}, \mathrm{ATw}, \mathrm{t}) \cdot \mathrm{M}_{2}\left(\mathrm{w}, \mathrm{y}_{2 \mathrm{n}-1},\right.
\]
\(\mathrm{BSy}_{2 \mathrm{n}-1}, \mathrm{t}\),
\(\mathrm{M}_{2}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}-1}, B S y_{2 \mathrm{n}-1}, \mathrm{t}\right) . \mathrm{M}_{1}\left(\mathrm{Sy}_{2 \mathrm{n}-1}\right.\),
\(\left.S y_{2 n-1}, T w, t\right)\),
\[
\mathrm{M}_{2}\left(\mathrm{w}, \mathrm{w}, \mathrm{y}_{2 \mathrm{n}-1}, \mathrm{t}\right) \cdot \mathrm{M}_{2}\left(\mathrm{w}, \mathrm{y}_{2 \mathrm{n}-1}\right.
\]
\(\left.\left.\mathrm{BSy}_{2 \mathrm{n}-1}, \mathrm{t}\right)\right\}\)
Taking limit as \(\mathrm{n} \rightarrow \infty\), we have
\(\mathrm{M}_{2}(\mathrm{w}, \mathrm{ATw}, \mathrm{ATw}, \mathrm{qt}) \geq \mathrm{M}_{2}(\mathrm{w}, \mathrm{w}, \mathrm{ATw}, \mathrm{t})\)
which is a contradiction, since \(\mathrm{q}<1\).
Thus ATw = w.
The same results hold if one of the mappings \(B, S\) and T is continuous.

\section*{REFERENCES}
[1] Dhage ,B.C. , Bull. Calcutta Math. Soc., 84(4) (1992), 329-336. Surjeet Singh Chauhan Adv. Appl. Sci. Res., 2013, 4(2):212218.
[2] George ,A and Veeramani ,P, Fuzzy Sets and Systems, 64(1994), 395-399.
[3] Kramosil ,I. and Michalek, J., Kybernetica, 11 (1975),326-334.
[4] Naschie MS,El , Solitons and Fractals, 9 (1998) ,517-529.
[5] Naschie MS,El, Chaos, Solitons and Fractals, 19(2004) 209-236.
[6] Naschie MS,El, Int Journal of Nonlinear Science and Numerical Simulation, 6 (2005),95-98.
[7] Naschie MS,El , Chaos, Solitons and Fractals, 27(2006), 9-13.
[8] S. Sedghi and N. Shobe, Fixed point theorem in M-fuzzy metric spaces with property (E), Advances in Fuzzy Mathematics, 1(1): 55-65(2006).
[9] L.A. Zadeh., Inform and Control, 8 (1965),338-353.```

