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Abstract: In the present work, we consider the 

solidification of a binary alloy and analytically analyse 

the linear stability of the quiescent state by considering 

the basic, first and second order systems of the governing 

differential equations. The specific interest with which 

the study is carried out is to identify a model and the 

corresponding parametric values which could suppress 

the formation of chimney convection and annihilate the 

formation of freckles which cause imperfections in the 

resulting solid. The asymptotic limits considered here are 

a near-eutectic approximations, large far-field 

temperature and variable permeability. The 

consideration of large Stefan number incorporates a key 

balance for the existence of compositional convection. 

The important results of the present study are, (i) an 

active mushy layer is more stable than a passive mushy 

layer, (ii) the far-field temperature has a destabilising 

effect on the marginal stability curves as expected, (iii) 

there is a reduction in the mushy layer thickness for 

large far-field temperature, and (iv) the influence of the 

governing parameters is remarkable on the vertical 

velocity component, temperature and local solid fraction 

profiles. Finally it is concluded that, through an 

analytical approach it is possible to determine the 

accurate solutions which could control or supress the 

chimney formation during the solidification process 

which is a burning problem in the areas like metal 

casting, sea dynamics etc. It is found that the results of 

the present study are very much closer to the 

experimental results, 

Keywords: Mushy layer, Solidification, Compositional 
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I.  INTRODUCTION 

During the solidification process of binary or 

multicomponent alloys, the planar solidification 

front becomes morphologically unstable due to the 

constitutional undercooling which results in a 

mushy layer, the internal structure of which is 

composed of fine-scale crystals or dendrites 

through which the residual melt can flow. The 

interesting phenomenon observed at this stage is 

the occurrence of compositional convection. The 

driving force for this convection is the density 

gradient developed in the layer due to the rejected 

lighter component in the mixture. The dynamical 

behaviour of a mushy layer strongly depends on the 

complex interactions between the convection and 

the transfer of heat and solute which can 

remarkably modify the shape, structure and rate of 

the crystal growth. Accordingly, the distribution 

and the dissolution of the dendrites in the layer, 

induced by the convective process eventually lead 

to the alteration of the permeability or the solid matrix of 

the mushy layer under consideration. 

Convection in a mushy layer (also known as a dendritic 

layer) that is formed during the solidification of binary or 

multicomponent alloys, produces catastrophic effects on 

the crystal formed due to the formation of chimneys 

which are  narrow, cylindrical dendrite free regions. The 

flow of fluid or convection in chimneys causes the hair – 

like imperfections called „freckles‟ in the solid formed 

which are to be eliminated as they spoil the quality and 

the structure of the resulting crystal. The study of 

convection in a mushy layer has attracted several 

researchers during the past three decades. The main 

objective behind their study is to understand chimney 

convection and also to specify a model that can control or 

suppress the formation of freckles. 

 

Especially in metallurgy, dynamics of sea and 

geophysics, the mechanism and the process of formation 

of chimneys which spoil the quality, physical properties 

and the internal structure of the resulting solid, are 

important study areas[1]-[3]. In the past three decades the 

study pertaining to the development of different 

convective models and analysis for the case of 

convection in mushy layers has attracted researchers 

[4],[5]. The works connected with the formulation of the 

governing equations in the study of convection in mush 

layers, the development of mathematical models and the 

solution procedure are available[6],[7] . Linear and 

weakly nonlinear convective instability in a mushy layer 

have been studied by quite a number of researchers under 

different types of assumptions and approximations[7],[8] 

[9]-[13]. Quite a number of works on convective flow in 

a mushy layer is available. A detailed review on 

convection in mushy layers is given by [8],[14]. Recently 

[15]-[17] have applied weakly nonlinear evolution 

approach to study two-dimensional convective motions 

in a mushy layer with impermeable solidification front 

under different situations. Also [18] have studied 

numerically the effects of inertia on convection in a 

mushy layer with constant permeability. Experimentally 

a number of researchers [19],[1],[2],[20]-[25] have 

studied convection in mushy layers.  

Further in the case of convection in a mushy layer under 

the external constraints, [26],[27] have studied 

compositional convection numerically under the 

influence of weak and strong vertical magnetic fields. 

The results predict that the chimney formation could be 

controlled in the presence of magnetic field. Numerically, 

[28] have studied the effect of variable permeability on 

convection in a mushy layer during the solidification 
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process in the presence and absence of an external 

magnetic field. For their computations they have 

considered large mushy layer thickness (δ = 2) and 

small for field temperature (Ɵ∞ = 0.1 to 0.3). Their 

results predict that convection in a mushy layer 

decreases with the increase in the magnetic field 

and increase in the far-field temperature. Recently 

[29],[30] have studied analytically the effects of 

inertia and permeability on the marginal stability 

curves and on the profiles of vertical velocity 

component, temperature, local solid fraction. The 

results are interesting. Thus the main objective of 

the present investigation is to have a good 

knowledge about the formation of chimney in a 

mushy layer during alloy solidification and present 

a model that could control or suppress the 

formation of chimneys so that the formation of 

freckles could be eliminated and the manufacturing 

process associated with the solidification process 

could be remarkably improved. 

 

II. MATHEMATICAL FORMULATION 

The physical configuration consists of a horizontal 

mushy layer formed during the solidification of a 

binary alloy as shown in fig 1. The process of 

uniform cooling from below of the system results 

in the upward advancement of the solid – mush 

interface with a constant solidification speed V0 .In 

other words, the mushy layer is sandwiched 

between the solid and the liquid regions. The study 

is carried out in a moving frame of reference.  

 
Fig. 1 The schematic diagram of the physical 

system 

Following are the assumptions made for the study: 

i.  The top and the bottom boundaries of the mushy 

layer are assumed to be isothermal, non-deformable 

and impermeable to the fluid flow, so that the 

mushy layer is kept dynamically isolated from the 

other components of the system [10]. 

ii. The solidification front is moving upwards with 

a velocity V0 relative to the solid formed and the 

solid dendrites within the mushy layer. This makes 

the basic state to be steady. 

iii. The temperature T and the composition C of the 

liquid in the mushy layer are required to satisfy a 

linear liquidus relationship T = T0 (C0) +  (C – 

C0),   where  is a constant. The liquid is assumed 

to be Newtonian with a linearized equation of 

state =  0[1 +  (C- C0)] where   is the density of 

the liquid and ρ0 is a reference density,   =  *– α 

* , α *and  *are constant exponent coefficients for 

heat and solute respectively [31]. 

iv. IV. First, following [10] we study in the limit in which 

the thickness of the mushy layer is much less than the 

diffusion length scale by letting     1. 

v. V. However that a key implication of the near-eutectic 

approximations C= O ( δ-1 ) is that the solid fraction is 

small and hence the permeability is uniform to the lowest 

order. As a consequence, we follow[10] and expand the 

permeability in terms of the small solid fraction : 

K( Φ )  = 1+ K1( Φ ) + K2(Φ2) + K3(Φ3)+----------      

(1) 

where on physical grounds, we demand that K1, K 2, K3, 

….etc are to be non-negative. 

 

Under the above assumptions and approximations the 

governing equations of the system are Conservation of 

momentum, Conservation of mass, Conservation of heat 

and solute: 

K(Φ) 
q

 + (      ) g. k


+ ∇p = 0    (2) 

∇.
q

 = 0       (3) 

  

  
 + (

q
.∇) T = k ∇2 T +  



hl

  

  
    (4) 

 


 
  

  
 + (

q
.∇) C = (C – C0)

  

  
    (5) 

 

where 

   = 1-


: Local solid fraction, 


: Local liquid fraction, 

P : Dynamic pressure,  = ( ), permeability is a 

function of the local solid fraction,


: Dynamic 

viscosity, t, T, k,  hl ,


 are time, temperature, thermal 

diffusivity, specific heat, latent heat/unit mass , Cs: 

Composition of the solid phase , C0 : Composition of the 

liquid phase ,   ,  0 :  densities ,  g  = (0,0,g) acceleration 

due to gravity,  ( ) : The reference permeability, q   = u 

i + vj +w k , d: the mushy layer thickness, q is the Darcy 

velocity vector and (u,v,w) are the horizontal and vertical 

components of q ,i, j, k : unit vectors along the x, y and 

z axes. 

The boundary conditions are: 

T = Te, w = 0 on z = 0,   

T = T0, w = 0, Φ = 0 on z = d.    (6) 

Here T0 is the temperature at the mush-liquid interface (z 

= d) and Ts and Cs are the eutectic temperature and 

concentration at the mush-solid interface (z = 0). 

 

The dimensionless equations using the scales mentioned 

below are: 

K(Φ) q  + R.Ɵ. k̂  + ∇ P = 0       (7) 

(∂t − ∂z)(θ −SΦ)+ ( q .∇) θ = ∇2 θ,        (8)  
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(∂t − ∂z) ((1 − Φ) θ + C Φ) + ( q ∇) θ =0,       (9) 

∇. q  = 0.        (10) 

In this paper the case of variable permeability i.e., 

K   1 is studied. The scales used for the non- 

dimensionalisation of the governing equations are 

q = V0 .. q *(velocity) 

(x,y,z) = 
 

  
(x*,y*,z*) (length) 

t = 
 

   
t* (time) 

p = 
 

  ( )
p*(pressure) 

K = 
  ( )

 ( )
       (11) 

 

The dimensionless parameters appearing in the 

problem are: 

R = 
        ( )  

            
 (Rayleigh number) 

   is the volume expansion coefficient of the 

combined heat and solute[6]. 

S = 
  

      
 : Stefan Number 

C = 
  –   

   
  : Concentration Ratio 

where 

   = T0 – Te,      = C0 – Ce,  π(0) is the reference 

of π 

t: Time variable 

Φ: Local solid fraction 

 : Kinematic viscosity 

V 0 : Velocity of the solidification front     (12) 

θ = 
    

  
 = 

    

   
 (The non-dimensional temperature 

or composition) 

 

The dimensionless boundary conditions are: 

The non-dimensional boundary conditions at the 

upper boundary z = d correspond to an 

impermeable (rigid) flat boundary with zero solid 

fraction (i.e.,   =0).Thus we have 

θ = -1,w = 0 @ z =0 

θ = 0,   =0, w = 0 @ z =δ       (13) 

where  δ = 
    

 
 is the growth peclet number and 

also the dimensionless thickness of the mushy layer 

 

III. Method of solution 

The method of solution constitutes two stages viz., 

basic state analysis and linear stability analysis. In 

the case of variable permeability, K is a function of 

porosity or the local solid fraction and is expressed 

as K(x,y,z,t) = 
  ( )

  ( )
 which is similar to the Kozney-

Carman relation[8]. The case of constant 

permeability corresponds to the decoupling of 

permeability and porosity. In that case  

 ( ) = [1-   (x, y,z,t)] n , n = 0               

(14) 

 

In general the permeability function is considered as  

 (Φ) = (1 - Φb ) –n, n   0               (14a) 

In the case of constant permeability, n = 0 and K=1,  

While in the case of variable permeability, n = 3, so that 

K ( Φ ) = (1 - Φb ) –3  =  
 


  : Φ = Φ(z)            (14b) 

The present study is for the case of variable permeability 

where n = 3. As discussed earlier, the physical 

configuration is such that it consists of a mushy layer, in 

which Te is the eutectic temperature at which the lower 

mush – solid interface is maintained and T∞ is the 

temperature of the liquid far above the mushy layer. 

Further T0 (C0) is the liquidus temperature of the alloy 

such that T∞ > T0 (C0) and the mushy layer is assumed 

to be in a state of thermodynamic equilibrium so that 

T = T0 (C0) +  (C – C0)                (15) 

 

IV. BASIC STATE ANALYSIS 

 

The basic state corresponds to the steady motionless state 

in which 
q


 = 0 and 
 

  
 = 0. Thus we have the following 

set of equations: 

Conservation of solute: 

(1 –  b) D θ b+ D  b (C - θ b) = 0               (16) 

Conservation of heat: 

D 2 θ b+ D θ b – S D  b = 0                

(17) 

Conservation of momentum  
   

  
 – K. θ b= 0                 (18) 

The boundary conditions are 

θ b = -1  @ z = 0 

Dθ b = θ ∞,  b = 0 @ z = δ                

(19) 

Where, θ ∞ is the far-field temperature. Here we take 

  b= δ b0 , θ b= θ b0                (20) 

Substituting (19) in (15) and (16) we get 

    (1-δ  b0)Dθb0+δD b0(C-   θb0)=0              

(21) 

D 2 θ b0 + D θ b0 – δ S.D  b0 = 0                (22) 

Collecting the terms of O (δ0) and O (δ) from (21) and 

(22) and solving the differential equations by using (19), 

we get the basic state solutions as 

θ b0  = (- 1 + e θ ∞) - e θ ∞.                  (22a)  

or  

θ b0  =  - 1 + e θ ∞ - e θ ∞.(1+z),  

so that 

θ b = θ b0 = - 1 + e. θ ∞ z    

   

Finally, we can write 

θ b= C1 + C2 z and           =  C3 + C4 z            (22b) 

where  

C1 = ( -1+      ), C2 =       C3 = -(C+S+1),  

C4 =       
 

V.  LINEAR STABILITY ANALYSIS 

 

As discussed earlier the analysis consists of two stages 

viz., the basic state analysis and the linear stability 
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analysis. For this purpose, we consider the 

expansion of the dependent variable Ɵ and Φ as  

W(x,y,z,t) = 0 +  ŵ  (x,y,z,t),  

ŵ  = (w00+ δ w01) (      ) 

θ (x,y,z,t)= θ b + ̂ (x,y,z,t),  

̂ = (θ 00+ δ θ 01) (      ) 

Φ(x,y,z,t)  = Φb +  
̂

 (x,y,z,t) ,  

̂   =(Φ00+ δ Φ01) (      ) 
R= R00 + δ R01        (23) 

where   is the perturbation parameter with  << 1 

and ŵ ,̂  and 
̂

are the perturbed quantities, 

which are expanded in terms of a small parameter 

δ. Here k is the horizontal component of the wave 

number α and σ is the growth rate of the 

disturbance. Further W00, W01, θ 00, θ 01, Φ00, 

Φ01 are purely functions of z. The basic state 

analysis has been performed in sec IV. Next from 

equations (6) to (9) and (23), the localized 

perturbed system is given by  

K(Φ).
q


+ ∇ p̂
 + R

ˆˆk   = 0      (24) 

(∂t - ∂z -∇ ) ̂  - S (∂t - ∂z )
̂

+ ŵ  D θ b = 0

     (25) 

(∂t - ∂z) [(θ b - C) Φ - (1 - Φb)̂  ]- ŵ D θ b = 0   

(26) 

 

together with the boundary conditions (27) and 

(28). The upper boundary i.e., mush-liquid 

interface is assumed to be flat and impermeable 

with zero solid fraction and whose temperature is 

equivalent to the liquidus temperature of the mushy 

layer as discussed earlier. Further the continuity of 

heat flux at the boundary is also assumed in order 

to facilitate the solution process. Mathematically, 

these are expressed as  

ŵ  =̂  = 0 @ z = 0       (27) 

ŵ = ̂  = 
̂

=0 @ z=δ    

All the quantities have their predefined meanings 

(In all the future expressions, the „caps‟ are 

dropped for the sake of simplicity). Next, we 

eliminate the pressure in (24), by applying curl 

twice and then consider the z – component of the 

equation for further analysis. In fact, the 

application of the transformation 
 

  
[
 (   )

  
 + 

 (   )

  
] - ∇1 2(kth)      (28) 

on the momentum equation (in the component 

form) is same as that of applying curl twice and 

considering  the z-component of the result. Now by 

using the following result, the resulting equations 

are obtained: 

 

∇x∇x(K(Φ)
q

) k̂ =  
 

  
[
 (   )

  
+
 (   )

  
]-  

 (kth)      (28a) 

Here, we are using the following results ; 
 

  
[
 ( ( )) 

  
 + 

 ( ( )) 

  
]-   

 (K(Φ) w)= 
 

  
[(1- Φb ) –3 {ux 

+ vy -   
 w} – 3 (1 - Φb ) –4 D Φb Dw             (28b) 

where D = 
 

  
 .We write the resulting perturbed system as 

∇2 w +
      

(    )
 DW - R α2 (1-   )3 Ɵ =0              (29) 

(∂t- ∂z+ ∇2)θ–S((∂t-∂z) -(1-  )θ ] -Dθbw = 0             

(30) 

(∂t - ∂z) [(1-   ) θ –( θb – c)   ] + D θb w = 0             

(31) 

Now by using the expansion (23) through the normal 

mode approach for the physical variables, we write the 

system of order (δ) 0 as 

∇2w00+
 

(       )
DΦbDw00–R.α2Ɵ00(1-Φb) 3 = 0             

(32) 

(D2 +D – α2 - σ) θ 00 –S (D – σ)  00 – D θ b W00 = 0    

(33) 

(D– σ) [(θb–C) 00–(    )θ00]+DθbW00 = 0              

(34) 

The above system can be expressed as  

L α00 = 0 

where α00 = [w00, θ 00, 00] T, T denotes the transpose 

and L is the linear operator given by 

 

L =      

 

 
     

2 2 2 3b  
00 b

b

2 2 

b

b b b b  b

3
(D  –  ) . R  (1 ) 0

1

-D D  D –    –S  D –  

D D –  1 D –  - C

D
D

D D


  



   

      

  


 

   

      (35) 

By letting Ɵ00 = -Sinπz, the solutions for the system (32) 

to (34) are given by 

 00 = A1* Sinπz + A2* Cosπz + b1 (z)      (36) 

 00 = A1Sinπz + A2 Cosπz + b2 (z) 

where                              

b1 (z) = A2*z and  b2(z) = A2 (2z – 1)   

   

A1* = 
       

(          )
    

A 2* = 
 (     )

 (          )
 

A1 =
        

   
 (        )  

A2 = 
    

   
    

 (        )     

For the marginal stability σ = 0 and by using the above 

results in (32), the expression for R00 is obtained: 

R00 = 
(     )  

  
  + 

         

  
               (37) 

where α is the wave number. Now in order to compute  

R = R00 + δ R01, we consider from (7) to (10) and (23), 

the system of order δ as  

(D2–α2)W01+
     

(    )
Dw01–R01α2 (    )

 θ00 - 

R00α2(    )
 θ01-R00α2(    )

 θ00=0         (38 ) 
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(D2 +D–α2-σ)θ01–S(D–σ) 01 –DθbW01 = 0      

(39) 

(D–σ)[(θb–C) 01–(    )θ01]+DθbW01 = 0     

(40) 

By using the results of the first - order system and 

the solvability condition, the inhomogeneous 

equation (38) is solved for R01 in which the higher 

order effects appear. Thus we have 

 

R01 = 
 
      

 
   
  –  

       
   
 
     

  (     
  
 
 )

   
  
 
  
   
 
(     

  
 
 ) 

 

        (41) 

where, the other quantities have their predefined 

meanings. The critical value αc corresponding to 

R00 is   and R0c = 2A1. Marginal stability curves 

for R = R00 + δ R01 are presented in fig.2 and 3 

for the experimental values [21] of the parameters 

S= 3.2, C=9, θ∞=0.6,0.7 and δ=0.0, 0.03, 0.06 

respectively. The results are in excellent agreement 

with the numerical results of [28]. In order to study 

the effects of variable permeability on the vertical 

component of velocity w, temperature Ɵ and the 

solid fraction  , the second order system O(δ) is 

solved by using the results of the basic state and the 

first order systems, with the computed value of R01 

by solving the respective differential equations 

along with the boundary conditions. The following 

results are obtained: 

 01 = C10Sinπz + C11Cosπz + b3 (z)                   

(42) 

 01 = C12Sinπz + C13Cosπz + b4 (z)                    

(43) 

 01 = C14Sinπz + C15Cosπz + b5 (z)                    

(44) 

where 

 

P1 = 1 ,       P2 = e Ѳ∞ ,  C1 = (-

1+eѲ∞), C2 = eѲ∞,  C3 = -(C+S+1),  C4  = 

e Ѳ∞,  

C5 = - α 2 R01 ,  C6  = 0. 

C7  = -[(π 2 + α 2)  C5  + π (1-S)C6 ] ,  

  

C8 = [-(π 2 + α 2) C6   π (1-S) C5 ] ,  

 C9   =  
[          (          )]

 (        )
 ,     

C10   =  
 (       )             

             
             

 ,    

C11   =  
 (       )             

             
             

,   

C12   =  
 (           ) (   

       )    

         
, 

  C13  =  
 (            ) (   

       )    

         
,             

C14   = 
        

   
 
  

         
 ,      C15  =  

          
   
 
  

          
, 

C91 = (π 2 + α 2) 2   - 3C4 (1-S) π 2,    

C92 = -3C4 (π 2 + α 2)   - (π 2 + α 2) (1-S) 

 b3 (z) = (2z – 1) C11,     b4 (z) = (2z – 1) C13 ,    b5 = 

C15 (z)  

By using the above results the values of  

w = w00 + δw01,      (45) 

  =   00 + δ  01       

(46) 

  =  00 + δ   01      (47) 

are computed and the profiles are presented in figs.(4-9) 

and  table 1 for the specified values of the parameters S, 

θ ∞, C and δ.  

 

VI.   RESULTS AND DISCUSSION 

 

As in the case of experimental studies, we consider in the 

present study an active mushy layer where the 

permeability is of variable type. The motivation for the 

present study is to achieve excellent agreement with the 

experimental results through an analytic approach. 

Another motivation for the present study is to present a 

model for convection in a mushy layer which could 

supress the formation of freckles during the solidification 

process. As discussed earlier, the formation of freckles 

follows from chimney convection, and these cause 

imperfections in the structure as well as in the properties 

of the crystals formed. The governing equations 

considered under suitable assumptions and 

approximations are cast in the dimensionless form by 

using suitable scales. The mush-liquid interface is 

impervious and is under eutectic temperature. The 

solution process constitutes three stages.  

In the first stage, basic state solutions are determined 

analytically by using the far-field temperature condition 

i.e., DƟb = Ɵ∞ @ z = δ at the upper boundary in addition 

to the other conditions. The solutions are extremely 

sensitive to the far-field temperature, Concentration ratio 

and the Stefan number. In the second stage, solutions 

(W00, Ɵ00 and Φ00) to the linear stability system are 

found and the Rayleigh number R00 is found analytically 

and the critical wave number αc = 5.1, R0c = 31.69 for 

Ɵ∞ = 0.6 and R0c = 28.07, αc = 5.1 for Ɵ∞ = 0.7 , S = 

3.2 and C = 9 respectively. The computed results are 

presented through graphs in figs 2 and 3, for the above 

set of values of the parameters and δ = 0.0, 0.03 and 0.06 

respectively. In fig 2, the graph of total R= R00 + δ R01 

Vs the wave number α is presented. It is found that the 

increase in the value of δ decreases R. Further, R01 is 

determined from the higher - order inhomogeneous 

system of differential equations by applying the 

solvability conditions. The results are very much 

sensitive to the far-field temperature as expected. The 

results demonstrate that large Ɵ∞ enhances the values of 

w, Ɵ and Φ more significantly than a small value which 

is in consistency with the destabilising nature of the far-
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field temperature on convection in an active mushy 

layer (Fig 3). In figs. 4-9 the profiles of w = w00 + 

δ w01, Ɵ = Ɵ00 + δ Ɵ01 and Φ = Φ00 + δ Φ01 are 

presented for the above mentioned set of values.   

The following observations are made; for all the 

computations the permeability function K is 

considered as a function of local solid fraction Φ 

and the profiles indicate that (i) the vertical 

component of velocity is maximum at the middle of 

the layer (ii) w increases with δ and the 

nonlinearity in the profile is more for large δ (iii) 

there is a retardation in the velocity as δ decreases 

(iv) Ɵ is negative for all values of z (v) as δ 

increases, Ɵ increases in absolute value i.e. 

decreases. The nonlinearity is more pronounced as 

δ increases and (vi) total Φ is negative only in a 

restricted range i.e., near the bottom and is positive 

for all the other values. Even in this case, the 

nonlinearity of the profile increases with the 

increase in δ. The results clearly show that, in the 

absence of inertia, there is a good amount of 

difference for the cases K=1(constant permeability) 

and K   1(variable permeability) [3a]. The 

inhibition of convection in a mushy layer is 

possible by a proper choice of Ɵ∞ and the other 

parameters. The results are extremely sensitive to 

Ɵ∞ and the formation of freckles could be certainly 

be controlled which is a burning problem in 

metallurgy, geophysics etc. Finally it is concluded 

that our results are in excellent agreement with the 

experimental results of [1],[14],[21],[29]. It is 

evident that through the analytical approach it is 

possible to determine accurate solutions for 

convection in a mushy- layer although the model is 

quite complex. 

 
    

Fig.2 Total R vs α for δ = 0.0, 0.03 , 0.06 and Ɵ ∞= 

.6 

 

 

 

 

 
 

Fig. 3  Total R vs α for δ = 0.0, 0.03 , 0.06 and Ɵ ∞ = .7 

 

 
 

Fig.3a. Comparison graph of marginal Stability curves                                

for:  0.6, S =3.2, C = 9 

 

 
 

Fig. 3b Comparison graph of marginal stability 

curves[28] 
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Fig. 4 Total W  vs  Z for δ = 0.0, 0.03 , 0.06 and Ɵ 

∞= .6   

 

 

Fig. 5 Total θ  vs  Z for δ = 0.0, 0.03 , 0.06 

 

 
 

Fig. 6 Total Φ  vs  Z for δ = 0.0, 0.03 , 0.06 

 

 

 

 

 

   
Fig. 7 Total Φ  vs  Z for δ =  0.03 and Ɵ ∞= .6, Ɵ ∞= 7 

 

 
Fig. 8 Total W vs Z for δ = 0.03 and Ɵ ∞= .6, .7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 Total Ɵ vs Z for δ = 0.03 and Ɵ ∞= .6, .7 
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VIII. CONCLUSSION 

 

During the past three decades, the theoretical as 

well as the experimental study of convection in a 

mushy layer has attracted a number of researchers 

owing to its wide applications in metallurgy, 

geophysics, Sea dynamics etc. The main objective 

behind these works is to reduce the formation of 

freckles which cause imperfections in the resulting 

solid during the alloy solidification.  As discussed 

earlier, the distribution and dissolution of the 

dendrites in the layer induced by the convective 

process alter the permeability and the solid matrix 

of the mushy layer. Therefore, the present 

investigation was carried out in order to provide a 

model that could control or suppress the chimney 

formation during the solidification process.  

The following conclusions are made: 

(i)  It is observed that the effect of variable 

permeability on the hydrodynamic convection in a 

mushy layer in the absence of inertia is of more 

stabilising nature than with the case of constant 

permeability [29]. In the absence of Inertia , the 

critical pair ( αC ,  R0c ) = (5.1, 28.3754 ) , in the 

case of variable permeability, while for the case of 

constant permeability the critical pair ( αC ,  R0c ) 

= (3.1416, 18.33746091) . 

(ii)  The remarkable results observed is that the 

far-field temperature Ɵ∞,  has a destabilising effect 

on the marginal stability curves as expected in all 

the cases. 

(iii) Our results show that in the case of large far-

field temperature, the mushy layer thickness δ has 

to be small which is in conformity with the fact 

that, the heat flow from the liquid region to the 

mushy layer will be more when Ɵ∞, is large and 

thus there will be a drastic reduction in the mushy 

layer thickness. This result is observed 

experimentally also [21]. 

(iv)    The computed results (Figs 4 - 9) indicate 

that the vertical velocity is maximum at the middle 

of the layer and gradually proceeds towards the 

boundaries. 

(v)   The perturbed solid fraction is initially 

negative and then becomes positive.  

(vi)    Further the magnitude of the Ɵ profile is 

less    near   the middle of the layer when compared 

to those near the boundaries.  

(vii)  Our analytical results demonstrate that an 

active mushy layer is more stable than a passive 

mushy layer. 

(viii) The results are extremely sensitive to Ɵ∞ and 

the formation of freckles could be   certainly be 

controlled which is a burning problem in metallurgy, 

geophysics etc. Finally it is concluded that our results are 

very much closer to the experimental results of 

[1],[14],[29]. It is evident that through the analytical 

approach it is possible to determine accurate solutions for 

convection in a mushy- layer although the model is quite 

complex. 
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