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Abstract— Zero-inflated models have been applied to a 

variety of situations in the recent years. Especially they are 

found very useful in count regression models. The zero-

inflated geometric model is characterized in this paper 

through a differential equation which is satisfied by its 

probability generating function (pgf). 
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I. INTRODUCTION  

Nanjundan (2011) has characterized a subfamily of 

power series distributions whose pgf f(s) satisfies the 

differential equation ),()(')( scfsfbsa  where 

)('sf  is the first derivative of f(s). This subfamily 

includes binomial, Poisson, and negative binomial 

distributions. Also, Nanjundan and Sadiq Pasha 

(2015) have characterized zero-inflated Poisson 

distribution through a differential equation. In this 

paper, zero-inflated geometric distribution is 

characterized by a differential equation satisfied by its 

pgf. 

A random variable X is said to have a zero-

inflated geometric distribution, if its probability 

mass function (pmf) is given by 
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where 
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 with 0 < p < 1 

and p+q = 1. Thus, the distribution of X is a 

mixture of a distribution degenerate at zero and a 

geometric distribution.  

The pgf of X is given by 
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II. CHARACTERIZATION  

A random variable having a zero-inflated 

geometric distribution is characterized in 

this section. Theorem: A non-negative 

integer valued random variable X with 

1)0(0 XP  and the pgf f(s) has a 

zero-inflated geometric distribution if and 

only if  

               ),(')1()( sfbssasf                  

(2.1) 

where a and b are constants. 

Proof: 

1) Suppose that X has a zero-inflated 

geometric distribution with the pmf 

specified in (1.1). Then its pgf is 
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On differentiating w.r.t. s, we get 
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By expressing )(sf  in terms of )(' sf , we 

see that 
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Therefore f(s) satisfies the differential 

equation 

),(')1()( sfbssasf  

where  pa )1(  and  b = q.  

2) Suppose that the pgf f(s) of X is such that 

).(')1()( sfbssasf  

If a = 0, then ,0)0()0( XPf which is 

not possible because P(X = 0) > 0. 

If b = 0, then )(')( ssfasf  and

)1(')1( faf . Hence )(1 XEa . 

Since X is a non-negative integer valued, it is 

very much possible that E(X) > 1 and in that 

case a = P(X = 0) < 0 which is against our 

assumption.  Therefore .0b  

Now the differential equation (2.1), for 

convenience, can be written as 
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By resolving 
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into partial fractions, 

we get 

bx

bdx

x

dx

ay

dy

1
. 

                                        

bx

bdx

x

dx

ay

dy

1
 

Hence                                    

,log)1log(log)log( cbxxay   

where c is a constant. 
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The solution of the differential equation 

(2.1) becomes 
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We shall now extract the probabilities 

...,2,1,0,)( kpkXP k using the 

above solution. Since )(sf is a pgf, 
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k  where 

)()( sf k is the k-th derivative of f(s).  
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 Note that  
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Hence we get  

ap0  and 
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Therefore the pmf of X is given by 
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Clearly, 1)0(0 XPa and hence 

.1)1)(1(0 1 bap  Thus 110 b  

and  we can take ),1)(1( ba  

with .10   

Then                              
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Therefore X has the pgf specified in (1.1) 

with and .1 pb  
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