Subdivision of Super Geometric Mean Labeling for Quadrilateral Snake Graphs
${ }^{1}$ B.Shiny, ${ }^{2}$ Dr.S.S.Sandhya, 3Dr.E.Ebin Raja Merly
${ }^{*}$ Research Scholar,Nesamony Memorial Christian College,Marthandam, (Affliated to ManonmaniamSundaranarUniversity,Abishekapatti,Tirunelveli, Tamilnadu, India)
*2Department of Mathematics, SreeAyyappa College for Women, M.S.University, Thirunelveli, Tamilnadu, India
${ }^{* 3}$ Department of Mathematics, Nesamony Memorial Christian College, M.S.University, Thirunelveli, Tamilnadu, India

Abstract

Let $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{p}+\mathrm{q}\}$ be an injective function.For a vertex labeling " f ", the induced edge labeling f^{*} ($\mathrm{e}=\mathrm{uv}$) is defined by, $\mathrm{f} *(\mathrm{e})=\lceil\sqrt{f(u) f(v)}\rceil$ or $\lfloor\sqrt{f(u) f(v)}\rfloor$.Then " f " is called a "Super Geometric mean labeling" if $\{\mathrm{f}(\mathrm{V}(\mathrm{G}))\} \cup\{\mathrm{f}(\mathrm{e}): \mathrm{e} \in \mathrm{E}(\mathrm{G})\}=\{1,2, \ldots, \mathrm{p}+\mathrm{q}\}$. A graph which admits Super Geometric mean labeling is called "Super Geometric mean graph"

In this paper we prove that $S\left[A\left(Q_{n}\right)\right], S\left[D\left(Q_{n}\right)\right], S\left[A\left(D\left(Q_{n}\right)\right)\right]$, Subdivision of triple Quadrilateral snake $\mathrm{S}\left[\mathrm{T}\left(\mathrm{Q}_{\mathrm{n}}\right)\right]$ and Subdivision of alternate triple Quadrilateral snake graph $\mathrm{S}\left[\mathrm{A}\left(\mathrm{T}\left(\mathrm{Q}_{\mathrm{n}}\right)\right)\right]$ are Super Geometric mean graphs. Key words: Graph, Geometric mean graph, Super Geometric mean graph, Quadrilateral snake, Double Quadrilateral snake and Triple Qadrilateral snake

\section*{1. Introduction}

Throughout this paper we consider only finite undirected and simple graphs. Let G be a graph with p vertices and q edges. There are several types of labeling and a detailed survey can be found in Gallian [1].For all terminologies and notations we follow Harary[2]

The concept of "Geometric mean labeling" has been introduced by S. Somasundaram, R .Ponraj and P. Vidhyarani in[6].

In this paper we investigate super Geometric mean labeling behavior of $\mathrm{S}\left[\mathrm{A}\left(\mathrm{Q}_{\mathrm{n}}\right)\right], \mathrm{S}\left[\mathrm{D}\left(\mathrm{Q}_{\mathrm{n}}\right)\right], \mathrm{S}\left[\mathrm{A}\left(\mathrm{D}\left(\mathrm{Q}_{\mathrm{n}}\right)\right)\right]$, Subdivision of triple Quadrilateral snake $S\left[\left(T\left(Q_{n}\right)\right]\right.$ and Subdivision of alternate triple Quadrilateral snake $S\left[A\left(T\left(Q_{n}\right)\right)\right]$.

We will provide a brief summary of definitions and other informations which are necessary for our present investigation.

Definition : 1.1

A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with p vertices and q edges is called a "Geometric mean graph" if it is possible to label the vertices $x \in \mathrm{~V}$ with distinct labels $\mathrm{f}(\mathrm{x})$ from $1,2, \ldots, \mathrm{q}+1$ in such a way that when each edge $\mathrm{e}=\mathrm{uv}$ is labeled with, $\mathrm{f}(\mathrm{e}=\mathrm{uv})=\lceil\sqrt{f(u) f(v)}\rceil$ or $\lfloor\sqrt{f(u) f(v)}\rfloor$ then the edge labels are distinct. In this case, " f " is called a "Geometric mean labeling" of G.

Definition : 1.2

Let $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{p}+\mathrm{q}\}$ be an injective function. For a vertex labeling " f ", the induced edge labeling $\mathrm{f}^{*}(\mathrm{e}=\mathrm{uv})$ is defined by, $\mathrm{f} *(\mathrm{e})=\lceil\sqrt{f(u) f(v)}\rceil$ or $\lfloor\sqrt{f(u) f(v)}]$. Then " f " is called a "Super Geometric mean labeling" if $\{\mathrm{f}(\mathrm{V}(\mathrm{G}))\} \cup\{\mathrm{f}(\mathrm{e}): \mathrm{e} \in \mathrm{E}(\mathrm{G})=\{1,2, \ldots, \mathrm{p}+\mathrm{q}\}$. A graph which admits Super Geometric mean labeling is called "Super Geometric mean graph".

Definition : 1.3

If $e=u v$ is an edge of G and w is not a vertex of G, then e is said to be subdivided when it is replaced by the edges uw and wv. The graph obtained by subdividing each edge of a graph G is called the Subdivision of G and it is denoted by $\mathrm{S}(\mathrm{G})$.
For example

Definition : 1.4

A Quadrilateral snake Q_{n} is obtained from a path $u_{1} u_{2} \ldots u_{n}$ by joining u_{i} and u_{i+1} with two new vertices v_{i} and w_{i} respectively and then joining v_{i} and $\mathrm{w}_{\mathrm{i}}, 1 \leq i \leq \mathrm{n}-1$. That is every edge of a path is replaced by a cycle C_{4}.

Definition : 1.5

An Alternate Quadrilateral snake $A\left(Q_{n}\right)$ is obtained from a path $u_{1} u_{2} \ldots u_{n}$ by joining u_{i} and u_{i+1} alternatively with two new vertices v_{i} and w_{i} respectively and then joining v_{i} and w_{i}. That is every alternate edge of a path is replaced by a cycle C_{4}.

Definition : 1.6

A Double Quadrilateral snake $\mathrm{D}\left(\mathrm{Q}_{\mathrm{n}}\right)$ consists of two Quadrilateral snakes that have a common path.

Definition : 1.7

An Alternate Double Quadrilateral snake $\mathrm{A}\left[\mathrm{D}\left(\mathrm{Q}_{\mathrm{n}}\right)\right]$ consists of two Alternate Quadrilateral snakes that have a common path.

Definition : 1.8

A Triple Quadrilateral snake $T\left(Q_{n}\right)$ consists of three Quadrilateral snakes that have a common path.

Definition : 1.9

An Alternate Triple Quadrilateral snake $\mathrm{A}\left[\mathrm{T}\left(\mathrm{Q}_{\mathrm{n}}\right)\right]$ consists of three Alternate Quadrilateral snakes that have a common path.
Theorem 1.10: $\mathrm{Q}_{\mathrm{n}}, \mathrm{A}\left(\mathrm{Q}_{\mathrm{n}}\right), \mathrm{D}\left(\mathrm{Q}_{\mathrm{n}}\right)$ and $\mathrm{A}\left[\mathrm{D}\left(\mathrm{Q}_{\mathrm{n}}\right)\right]$ are mean graphs.
Theorem 1.11: $Q_{n}, A\left(Q_{n}\right), D\left(Q_{n}\right)$ and $A\left[D\left(Q_{n}\right)\right]$ are Harmonic mean graphs.
Theorem 1.12: $Q_{n}, A\left(Q_{n}\right), D\left(Q_{n}\right), A\left[D\left(Q_{n}\right)\right], T\left(Q_{n}\right)$ and $A\left[T\left(Q_{n}\right]\right.$ are Geometric mean graphs.
Theorem 1.13: $Q_{n}, A\left(Q_{n}\right), D\left(Q_{n}\right), A\left[D\left(Q_{n}\right)\right], T\left(Q_{n}\right)$ and $A\left[T\left(Q_{n}\right)\right]$ are Super Geometric mean graphs.

2. Main Results

Theorem : 2.1
Subdivision of Alternate Quadrilateral snake $\mathrm{S}\left[\mathrm{A}\left(\mathrm{Q}_{\mathrm{n}}\right)\right]$ is a Super Geometric mean graph.

Proof:

Let $A\left(Q_{n}\right)$ be an Alternate Quadrilateral snake which is obtained from a path $\quad P_{n}=u_{1} u_{2} \ldots u_{n}$ by joining u_{i} and u_{i+1} alternatively with two new vertices v_{i} and w_{i} respectively and then joining v_{i} and w_{i}.

Let $\mathrm{S}\left[\mathrm{A}\left(\mathrm{Q}_{\mathrm{n}}\right)\right]=\mathrm{A}\left(\mathrm{Q}_{\mathrm{N}}\right)=\mathrm{G}$ be a graph obtained by subdividing all the edges of $\mathrm{A}\left(\mathrm{Q}_{\mathrm{n}}\right)$. Here we consider the following cases.
Case 1: If Q_{n} starts from u_{1},
Let $\mathrm{t}_{\mathrm{i}}, 1 \leq i \leq \mathrm{n}-1$ be the vertices which subdivide the edges $\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}$.
Let $\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$ and z_{i} be the vertices which subdivide the edges $\mathrm{u}_{2 \mathrm{i}-1} \mathrm{v}_{\mathrm{i}}, \mathrm{u}_{2 \mathrm{i}} \mathrm{w}_{\mathrm{i}}$ and $\mathrm{v}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}$ respectively.
We have to consider two subcases.
Subcase (1) (a): If ' n ' is odd, then.
Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{p}+\mathrm{q}\}$ by,

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{u}_{2 \mathrm{i}-1}\right)=19 i-18,1 \leq i \leq\left(\frac{n-1}{2}\right)+1 \\
& \mathrm{f}\left(\mathrm{u}_{2 \mathrm{i}}\right)=19 i-3,1 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{t}_{2 \mathrm{i}-1}\right)=19 i-5,1 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{t}_{2 \mathrm{i}}\right)=19 i-1,1 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{x}_{1}\right)=4
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)=19 i-16,2 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{y}_{\mathrm{i}}\right)=19 i-7,1 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{v}_{1}\right)=6 \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=19 i-14,2 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{z}_{\mathrm{i}}\right)=19 i-11,1 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=19 i-9,1 \leq i \leq\left(\frac{n-1}{2}\right)
\end{aligned}
$$

The labeling pattern of $\mathrm{S}\left[\mathrm{A}\left(\mathrm{Q}_{7}\right)\right]$ is shown in the following figure.

Figure: 1
From the above labeling pattern, we get $\{\mathrm{f}(\mathrm{V}(\mathrm{G}))\} \cup\{\mathrm{f}(\mathrm{e}): \mathrm{e} \in \mathrm{E}(\mathrm{G})\}=\{1,2, \ldots, \mathrm{p}+\mathrm{q}\}$
\therefore In this case, " f " provides a Super Geometric mean labeling of $\mathrm{A}\left(\mathrm{Q}_{\mathrm{N}}\right)$.
Subcase (1) (b): If ' n ' is even, then
Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{p}+\mathrm{q}\}$ by,

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{u}_{2 \mathrm{i}-1}\right)=19 i-18,1 \leq i \leq\left(\frac{n}{2}\right) \\
& \mathrm{f}\left(\mathrm{u}_{2 \mathrm{i}}\right)=19 i-3 \quad 1 \leq i \leq\left(\frac{n}{2}\right) \\
& \mathrm{f}\left(\mathrm{t}_{2 \mathrm{i}-1}\right)=19 i-5,1 \leq i \leq\left(\frac{n}{2}\right) \\
& \mathrm{f}\left(\mathrm{t}_{2 \mathrm{i}}\right)=19 i-1,1 \leq i \leq\left(\frac{n-2}{2}\right) \\
& \mathrm{f}\left(\mathrm{x}_{1}\right)=4 \\
& \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)=19 i-16,2 \leq i \leq\left(\frac{n}{2}\right) \\
& \mathrm{f}\left(\mathrm{y}_{\mathrm{i}}\right)=19 i-7,1 \leq i \leq\left(\frac{n}{2}\right) \\
& \mathrm{f}\left(\mathrm{v}_{1}\right)=6 \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=19 i-14,2 \leq i \leq\left(\frac{n}{2}\right) \\
& \mathrm{f}\left(\mathrm{z}_{\mathrm{i}}\right)=19 i-11,1 \leq i \leq\left(\frac{n}{2}\right) \\
& \mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=19 i-9,1 \leq i \leq\left(\frac{n}{2}\right)
\end{aligned}
$$

The labeling pattern of $\mathrm{S}\left[\mathrm{A}\left(\mathrm{Q}_{8}\right)\right]$ is given below.

Figure: 2
From the above labeling pattern we get, $\{\mathrm{f}(\mathrm{V}(\mathrm{G}))\} \cup(\mathrm{f}(\mathrm{e}): \mathrm{e} \in \mathrm{E}(\mathrm{G})\}=\{1,2, \ldots, \mathrm{p}+\mathrm{q}\}$
In this case, $\mathrm{A}\left(\mathrm{Q}_{\mathrm{N}}\right)$ is a Super Geometric mean graph.

Case 2: If Q_{n} starts from u_{2},
Let $\mathrm{t}_{\mathrm{i}}, 1 \leq i \leq \mathrm{n}-1$ be the vertices which subdivide the edges $\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}$.
Let x_{i}, y_{i} and z_{i} be the vertices which subdivide the edges $u_{2 i} v_{i}, u_{2 i+1} w_{i}$ and $v_{i} w_{i}$ respectively.
Here we have to consider two subcases.
Subcase (2) (a) If ' n ' is odd, then
Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{p}+\mathrm{q}\}$ by,

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{u}_{2 \mathrm{i}-1}\right)=19 i-18,1 \leq i \leq\left(\frac{n-1}{2}\right)+1 \\
& \mathrm{f}\left(\mathrm{u}_{2 \mathrm{i}}\right)=19 i-14,1 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{t}_{2 \mathrm{i}-1}\right)=19 i-16,1 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{t}_{2 \mathrm{i}}\right)=19 i-1,1 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)=19 i-12,1 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{y}_{\mathrm{i}}\right)=19 i-3,1 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=19 i-10,1 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{z}_{\mathrm{i}}\right)=19 i-7,1 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=19 i-5,1 \leq i \leq\left(\frac{n-1}{2}\right)
\end{aligned}
$$

The labeling pattern of $S\left[A\left(Q_{7}\right)\right]$ is displayed below.

Figure: 3
From the above labeling pattern, we get $\{\mathrm{f}(\mathrm{V}(\mathrm{G}))\} \cup\{\mathrm{f}(\mathrm{e}): \mathrm{e} \in \mathrm{E}(\mathrm{G})\}=\{1,2, \ldots, \mathrm{p}+\mathrm{q}\}$.
Hence $\mathrm{A}\left(\mathrm{Q}_{\mathrm{N}}\right)$ admits a Super Geometric mean labeling.
Subcase (2) (b) If ' n ' is even, then
Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{p}+\mathrm{q}\}$ by,

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{u}_{2 \mathrm{i}-1}\right)=19 i-18,1 \leq i \leq\left(\frac{n}{2}\right) \\
& \mathrm{f}\left(\mathrm{u}_{2 \mathrm{i}}\right)=19 i-14,1 \leq i \leq\left(\frac{n}{2}\right) \\
& \mathrm{f}\left(\mathrm{t}_{2 \mathrm{i}-1}\right)=19 i-16,1 \leq i \leq\left(\frac{n}{2}\right) \\
& \mathrm{f}\left(\mathrm{t}_{2 \mathrm{i}}\right)=19 i-1,1 \leq i \leq\left(\frac{n-2}{2}\right) \\
& \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)=19 i-12,1 \leq i \leq\left(\frac{n-2}{2}\right) \\
& \mathrm{f}\left(\mathrm{y}_{\mathrm{i}}\right)=19 i-3,1 \leq i \leq\left(\frac{n-2}{2}\right) \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=19 i-10,1 \leq i \leq\left(\frac{n-2}{2}\right) \\
& \mathrm{f}\left(\mathrm{z}_{\mathrm{i}}\right)=19 i-7,1 \leq i \leq\left(\frac{n-2}{2}\right) \\
& \mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=19 i-5,1 \leq i \leq\left(\frac{n-2}{2}\right)
\end{aligned}
$$

The labeling pattern of $S\left[A\left(Q_{8}\right)\right]$ is shown below.

Figure: 4
From the above labeling pattern, both vertices and edges together get distinct labels from $\{1,2, \ldots, p+q\}$.
From all the above cases, we conclude that Subdivision of Alternate Quadrilateral snake is a Super
Geometric mean graph.
Theorem : 2.2
Subdivision of Double Quadrilateral snake $\mathrm{S}\left[\mathrm{D}\left(\mathrm{Q}_{\mathrm{n}}\right)\right]$ is a Super Geometric mean graph.

Proof:

Let $D\left(Q_{n}\right)$ be a Double Quadrilateral snake which is obtained from a path $\quad P_{n}=u_{1} u_{2} \ldots u_{n}$ by joining u_{i} and u_{i+1} with four new vertices v_{i}, w_{i}, x_{i} and $y_{i}, 1 \leq i \leq n-1$ by the edges $u_{i} v_{i}, u_{i+1} w_{i}, v_{i} w_{i}, u_{i} x_{i}, u_{i+1} y_{i}$ and $x_{i} y_{i}$.

Let $S\left[D\left(Q_{n}\right)\right]=D\left(Q_{N}\right)=G$ be a graph obtained by subdividing all the edges of $D\left(Q_{n}\right)$.
Let $t_{i}, r_{i}, s_{i}, z_{i}, m_{i}, n_{i}$ and q_{i} be the vertices which subdivide the edges $u_{i} u_{i+1}, u_{i} v_{i}, u_{i+1} w_{i}, v_{i} w_{i}, u_{i} x_{i}, u_{i+1} y_{i}$ and $\mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}$ respectively.

Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{p}+\mathrm{q}\}$ by,

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{u}_{1}\right)=11 \\
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=26 i-25,2 \leq i \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{t}_{\mathrm{i}}\right)=26 i-9,1 \leq i \leq \mathrm{n}-1 \\
& \mathrm{f}\left(\mathrm{~m}_{1}\right)=8 \\
& \mathrm{f}\left(\mathrm{~m}_{\mathrm{i}}\right)=26 i-22,2 \leq i \leq \mathrm{n}-1 \\
& \mathrm{f}\left(\mathrm{n}_{1}\right)=9 \\
& \mathrm{f}\left(\mathrm{n}_{\mathrm{i}}\right)=26 i-1,2 \leq i \leq \mathrm{n}-1 \\
& \mathrm{f}\left(\mathrm{x}_{1}\right)=6 \\
& \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)=26 i-18,2 \leq i \leq \mathrm{n}-1 \\
& \mathrm{f}\left(\mathrm{y}_{1}\right)=1 \\
& \mathrm{f}\left(\mathrm{y}_{\mathrm{i}}\right)=26 i-6,2 \leq i \leq \mathrm{n}-1 \\
& \mathrm{f}\left(\mathrm{q}_{1}\right)=4 \\
& \mathrm{f}\left(\mathrm{q}_{\mathrm{i}}\right)=26 i-13,2 \leq i \leq \mathrm{n}-1 \\
& \mathrm{f}\left(\mathrm{r}_{1}\right)=14 \\
& \mathrm{f}\left(\mathrm{r}_{\mathrm{i}}\right)=26 i-21,2 \leq i \leq \mathrm{n}-1 \\
& \mathrm{f}\left(\mathrm{~s}_{1}\right)=25 \\
& \mathrm{f}\left(\mathrm{~s}_{\mathrm{i}}\right)=26 i-4,2 \leq i \leq \mathrm{n}-1 \\
& \mathrm{f}\left(\mathrm{v}_{1}\right)=18 \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=26 i-16,2 \leq i \leq \mathrm{n}-1 \\
& \mathrm{f}\left(\mathrm{w}_{1}\right)=23 \\
& \mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=26 i-8,2 \leq i \leq \mathrm{n}-1 \\
& \mathrm{f}\left(\mathrm{z}_{1}\right)=20 \\
& \mathrm{f}\left(\mathrm{z}_{\mathrm{i}}\right)=26 i-12,2 \leq i \leq \mathrm{n}-1
\end{aligned}
$$

From the above labeling pattern, we get $\{\mathrm{f}(\mathrm{V}(\mathrm{G}))\} \cup\{\mathrm{f}(\mathrm{e}): \mathrm{e} \in \mathrm{E}(\mathrm{G})\}=\{1,2, \ldots, \mathrm{p}+\mathrm{q}\}$.
Hence $D\left(Q_{N}\right)$ is a Super Geometric mean graph.
Example 2.3: A Super Geometric mean labeling of $S\left[D\left(Q_{5}\right)\right]$ is displayed below.

Figure: 5

Theorem : 2.4

Subdivision of Alternate Double Quadrilateral snake $S\left[A\left(D\left(Q_{n}\right)\right)\right]$ is a Super Geometric mean graph.
Proof:
Let $A\left[D\left(Q_{n}\right)\right]$ be an Alternate Double Quadrilateral snake which is obtained from a path $P_{n}=u_{1} u_{2} \ldots . u_{n}$ by joining u_{i} and u_{i+1} alternatively with four new vertices v_{i}, w_{i}, x_{i} and y_{i}.

Let $S\left[A\left(D\left(Q_{n}\right)\right)\right]=A\left[D\left(Q_{N}\right)\right]=G$ be a graph obtained by subdividing all the edges of $A\left[D\left(Q_{n}\right)\right]$.
Here we consider two cases.
Case 1: If $D\left(Q_{n}\right)$ starts from u_{1},
Let $t_{i}, r_{i}, s_{i}, z_{i}, m_{i}, n_{i}$ and q_{i} be the vertices which subdivide the edges $u_{i} u_{i+1}, u_{2 i-1} v_{i}, u_{2 i} w_{i}, v_{i} w_{i}, u_{2 i-1} x_{i}, u_{2 i} y_{i}$ and $\mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}$ respectively.

We have to consider two subcases.
Subcase (1) (a): If ' n ' is odd, then
Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{p}+\mathrm{q}\}$ by,

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{u}_{1}\right)=11 \\
& \mathrm{f}\left(\mathrm{u}_{2 \mathrm{i}-1}\right)=30 i-29,2 \leq i \leq\left(\frac{n-1}{2}\right)+1 \\
& \mathrm{f}\left(\mathrm{u}_{2 \mathrm{i}}\right)=30 i-3,1 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{t}_{2 \mathrm{i}-1}\right)=30 i-13,1 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{t}_{2 \mathrm{i}}\right)=30 i-1,1 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{~m}_{1}\right)=8 \\
& \mathrm{f}\left(\mathrm{~m}_{\mathrm{i}}\right)=30 i-26,, 2 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{n}_{1}\right)=9 \\
& \mathrm{f}\left(\mathrm{n}_{\mathrm{i}}\right)=30 i-5,2 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{x}_{1}\right)=6 \\
& \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)=30 i-22,2 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{q}_{1}\right)=4 \\
& \mathrm{f}\left(\mathrm{q}_{\mathrm{i}}\right)=30 i-17,2 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{y}_{1}\right)=1 \\
& \mathrm{f}\left(\mathrm{y}_{\mathrm{i}}\right)=30 i-10,2 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{r}_{1}\right)=14 \\
& \mathrm{f}\left(\mathrm{r}_{\mathrm{i}}\right)=30 i-25,2 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{~s}_{1}\right)=25
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{~s}_{\mathrm{i}}\right)=30 i-8,2 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{v}_{1}\right)=18 \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=30 i-20,2 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{z}_{1}\right)=20 \\
& \mathrm{f}\left(\mathrm{z}_{\mathrm{i}}\right)=30 i-16,2 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{w}_{1}\right)=23 \\
& \mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=30 i-12,2 \leq i \leq\left(\frac{n-1}{2}\right)
\end{aligned}
$$

The labeling pattern of $\mathrm{S}\left[\mathrm{A}\left(\mathrm{D}\left(\mathrm{Q}_{5}\right)\right)\right]$ is given below.

Figure: 6
From the above labeling pattern we get, $\{\mathrm{f}(\mathrm{V}(\mathrm{G}))\} \cup\{\mathrm{f}(\mathrm{e}): \mathrm{e} \in \mathrm{E}(\mathrm{G})\}=\{1,2, \ldots, \mathrm{p}+\mathrm{q}\}$
In this case, " f " provides a Super Geometric mean labeling of G.
Subcase (1) (b): If ' n ' is even, then
Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{p}+\mathrm{q}\}$ by,

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{u}_{1}\right)=11 \\
& \mathrm{f}\left(\mathrm{u}_{2 \mathrm{i}-1}\right)=30 i-29,2 \leq i \leq\left(\frac{n}{2}\right) \\
& \mathrm{f}\left(\mathrm{u}_{2 \mathrm{i}}\right)=30 i-3,1 \leq i \leq\left(\frac{n}{2}\right) \\
& \mathrm{f}\left(\mathrm{t}_{2 \mathrm{i}-1}\right)=30 i-13,1 \leq i \leq\left(\frac{n}{2}\right) \\
& \mathrm{f}\left(\mathrm{t}_{2 \mathrm{i}}\right)=30 i-1,1 \leq i \leq\left(\frac{n-2}{2}\right) \\
& \mathrm{f}\left(\mathrm{~m}_{1}\right)=8 \\
& \mathrm{f}\left(\mathrm{~m}_{\mathrm{i}}\right)=30 i-26,2 \leq i \leq\left(\frac{n}{2}\right) \\
& \mathrm{f}\left(\mathrm{n}_{1}\right)=9 \\
& \mathrm{f}\left(\mathrm{n}_{\mathrm{i}}\right)=30 i-5,2 \leq i \leq\left(\frac{n}{2}\right) \\
& \mathrm{f}\left(\mathrm{x}_{1}\right)=6 \\
& \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)=30 i-22,2 \leq i \leq\left(\frac{n}{2}\right) \\
& \mathrm{f}\left(\mathrm{q}_{1}\right)=4 \\
& \mathrm{f}\left(\mathrm{q}_{\mathrm{i}}\right)=30 i-17,2 \leq i \leq\left(\frac{n}{2}\right) \\
& \mathrm{f}\left(\mathrm{y}_{1}\right)=1 \\
& \mathrm{f}\left(\mathrm{y}_{\mathrm{i}}\right)=30 i-10,2 \leq i \leq\left(\frac{n}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{r}_{1}\right)=14 \\
& \mathrm{f}\left(\mathrm{r}_{\mathrm{i}}\right)=30 i-25,2 \leq i \leq\left(\frac{n}{2}\right) \\
& \mathrm{f}\left(\mathrm{~s}_{1}\right)=25 \\
& \mathrm{f}\left(\mathrm{~s}_{\mathrm{i}}\right)=30 i-8,2 \leq i \leq\left(\frac{n}{2}\right) \\
& \mathrm{f}\left(\mathrm{v}_{1}\right)=18 \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=30 i-20,2 \leq i \leq\left(\frac{n}{2}\right) \\
& \mathrm{f}\left(\mathrm{z}_{1}\right)=20 \\
& \mathrm{f}\left(\mathrm{z}_{\mathrm{i}}\right)=30 i-16,2 \leq i \leq\left(\frac{n}{2}\right) \\
& \mathrm{f}\left(\mathrm{w}_{1}\right)=23 \\
& \mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=30 i-12,2 \leq i \leq\left(\frac{n}{2}\right)
\end{aligned}
$$

The labeling pattern of $\mathrm{S}\left[\mathrm{A}\left(\mathrm{D}\left(\mathrm{Q}_{6}\right)\right)\right]$ is shown below.

Figure: 7
From the above labeling pattern, we get $\{\mathrm{f}(\mathrm{V}(\mathrm{G}))\} \cup\{\mathrm{f}(\mathrm{e}): \mathrm{e} \in \mathrm{E}(\mathrm{G})\}=\{1,2, \ldots, \mathrm{p}+\mathrm{q}\}$
Hence $\mathrm{A}\left[\mathrm{D}\left(\mathrm{Q}_{\mathrm{N}}\right)\right]$ admits Super Geometric mean labeling.
Case 2: If $D\left(Q_{n}\right)$ starts from u_{2}.
Let $t_{i}, r_{i}, s_{i}, z_{i}, m_{i}, n_{i}$ and q_{i} be the vertices which subdivide the edges $u_{i} u_{i+1}, u_{2 i} v_{i}, u_{2 i+1} w_{i}, v_{i} w_{i}, u_{2 i} x_{i}, u_{2 i+1} y_{i}$ and $x_{i} y_{i}$ respectively.

We have to consider two subcases.
Subcase (2) (a): If ' n ' is odd, then
Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{p}+\mathrm{q}\}$ by,

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{u}_{2 \mathrm{i}-1}\right)=30 i-29,1 \leq i \leq\left(\frac{n-1}{2}\right)+1 \\
& \mathrm{f}\left(\mathrm{u}_{2 \mathrm{i}}\right)=30 i-25,1 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{t}_{2 \mathrm{i}-1}\right)=30 i-27,1 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{t}_{2 \mathrm{i}}\right)=30 i-9,1 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{~m}_{\mathrm{i}}\right)=30 i-22,1 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{n}_{\mathrm{i}}\right)=30 i-1,1 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{x}_{1}\right)=13 \\
& \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)=30 i-18,2 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{q}_{\mathrm{i}}\right)=30 i-13,1 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{y}_{\mathrm{i}}\right)=30 i-6,1 \leq i \leq\left(\frac{n-1}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{r}_{\mathrm{i}}\right)=30 i-21,1 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{~s}_{\mathrm{i}}\right)=30 i-4,1 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=30 i-16,1 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{z}_{\mathrm{i}}\right)=30 i-12,1 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=30 i-8,1 \leq i \leq\left(\frac{n-1}{2}\right)
\end{aligned}
$$

The labeling pattern of $\mathrm{S}\left[\mathrm{A}\left(\mathrm{D}\left(\mathrm{Q}_{7}\right)\right)\right]$ is displayed below.

Figure: 8
From the above labeling pattern, both vertices and edges together get distinct labels from $\{1,2, \ldots, p+q\}$ Hence $A\left[D\left(Q_{N}\right)\right]$ is a Super Geometric mean graph.
Subcase (2) (b): If ' n ' is even, then
Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{p}+\mathrm{q}\}$ by,

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{u}_{2 \mathrm{i}-1}\right)=30 i-29,1 \leq i \leq\left(\frac{n}{2}\right) \\
& \mathrm{f}\left(\mathrm{u}_{2 \mathrm{i}}\right)=30 i-25,1 \leq i \leq\left(\frac{n}{2}\right) \\
& \mathrm{f}\left(\mathrm{t}_{2 \mathrm{i}-1}\right)=30 i-27,1 \leq i \leq\left(\frac{n}{2}\right) \\
& \mathrm{f}\left(\mathrm{t}_{2 \mathrm{i}}\right)=30 i-9,1 \leq i \leq\left(\frac{n-2}{2}\right) \\
& \mathrm{f}\left(\mathrm{~m}_{\mathrm{i}}\right)=30 i-22,1 \leq i \leq\left(\frac{n-2}{2}\right) \\
& \mathrm{f}\left(\mathrm{n}_{\mathrm{i}}\right)=30 i-1,1 \leq i \leq\left(\frac{n-2}{2}\right) \\
& \mathrm{f}\left(\mathrm{x}_{1}\right)=13 \\
& \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)=30 i-18,2 \leq i \leq\left(\frac{n-2}{2}\right) \\
& \mathrm{f}\left(\mathrm{q}_{\mathrm{i}}\right)=30 i-13,1 \leq i \leq\left(\frac{n-2}{2}\right) \\
& \mathrm{f}\left(\mathrm{y}_{\mathrm{i}}\right)=30 i-6,1 \leq i \leq\left(\frac{n-2}{2}\right) \\
& \mathrm{f}\left(\mathrm{r}_{\mathrm{i}}\right)=30 i-21,1 \leq i \leq\left(\frac{n-2}{2}\right) \\
& \mathrm{f}\left(\mathrm{~s}_{\mathrm{i}}\right)=30 i-4,1 \leq i \leq\left(\frac{n-2}{2}\right) \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=30 i-16,1 \leq i \leq\left(\frac{n-2}{2}\right) \\
& \mathrm{f}\left(\mathrm{z}_{\mathrm{i}}\right)=30 i-12,1 \leq i \leq\left(\frac{n-2}{2}\right) \\
& \mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=30 i-8,1 \leq i \leq\left(\frac{n-2}{2}\right)
\end{aligned}
$$

The labeling pattern of $\mathrm{S}\left[\mathrm{A}\left(\mathrm{D}\left(\mathrm{Q}_{6}\right)\right)\right]$ is given below.

Figure: 9
From the above labeling pattern, we get $\{\mathrm{f}(\mathrm{V}(\mathrm{G}))\} \cup\{\mathrm{f}(\mathrm{e}): \mathrm{e} \in \mathrm{E}(\mathrm{G})\}=\{1,2, \ldots, \mathrm{p}+\mathrm{q}\}$
This makes " f " a Super Geometric mean labeling of $A\left[D\left(Q_{N}\right)\right]$.
From all the above cases, we conclude that Subdivision of Alternate Double Quadrilateral snake is a Super Geometric mean graph.

Theorem : 2.5

Subdivision of Triple Quadrilateral snake $\mathrm{S}\left[\mathrm{T}\left(\mathrm{Q}_{\mathrm{n}}\right)\right]$ is a Super Geometric mean graph.
Proof:
Let $T\left(Q_{n}\right)$ be a Triple Quadrilateral snake which is obtained from a path $P_{n}=u_{1} u_{2} \ldots u_{n}$ by joining u_{i} and u_{i+1} with six new vertices $v_{i}, w_{i}, x_{i}, y_{i}, a_{i}$ and $b_{i}, 1 \leq i \leq n-1$ by the edges $u_{i} v_{i}, v_{i} w_{i}, w_{i} u_{i+1}, u_{i} a_{i}, a_{i} b_{i}, b_{i} u_{i+1}, u_{i} u_{i+1}, u_{i} x_{i}, x_{i} y_{i}$ and $y_{i} u_{i+1}$.

Let $S\left[T\left(Q_{n}\right)\right]=T\left(Q_{N}\right)=G$ be the graph obtained by subdividing all the edges of $T\left(Q_{n}\right)$.
Let $t_{i}, m_{i}, n_{i}, q_{i}, r_{i}, s_{i}, z_{i}, l_{i}, g_{i}$ and k_{i} be the vertices which subdivide the edges $u_{i} u_{i+1}, u_{i} x_{i}, u_{i+1} y_{i}, x_{i} y_{i}, u_{i} v_{i}$, $u_{i+1} W_{i}, v_{i} w_{i}, u_{i} a_{i}, u_{i+1} b_{i}$ and $a_{i} b_{i}$ respectively.

Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{p}+\mathrm{q}\}$ by,

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{u}_{1}\right)=8 \\
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=37 i-36,2 \leq i \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{t}_{\mathrm{i}}\right)=37 i-9,1 \leq i \leq \mathrm{n}-1 \\
& \mathrm{f}\left(\mathrm{~m}_{\mathrm{i}}\right)=37 i-20,1 \leq i \leq \mathrm{n}-1 \\
& \mathrm{f}\left(\mathrm{n}_{\mathrm{i}}\right)=37 i-1,1 \leq i \leq \mathrm{n}-1 \\
& \mathrm{f}\left(\mathrm{x}_{1}\right)=20 \\
& \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)=37 i-18,2 \leq i \leq \mathrm{n}-1 \\
& \mathrm{f}\left(\mathrm{q}_{1}\right)=26 \\
& \mathrm{f}\left(\mathrm{q}_{\mathrm{i}}\right)=37 i-14,2 \leq i \leq \mathrm{n}-1 \\
& \mathrm{f}\left(\mathrm{y}_{1}\right)=31 \\
& \mathrm{f}\left(\mathrm{y}_{\mathrm{i}}\right)=37 i-8,2 \leq i \leq \mathrm{n}-1 \\
& \mathrm{f}\left(\mathrm{r}_{1}\right)=12 \\
& \mathrm{f}\left(\mathrm{r}_{\mathrm{i}}\right)=37 i-26,2 \leq i \leq \mathrm{n}-1 \\
& \mathrm{f}\left(\mathrm{~s}_{\mathrm{i}}\right)=37 i-3,1 \leq i \leq \mathrm{n}-1 \\
& \mathrm{f}\left(\mathrm{v}_{1}\right)=19 \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=37 i-16,2 \leq i \leq \mathrm{n}-1 \\
& \mathrm{f}\left(\mathrm{z}_{\mathrm{i}}\right)=37 i-13,1 \leq i \leq \mathrm{n}-1 \\
& \mathrm{f}\left(\mathrm{w}_{1}\right)=27 \\
& \mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=37 i-7,2 \leq i \leq \mathrm{n}-1 \\
& \mathrm{f}\left(\mathrm{l}_{1}\right)=4
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{l}_{\mathrm{i}}\right)=37 i-34,2 \leq i \leq \mathrm{n}-1 \\
& \mathrm{f}\left(\mathrm{~g}_{1}\right)=15 \\
& \mathrm{f}\left(\mathrm{~g}_{\mathrm{i}}\right)=37 i-21,2 \leq i \leq \mathrm{n}-1 \\
& \mathrm{f}\left(\mathrm{a}_{1}\right)=1 \\
& \mathrm{f}\left(\mathrm{a}_{\mathrm{i}}\right)=37 i-31,2 \leq i \leq \mathrm{n}-1 \\
& \mathrm{f}\left(\mathrm{k}_{1}\right)=5 \\
& \mathrm{f}\left(\mathrm{k}_{\mathrm{i}}\right)=37 i-28,2 \leq i \leq \mathrm{n}-1 \\
& \mathrm{f}\left(\mathrm{~b}_{1}\right)=10 \\
& \mathrm{f}\left(\mathrm{~b}_{\mathrm{i}}\right)=37 i-25,2 \leq i \leq \mathrm{n}-1
\end{aligned}
$$

From the above labeling pattern, $\{\mathrm{f}(\mathrm{V}(\mathrm{G}))\} \cup\{\mathrm{f}(\mathrm{e}): \mathrm{e} \in \mathrm{E}(\mathrm{G})\}=\{1,2, \ldots, \mathrm{p}+\mathrm{q}\}$.
Hence Subdivision of Triple Quadrilateral snake is a Super Geometric mean graph.
Example 2.6: A Super Geometric mean labeling of $\mathrm{S}\left[\mathrm{T}\left(\mathrm{Q}_{4}\right)\right]$ is shown below.

Figure: 10
Theorem : 2.7
Subdivision of Alternate Triple Quadrilateral snake $S\left[A\left(T\left(Q_{n}\right)\right)\right]$ is a Super Geometric mean graph.

Proof:

Let $A\left[T\left(Q_{n}\right)\right]$ be an Alternate Triple Quadrilateral snake which is obtained from a path $P_{n}=u_{1} u_{2} \ldots u_{n}$ by joining u_{i} and u_{i+1} alternatively with six new vertices $v_{i}, w_{i}, a_{i}, b_{i}, x_{i}$ and y_{i}.

Let $\mathrm{S}\left[\mathrm{A}\left(\mathrm{T}\left(\mathrm{Q}_{\mathrm{n}}\right)\right)\right]=\mathrm{A}\left[\mathrm{T}\left(\mathrm{Q}_{\mathrm{N}}\right)\right]=\mathrm{G}$ be the graph obtained by subdividing all the edges of $\mathrm{A}\left[\mathrm{T}\left(\mathrm{Q}_{\mathrm{n}}\right)\right]$.
Here we consider two cases.
Case 1: If $T\left(Q_{n}\right)$ starts from u_{1},
Let $\mathrm{t}_{\mathrm{i}}, \mathrm{m}_{\mathrm{i}}, \mathrm{n}_{\mathrm{i}}, \mathrm{q}_{\mathrm{i}}, \mathrm{r}_{\mathrm{i}}, \mathrm{s}_{\mathrm{i}}, \mathrm{z}_{\mathrm{i}}, \mathrm{l}_{\mathrm{i}}$. g_{i} and k_{i} be the vertices which subdivide the edges $\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}$,
$u_{2 i-1} x_{i}, u_{2 i} y_{i}, x_{i} y_{i}, u_{2 i-1} v_{i}, u_{2 i} w_{i,}, v_{i} w_{i}, u_{2 i-1} a_{i}, u_{2 i} b_{i}$ and $a_{i} b_{i}$ respectively.
We have to consider two subcases.
Subcase (1) (a): If ' n ' is odd, then
Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{p}+\mathrm{q}\}$ by,

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{u}_{1}\right)=8 \\
& \mathrm{f}\left(\mathrm{u}_{2 \mathrm{i}-1}\right)=41 i-40,2 \leq i \leq\left(\frac{n-1}{2}\right)+1 \\
& \mathrm{f}\left(\mathrm{u}_{2 \mathrm{i}}\right)=41 i-3,1 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{t}_{2 \mathrm{i}-1}\right)=41 i-13,1 \leq i \leq\left(\frac{n-1}{2}\right)
\end{aligned}
$$

$$
\left.\begin{array}{l}
\mathrm{f}\left(\mathrm{t}_{2 \mathrm{i}}\right)=41 i-1,1 \leq i \leq\left(\frac{n-1}{2}\right) \\
\mathrm{f}\left(\mathrm{~m}_{\mathrm{i}}\right)=41 i-24,1 \leq i \leq\left(\frac{n-1}{2}\right) \\
\mathrm{f}\left(\mathrm{n}_{\mathrm{i}}\right)=41 i-5,1 \leq i \leq\left(\frac{n-1}{2}\right) \\
\mathrm{f}\left(\mathrm{x}_{1}\right)=20 \\
\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)=41 i-22,2 \leq i \leq\left(\frac{n-1}{2}\right) \\
\mathrm{f}\left(\mathrm{q}_{1}\right)=26 \\
\mathrm{f}\left(\mathrm{q}_{\mathrm{i}}\right)=41 i-18,2 \leq i \leq\left(\frac{n-1}{2}\right) \\
\mathrm{f}\left(\mathrm{y}_{1}\right)=31 \\
\mathrm{f}\left(\mathrm{y}_{\mathrm{i}}\right)=41 i-12,2 \leq i \leq\left(\frac{n-1}{2}\right) \\
\mathrm{f}\left(\mathrm{r}_{1}\right)=12 \\
\mathrm{f}\left(\mathrm{r}_{\mathrm{i}}\right)=41 i-30,2 \leq i \leq\left(\frac{n-1}{2}\right) \\
\mathrm{f}\left(\mathrm{~s}_{\mathrm{i}}\right)=41 i-7,1 \leq i \leq\left(\frac{n-1}{2}\right) \\
\mathrm{f}\left(\mathrm{v}_{1}\right)=19 \\
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=41 i-20,2 \leq i \leq\left(\frac{n-1}{2}\right) \\
\mathrm{f}\left(\mathrm{z}_{\mathrm{i}}\right)=41 i-17,1 \leq i \leq\left(\frac{n-1}{2}\right) \\
\mathrm{f}\left(\mathrm{w}_{1}\right)=27 \\
\mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=41 i-11,2 \leq i \leq\left(\frac{n-1}{2}\right) \\
\mathrm{f}\left(\mathrm{l}_{1}\right)=14 \\
\mathrm{f}\left(\mathrm{l}_{\mathrm{i}}\right)=41 i-38,2 \leq i \leq\left(\frac{n-1}{2}\right) \\
\mathrm{f}\left(\mathrm{~g}_{1}\right)=15 \\
\mathrm{f}\left(\mathrm{~g}_{\mathrm{i}}\right)=41 i-25,2 \leq i \leq\left(\frac{n-1}{2}\right) \\
\mathrm{f}\left(\mathrm{a}_{1}\right)=1 \\
\mathrm{f}\left(\mathrm{a}_{\mathrm{i}}\right)=41 i-35,2 \leq i \leq\left(\frac{n-1}{2}\right) \\
\mathrm{f}\left(\mathrm{k}_{1}\right)=5 \\
\mathrm{f}\left(\mathrm{k}_{\mathrm{i}}\right)=41 i-32,2 \leq i \leq\left(\frac{n-1}{2}\right) \\
\mathrm{f}\left(\mathrm{~b}_{1}\right)=10 \\
\mathrm{f}\left(\mathrm{~b}_{\mathrm{i}}\right)=41 i-29,2 \leq i \leq\left(\frac{n-1}{2}\right) \\
\mathrm{O}
\end{array}\right)
$$

The labeling pattern of $\mathrm{S}\left[\mathrm{A}\left(\mathrm{T}\left(\mathrm{Q}_{5}\right)\right)\right]$ is displayed below.

Figure: 11
From the above labeling pattern, we get $\{f(\mathrm{~V}(\mathrm{G}))\} \cup\{\mathrm{f}(\mathrm{e}): \mathrm{e} \in \mathrm{E}(\mathrm{G})]=\{1,2, \ldots, \mathrm{p}+\mathrm{q}\}$

Hence " f" provides a Super Geometric mean labeling of G.
Subcase (1) (b): If ' n ' is even, then
Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{p}+\mathrm{q}\}$ by,

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{u}_{1}\right)=8 \\
& \mathrm{f}\left(\mathrm{u}_{2 \mathrm{i}-1}\right)=41 i-40,2 \leq i \leq\left(\frac{n}{2}\right) \\
& \mathrm{f}\left(\mathrm{u}_{2 \mathrm{i}}\right)=41 i-3,1 \leq i \leq\left(\frac{n}{2}\right) \\
& \mathrm{f}\left(\mathrm{t}_{2 \mathrm{i}-1}\right)=41 i-13,1 \leq i \leq\left(\frac{n}{2}\right) \\
& \mathrm{f}\left(\mathrm{t}_{2 \mathrm{i}}\right)=41 i-1,1 \leq i \leq\left(\frac{n-2}{2}\right) \\
& \mathrm{f}\left(\mathrm{~m}_{\mathrm{i}}\right)=41 i-24,1 \leq i \leq\left(\frac{n}{2}\right) \\
& \mathrm{f}\left(\mathrm{n}_{\mathrm{i}}\right)=41 i-5,1 \leq i \leq\left(\frac{n}{2}\right) \\
& \mathrm{f}\left(\mathrm{x}_{1}\right)=20 \\
& \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)=41 i-22,2 \leq i \leq\left(\frac{n}{2}\right) \\
& \mathrm{f}\left(\mathrm{q}_{1}\right)=26 \\
& \mathrm{f}\left(\mathrm{q}_{\mathrm{i}}\right)=41 i-18,2 \leq i \leq\left(\frac{n}{2}\right) \\
& \mathrm{f}\left(\mathrm{y}_{1}\right)=31 \\
& \mathrm{f}\left(\mathrm{y}_{\mathrm{i}}\right)=41 i-12,2 \leq i \leq\left(\frac{n}{2}\right) \\
& \mathrm{f}\left(\mathrm{r}_{1}\right)=12 \\
& \mathrm{f}\left(\mathrm{r}_{\mathrm{i}}\right)=41 i-30,2 \leq i \leq\left(\frac{n}{2}\right) \\
& \mathrm{f}\left(\mathrm{~s}_{\mathrm{i}}\right)=41 i-7,1 \leq i \leq\left(\frac{n}{2}\right) \\
& \mathrm{f}\left(\mathrm{v}_{1}\right)=19 \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=41 i-20,2 \leq i \leq\left(\frac{n}{2}\right) \\
& \mathrm{f}\left(\mathrm{z}_{\mathrm{i}}\right)=41 i-17,1 \leq i \leq\left(\frac{n}{2}\right) \\
& \mathrm{f}\left(\mathrm{w}_{1}\right)=27 \\
& \mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=41 i-11,2 \leq i \leq\left(\frac{n}{2}\right) \\
& \mathrm{f}\left(\mathrm{l}_{1}\right)=4 \\
& \mathrm{f}\left(\mathrm{l}_{\mathrm{i}}\right)=41 i-38,2 \leq i \leq\left(\frac{n}{2}\right) \\
& \mathrm{f}\left(\mathrm{~g}_{1}\right)=15 \\
& \mathrm{f}\left(\mathrm{~g}_{\mathrm{i}}\right)=41 i-25,2 \leq i \leq\left(\frac{n}{2}\right) \\
& \mathrm{f}\left(\mathrm{a}_{1}\right)=1 \\
& \mathrm{f}\left(\mathrm{a}_{\mathrm{i}}\right)=41 i-35,2 \leq i \leq\left(\frac{n}{2}\right) \\
& \mathrm{f}\left(\mathrm{k}_{1}\right)=5 \\
& \mathrm{f}\left(\mathrm{k}_{\mathrm{i}}\right)=41 i-32,2 \leq i \leq\left(\frac{n}{2}\right) \\
& \mathrm{f}\left(\mathrm{~b}_{1}\right)=10 \\
& \mathrm{f}\left(\mathrm{~b}_{\mathrm{i}}\right)=41 i-29,2 \leq i \leq\left(\frac{n}{2}\right) \\
&
\end{aligned}
$$

The labeling pattern of $\mathrm{S}\left[\mathrm{A}\left(\mathrm{T}\left(\mathrm{Q}_{6}\right)\right)\right]$ is given below.

Figure: 12
From the above labeling pattern, we get $\{f(V(G))\} \cup\{f(e): e \in E(G)]=\{1,2, \ldots, p+q\}$
Hence G admits Super Geometric mean labeling.
Case 2: If $T\left(Q_{n}\right)$ starts from u_{2},
Let $t_{i}, m_{i}, n_{i}, q_{i}, r_{i}, s_{i}, z_{i}, l_{i}, g_{i}$ and k_{i} be the vertices which subdivide the edges $u_{i} u_{i+1}, u_{2 i} x_{i}, u_{2 i+1} y_{i}, x_{i} y_{i}, u_{2 i} v_{i}$, $u_{2 i+1} W_{i}, v_{i} W_{i}, u_{2 i} a_{i}, u_{2 i+1} b_{i}$ and $a_{i} b_{i}$ respectively.

We have to consider two subcases.
Subcase (2) (a): If ' n ' is odd, then
Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{p}+\mathrm{q}\}$ by,

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{u}_{2 \mathrm{i}-1}\right)=41 i-40,1 \leq i \leq\left(\frac{n-1}{2}\right)+1 \\
& \mathrm{f}\left(\mathrm{u}_{2 \mathrm{i}}\right)=41 i-36,1 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{t}_{2 \mathrm{i}-1}\right)=41 i-38,1 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{t}_{2 \mathrm{i}}\right)=41 i-9,1 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{~m}_{\mathrm{i}}\right)=41 i-20,1 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{n}_{\mathrm{i}}\right)=41 i-1,1 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)=41 i-18,1 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{q}_{\mathrm{i}}\right)=41 i-14,1 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{y}_{\mathrm{i}}\right)=41 i-8,1 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{r}_{\mathrm{i}}\right)=41 i-26,1 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{~s}_{\mathrm{i}}\right)=41 i-3,1 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=41 i-16,1 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{z}_{\mathrm{i}}\right)=41 i-13,1 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=41 i-7,1 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{l}_{\mathrm{i}}\right)=41 i-34,1 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{~g}_{\mathrm{i}}\right)=41 i-21,1 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{a}_{\mathrm{i}}\right)=41 i-31,1 \leq i \leq\left(\frac{n-1}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{k}_{1}\right)=14 \\
& \mathrm{f}\left(\mathrm{k}_{\mathrm{i}}\right)=41 i-28,2 \leq i \leq\left(\frac{n-1}{2}\right) \\
& \mathrm{f}\left(\mathrm{~b}_{1}\right)=17 \\
& \mathrm{f}\left(\mathrm{~b}_{\mathrm{i}}\right)=41 i-25,2 \leq i \leq\left(\frac{n-1}{2}\right)
\end{aligned}
$$

The labeling pattern of $\mathrm{S}\left[\mathrm{A}\left(\mathrm{T}\left(\mathrm{Q}_{5}\right)\right)\right.$ is shown below.

Figure : 13
From the above labeling pattern, both vertices and edges together get distinct labels from $\{1,2, \ldots, p+q\}$. This makes " f " a Super Geometric mean labeling of G.

Subcase (2) (a): If ' n ' is even, then
Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{p}+\mathrm{q}\}$ by,
$\mathrm{f}\left(\mathrm{u}_{2 \mathrm{i}-1}\right)=41 i-40,1 \leq i \leq\left(\frac{n}{2}\right)$
$\mathrm{f}\left(\mathrm{u}_{2 \mathrm{i}}\right)=41 i-36,1 \leq i \leq\left(\frac{n}{2}\right)$
$\mathrm{f}\left(\mathrm{t}_{2 \mathrm{i}-1}\right)=41 i-38,1 \leq i \leq\left(\frac{n}{2}\right)$
$\mathrm{f}\left(\mathrm{t}_{\mathrm{i}}\right)=41 i-9,1 \leq i \leq\left(\frac{n-2}{2}\right)$
$\mathrm{f}\left(\mathrm{m}_{\mathrm{i}}\right)=41 i-20,1 \leq i \leq\left(\frac{n-2}{2}\right)$
$\mathrm{f}\left(\mathrm{n}_{\mathrm{i}}\right)=41 i-1,1 \leq i \leq\left(\frac{n-2}{2}\right)$
$\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)=41 i-18,1 \leq i \leq\left(\frac{n-2}{2}\right)$
$\mathrm{f}\left(\mathrm{q}_{\mathrm{i}}\right)=41 i-14,1 \leq i \leq\left(\frac{n-2}{2}\right)$
$\mathrm{f}\left(\mathrm{y}_{\mathrm{i}}\right)=41 i-8,1 \leq i \leq\left(\frac{n-2}{2}\right)$
$\mathrm{f}\left(\mathrm{r}_{\mathrm{i}}\right)=41 i-26,1 \leq i \leq\left(\frac{n-2}{2}\right)$
$\mathrm{f}\left(\mathrm{s}_{\mathrm{i}}\right)=41 i-3,1 \leq i \leq\left(\frac{n-2}{2}\right)$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=41 i-16,1 \leq i \leq\left(\frac{n-2}{2}\right)$
$\mathrm{f}\left(\mathrm{z}_{\mathrm{i}}\right)=41 i-13,1 \leq i \leq\left(\frac{n-2}{2}\right)$
$\mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=41 i-7,1 \leq i \leq\left(\frac{n-2}{2}\right)$
$\mathrm{f}\left(\mathrm{l}_{\mathrm{i}}\right)=41 i-34,1 \leq i \leq\left(\frac{n-2}{2}\right)$

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{~g}_{\mathrm{i}}\right)=41 i-21,1 \leq i \leq\left(\frac{n-2}{2}\right) \\
& \mathrm{f}\left(\mathrm{a}_{\mathrm{i}}\right)=41 i-31,1 \leq i \leq\left(\frac{n-2}{2}\right) \\
& \mathrm{f}\left(\mathrm{k}_{1}\right)=14 \\
& \mathrm{f}\left(\mathrm{k}_{\mathrm{i}}\right)=41 i-28,2 \leq i \leq\left(\frac{n-2}{2}\right) \\
& \mathrm{f}\left(\mathrm{~b}_{1}\right)=17 \\
& \mathrm{f}\left(\mathrm{~b}_{\mathrm{i}}\right)=41 i-25,2 \leq i \leq\left(\frac{n-2}{2}\right)
\end{aligned}
$$

The labeling pattern of $\mathrm{S}\left[\mathrm{A}\left(\mathrm{T}\left(\mathrm{Q}_{8}\right)\right]\right.$ is shown below.

Figure: 14

From the above labeling pattern we get, $\{\mathrm{f}(\mathrm{V}(\mathrm{G}))\} \cup\{\mathrm{f}(\mathrm{e}): \mathrm{e} \in \mathrm{E}(\mathrm{G})\}=\{1,2, \ldots, \mathrm{p}+\mathrm{q}\}$
Hence G admits a Super Geometric mean labeling.
From all the above cases, we conclude that Subdivision of Alternate Triple Quadrilateral snake is a Super Geometric mean graph.

References:

[1] Gallian.J.A. "A Dynamic survey of graph labeling". The electronic Journal of Combinatorics 2011, 18 \#DS6.
[2] Harary.F., 1988, "Graph theory" Narosa publishing House, New Delhi.
[3] C. Jayasekaran, S.S.Sandhya and C. David Raj, "Some Results on Super Harmonic mean graphs", International Journal of Mathematics Trends and Technology, Vol.6(3)(2014), 215-224.
[4] Somasundaram.S and Ponraj.R, 2003 "Mean labeling of graphs" National Academy of Science letters Vol.26, p.210-213.
[5] Somasundaram.S, Ponraj.R and S.S.Sandhya "Harmonic mean labeling of graphs", Communicated to Journal of Combinatorial Mathematics and Combinatorial Computing.
[6] S.Somasundaram, R. Ponraj and P.Vidhyarani "Geometric mean labeling of graphs" Bulletin of Pure and Applied Sciences, 30E (2),(2011), p.153-160
[7] S.S.Sandhya, E.Ebin Raja Merly and B.Shiny "Super Geometric mean labeling on Double Quadrilateral snake graphs". Asia Pacific Journal of Research, Vol:1, Issue XXI, Jan 2015, ISSN: 2320 - 5504, E-ISSN-2347-4793

