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INTRODUCTION 

 Inverse optimization perturb objective function to make an initial feasible solution optimal with respect 

to perturbed objective function while minimizing cost of perturbation. We extend inverse optimization to two 

state stochastic linear program since the resulting model grows with number of scenarios, we present two 

decomposition approaches for solving these problems. 

 Inverse optimization has many application areas ,and inverse problems have been studied extensively in the 

analysis  of  geophysical  data. Recently inverse optimization has extended into a variety of fields of study. 

[Burton and Toint  (1992,1994)] to predict  the movements of earth quakes  assuming that earth quakes move 

along shortest paths.  

    Zhang and Lin (1996) suggested a solution method for general inverse linear programs including upper and 

lower bound constraints based on the optimality conditions for linear programs.Their  objective function was to 

minimize  the cost of perturbation based on the L1 norm.  

Ahuja and Orlin  (2001) studied inverse optimization  for deterministic problems and showed that  the 

inverse of a deterministic problems and showed that the inverse of  determinisiticL.p  is also an L.p.They  

attained the inverse feasible cost vectors using optimality condition for  L.ps and minimized the cost of 

perturbation based on both L1  and L  norm. 

              To consider the inverse optimization problem under the weighted L1  norm involves solving the 

problem according to the objective  Min                                                                             where J 

is the variable index set ,dj and cj are perturbed and original objective cost coefficients , respectively, and vj is 

the weights  coefficients respectively. By introducing variables  for each variable   ,this objective 

is equivalent to the following problem: 

   Two stage stochastic linear programming (TSSLP)considers LPs in which some problem  data are random  In 

this paper extends deterministic inverse  LP to  TSSLP. Although  many of the applications of inverse 

optimization are stochastic in nature, to the best of our knowledge ,deterministic version of these problems have 

been considered so far .With this paper ,we add this stochastic nature to inverse problems along with interval 

coefficients. 

Min  

s.t.dj-cj =  

 ,  

Two stage stochastics linear programming (TSSLP), consider LP‟s in which some problem data are random In 

this case first stage decisions are made without full information on the random events while second stage 

decisions are taken after full information on the random variables becomes available. With this paper we add 

this stochast nature to inverse problems along with interval coefficients. 

 We consider the extensive form of two stage Stochastic linear programming (TSS LP) with a finite 

number of scenarios. Let J
0
 denotes the index set of first stage variables. I

0
 denotes the index set of first stage 

constrains K denotes the se of scenarios,J
k
 denotes the index set of second stage variable for scenario K K.   

I
k
denotes the index set of second stage constrains for scenario K K. The two stage Stochastic linear 

programming in extensive form in which the co efficient of constraints are in the interval form is defined as 

) 
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Subject to 

 

 

 

 

We associate first stage constraints (2)  with the dual variable  and the second stage constraints (3) with the 

dual variable  then the dual of extensive form with the interval coefficients is written as  

 

 

S.t 

 

 

 

              LP optimality conditions require that at optimality, a primal solution   

{x,y
k
 , } is feasible to the constraints 2 to 4 and a corresponding dual solution  {  } is feasible to 

constraints (6) to (8). It is noted that the following complementary slackness conditions are satisfied. 

 

 

 

                   Let B
o 

denotes the set of binding constraints among the first stage constraints (2) with respect to an 

initial primal feasible solution (x^,y^,k ) and B
k
 ,  be the set of binding constraints among the second 

stage constraints(3) based on the binding constraints, the complementary slackness conditions are written as 

 For any   TSSLP is denoted as EF(d,q)
ı
, where   are 

replaced by    and   .  

It is assured that   is an optional solution to EF(d,q
1
) iff there exists a dual solution 

(  that satisfies the constraints from 6 to 8 with dj,  replaced   and the primal dual pair 

satisfies the complementary slackness conditions. On combining, the dual feasibility condition with the newly 

established complementary slackness conditions gives the following characterization of inverse feasible cost 

vectors for two stage stochastic linear programming  

under weighted L norm, the problem is stated as  Min 
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and 

 

 

 The coefficients   and  denote the weight vectors associated with the first and 

second stage respectively. In order to linearize this non linear objective, define the following terminologies. 

In the first stage, 

dj-cj =  --------------   (13)  ,        where   and   

In the second stage , 

----------------(14) , where  and  

The inverse two stage stochastic  linear programming under the weighted L1 norm is to minimize the first stage 

weighted absolute cost of perturbation plus the expected second stage weighted absolute cost of perturbation.  

Now, the inverse two stage stochastic linear programming with interval coefficients in extensive form is stated 

as under. 

Min 

 

Subject to 

 

and 

 

 

 

By defining 

 

and 

 

Now, the inequalities (16) and are constructed as  

http://www.ijmttjournal.org/


International Journal of Mathematics Trends and Technology- Volume24 Number1 – August 2015 

ISSN: 2231-5373                              http://www.ijmttjournal.org                               Page 50 

 

 

Consider three mutually exclusive cases in two different sets. 

Set. I:   

case(1) 

 

 

Case : 2 

 

 

case:3 

 

 

Set: II 

Case  4 

 

 

Case : 5 

 

 

Case : 6 

 

 

3.  Decomposition Approaches: 

 The inverse 2SSLP problem with interval coefficients of constraints given in the expression (15) whose 

constraints (16) to (19) grows with the number of scenarios \k1.  This problem motivates to undergo 

decomposition approaches.  Such as Dantzing-Wolfe (1961) decomposition  relaxation [Fisher (1985)].  Or 

Lagrangian may be utilized.  Further more { } do not appear in J
o
 constraints and do 

not appear J
k
 , constraints.  Therefore, the problem is relatively easy to solve when only these variables 

are present  So  are the linking variables for which Benders (1962) decomposition is appropriate. 
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3.1.  Dantzing – Wolfe Decomposition: 

 Dantzing – Wolfe (1961) decomposition is an application of inverse projection to linear program with 

special structure.  With Dantzing-Wolfe decomposition, the LP is decomposed into two set of constraints as 

easy and hard.  Rather than solving the LP with all the variables present, the variables are added as needed.  This 

approach uses column generation. 

 Observe that if one views the  (P1,…………Qk)Variables as “first stage” variable, the resulting inverse 

2SSLP may be interpreted as a TSSLP as well.  So, for the inverse TSSLP, J
k
,   are easy constraints J

0
 are 

hard constraints, optimizing the sub problem by solving K independent LP‟s may be preferable to solving the 

entire system. 

 Let Let ( k ,
k 
, 

k
)

ı
-------( k , 

k 
, 

k
)

qk 

be the entre me points in the easy polyhedron as a combination of their extreme points and entre me rays.  

Substituting these into the hard constraint set and  into the objective function gives the following Dantzing-

Wolfe problem. 

Min 

 

s.t 

 

 

----------------(27) 

 The above stated objective function given in (24) and its constraints (25) are coupling constraints while 

constraints (26) are convexity rows.  It is noted that problem (24) has fewer constraints (25)-(27) than the 

original problem (15) whose constraints (16) to (18).  The number of variables in the Dantzing-Wolfe problem 

is larger than that in the original problem, since  the points in the easy polyhedral are rewritten in terms of 

extreme points and extreme rays. 

 Hence the required restricted problem can be constructed with a small sub set (^(k)) of the columns in 

the full problem as follows: 

Min 

 

s.t 
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 If the reduced costs of all variables in the restricted problem are non negative, the optimal solution to 

the full master.  Otherwise, the column with the minimum reduced cost, is added to the restricted master,in this 

stage in order to obtain minimum reduced cost, we have to solve the Dantzigwolfe sub problem. In this case 

these are K sub problem to solve instead of full problem. 

 consider the optimal dual multipliers is (u, ) are restricted master problem, so that the k
th

sub 

problem can be written as  

Min 

 

 

s.t 

(34) 

The Dantzig wolf algorithm terminate when a optimum solution of the sub problem is greater than or equal to 

zero for all k  otherwise, the valuable with the minimum reduced cost is added to the restricted master 

problem. 

3.2.Benders Decomposition : 

 Benders decomposition is a technique in mathematical programming that allows the solution of very 

large linear programming problems that have a special block structure. This structure often occurs in application 

such as stochastic programming. 

 Benders(1962) has proposed that decomposition variables are divided into two sets as „easy” and 

complicating (linking) variables. The problem with only easy variable is relatively easy to solve. Bender‟ 

decomposition projects out easy variables and then solves the remaining problem with linking variables. 

 In this algorithm, easy variables are replaced with more constraints. The number of constraints is 

exponential in the number of easy variables. However constraints are added as needed basis which overcomes 

the problem of an exponential number of constraints. 

The original problem given in (15) to (19) may be modified based on benders rule as  

Min Z
0
 

Subject  to 

 

 

 

 By introducing optimal dual variable ( ) in the constrains (35) to (37) the resultant constraints are 

given as 

Min z
0 

Subject to 
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Since BMP has a lot of constraints to optimize directly, the basic idea behind Benders decompression is to solve to 

relaxed master problem with only a small subset of constraints. If there is some constraints in the BMP that is violated 

by the solution to the relaxed master problem, the violated constraints is added to the master problem. The under stated 

benefits sub problem (BSP) for the inverse extensive form is solved for obtaining the violated constraints. 

Max 

 

st 

 

 

 

 

 If the solution u
i
 BSP is either extreme point or extreme direction then accordingly the constraint  type 

(38) or (39) is added to the relaxed master problem. Blender decomposition algorithm iteratively generate upper 

and lower bounds on the optimal solution value to the original problem and is terminated when the difference 

between the bounds is less than or equal to a pre specified value.   
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