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Abstract — In this article, the Adomian 
Decomposition Method (ADM) is used to study the 
harmonic oscillators [6]. The obtained discrete 
solutions using ADM are compared with the Runge-
Kutta (RK) method, Single-term Haar wavelet series 
(STHW) and ODE45 solutions of the harmonic 
oscillators and are found to be very accurate. Solution 
and Error graphs for discrete and exact solutions are 
presented in a graphical form to show efficiency of 
this method. This ADM can be easily implemented in a 
digital computer and the solution can be obtained for 
any length of time. 
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I. INTRODUCTION 
Most of the realistic singular non Most of the 

realistic singular non-linear systems do not admit any 
analytical solution and hence a numerical procedure 
has to be used. In the last few years substantial 
progress has been made in finding the numerical 
solution of special classes of nonlinear singular 
systems of differential equations. A general numerical 
procedure for their solution has not previously existed. 
Hence it is important to understand the structure of 
such systems and develop efficient methods for 
solving them. The conventional methods such as Euler, 
Runge-Kutta and Adams-Moulton are restricted to 
very small step size in order that the solution is stable. 
[3] 

In this paper we developed numerical methods for 
addressing harmonic oscillators by an application of 
the Adomian Decomposition Method which was 
studied by Sekar and team of his researchers [4-5,7-9]. 
Recently, Sekar et al. [6] discussed the harmonic 
oscillators using STHW. In this paper, the same 
harmonic oscillators problem was considered 
(discussed by Sekar et al. [6]) but present a different 
approach using the Adomian Decomposition Method 
with more accuracy for harmonic oscillators problems.  

II. ADOMIAN DECOMPOSITION METHOD 

Suppose k  is a positive integer and 1 2, , , kf f f  
are k  real continuous functions defined on some 
domain G . To obtain k  differentiable functions 

1 2, , , ky y y  defined on the interval I  such that 

1 2( , ( ), ( ), , ( ))kt y t y t y t G  for t I .  
Let us consider the problems in the following 

system of ordinary differential equations: 

1 2
( )

( , ( ), ( ), , ( ))i
i k

dy t
f t y t y t y t

dt
   ,   

( ) | 0y ti t i    (1) 

where i  is a specified constant vector, ( )iy t  is 
the solution vector for 1, 2, ,i k  . In the 
decomposition method, (1) is approximated by the 
operators in the form: 

( ) ( , ( ), ( ), , ( ))1 2Ly t f t y t y t y ti i k   where L  is the 
first order operator defined by /L d dt  and 

1, 2, ,i k  .  

Assuming the inverse operator of L  is 1L  which 

is invertible and denoted by 
0

1 (.) (.)
t

t
L dt   , then 

applying 1L  to ( )
i

L y t  yields  

1 1( ) ( , ( ), ( ), , ( ))1 2L Ly t L f t y t y t y ti i k
    

where 1, 2, ,i k  . Thus 
1( ) ( ) ( , ( ), ( ), , ( ))0 1 2y t y t L f t y t y t y ti i i k

   . 

Hence the decomposition method consists of 
representing ( )y ti  in the decomposition series form 
given by 

( ) ( , ( ), ( ), , ( )), 1 2
0

y t f t y t y t y ti i n k
n


 


          (2) 

where the components ,i ny , 1n  and 1,2, ,i k   
can be computed readily in a recursive manner. Then 
the series solution is obtained as 

1( ) ( ) { ( , ( ), ( ), , ( ))},0 , 1 2
1

y t y t L f t y t y t y ti i i n k
n

   




. (3) 
For a detailed explanation of decomposition method 

and a general formula of Adomian polynomials, we 
refer reader to [Adomian 1]. 
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III.  HARMONIC OSCILLATORS  
Unforced harmonic oscillators can be modelled by 

the following second order homogeneous differential 
equation Blanchard et al. [2], 

02

2
 ky

dt
dyb

dt
ydm            

(4) 
where 0, km and 0b . If b = 0, then the system is 
undamped. However, if 0b , then different types of 
behavior are possible. For the above harmonic 
oscillatory equation, the characteristic equation is, 

m
mkbb

2
42   

The three different possibilities for the roots of the 
characteristic equation are, 

 If 042  mkb , then we have complex roots 
and the harmonic oscillator is said to be 
under damped. In this case, we expect the 
system to oscillate about its equilibrium 
position. 

 If ,042  mkb then we have repeated roots 
and the oscillator is critically damped. 

 IF ,042  mkb then the roots are real and 
distinct, and the oscillator is said to be over-
damped, and the system will move to its 
equilibrium position without any oscillations. 

We now consider the second order homogenous 
differential equation given as an initial value problem, 
with m = 1, k = 1 and b = 0.01t, 

    
,001.02

2
 y

dt
dyt

dt
yd     20,10  yy             

(5) 
We note that for Equation (5), at time t = 0 the 

system is undamped, and the critical damping value is 
given by t* = 200. The interval of time  200,0 and  
 ,200  corresponds to the system being under 
damped and over damped respectively. 
 To solve Equation (5) with numerical 
integrators, we can rewrite this second order 
homogeneous differential equation as a system of first 
order differential equations, by using the substitution 
dy/dt = v, and a vector Y(t) = [y(t),v(t)], 

        tYtAtY                                   
(6) 

where the matrix A(t) and the initial condition Y(0) are 
given by, 

    



















2
1

0,
01.01

10
Y

t
tA

 
IV.  NUMERICAL SOLUTION 

Firstly, we solved the matrix differential equation 
with the classical methods like the Runge-Kutta 
method (RK) and STHW. Then, we solved the same 
differential equation with ADM method. All 3 
integrators are highly stable, so when step size h is 

share equally, their global error rations should change 
roughly by a factor of 16. This can be observed from 
the numerical results, for the integration period from 

00 t  to .1.0ft  Also, it turns out that if we plot 
such results on a log-log scale of global error against 
step size h, then solutions from the ADM method have 
a better accuracy in comparison with RK or STHW 
methods. This can be observed from Figure 1. 

Next, we turn our attention to the numerical 
solutions from integrating Equation (6) along a certain 
interval with fixed step size h = 1/20. We integrated 
the differential equation firstly over the integration 
period t = [0, 40], with the 3 integrators RK, STHW, 
and the ADM, all methods are stable. Then we also 
integrate over the same period with the highly 
accurate ODE45 in Matlab, with a specified tolerance 
of .10 14 Comparisons can be then be done between  
numerical solutions from the 3 integrators under 
consideration, and that of Matlab’s ODE45 integrator. 
Note that the interval t = [0.40] is below the critical 
damping value of t* = 200 in Equations (6). This 
implies that the dynamical system is under damped, 
and we should expect oscillations to occur. Similarly, 
we can integrate over the interval t = [220,230], which 
is now above t* = 200. So we would not expect any 
oscillations in the numerical solutions since the system 
is over damped in this case. 

Figure 2 and Figure 3 contain the results from the 
experiments mentioned above. As seen from the top 3 
graphs in Figure 2, solutions y(t) are oscillating 
against time t throughout the integration period in the 
under damped system, while the results from the over 
damped system in the top 3 graphs of Figure 3 move 
toward the equilibrium at y(t) = 0, with no oscillations 
against t in the integration interval of t = [220,230]. 

 

 
Fig. 1 Log-log plot of global error against step size for results from 
RK, STWS and STHW. They solved the initial value problem in 
Equation (6), from t0 = 0, tf = 0.1. 
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Figure 2 Solving the under damped system in Equation (6) for the 

interval  40,0t , for which t < t* = 200. 

 
The top 3 graphs are plots of numerical solutions 

y(t) against time t, with h = 1/20. The bottom 3 graphs 
are the differences between numerical solutions from 
each of the 3 integrators and the highly accurate 
ODE45.  

 

 
Figure 3 Solving the over damped system in Equation (6) for the 

interval  230,220t , for which t < t* = 200. 

 
The top 3 graphs are plots of numerical solutions 

y(t) against time t, with h = 1/20. The bottom 3 graphs 
are the differences between numerical solutions from 
each of the 3 integrators and the highly accurate 
ODE45.  

V. CONCLUSIONS 
The accuracy achieved from the ADM method is 

higher than that of the RK and the STHW methods. 

This can be observed if we compare results from the 3 
integrators and that ODE45. The differences in this 
comparison are also plotted in the bottom 3 graphs of 
Figure 2 and Figure 3. For both the under damped and 
over damped systems, the difference between ODE45 
and ADM are several degrees smaller in magnitude 
than the differences between smaller in magnitude 
than the differences between numerical solutions from 
RK and STHW methods against ODE45’s. With a 
relatively low computational cost, and a relatively 
good accuracy for fixed step size h, these brief 
experiments suggest the suitability of using the ADM 
to integrate systems of first order differential 
equations describing the dynamics of an unforced 
harmonic oscillator. Hence the ADM method is more 
suitable for studying the harmonic oscillators. 
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