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I. INTRODUCTION 

 
The modern theory of differential or integral 

calculus began in the 17th

 century with the works of 

Newton and Leibnitz [1]. In 1989, K.S.Miller and Ross 

[2] introduced the discrete analogue of the 

Riemann-Liouville fractional derivative and proved 

some properties of the fractional derivative operator. 

Several groups have intensified their research on the 

amazing mathematics world featuring q-calculus. The 

theory of q-derivative equations of q-calculus or 

quantum calculus is based on the definition of the 

q-derivative operator, which was introduced by 

Jackson [3],[4]. This q-derivative operator, sometimes 

called Jackson q-derivative operator  or Euler Jackson 

q-derivative operator, is defined by  

 = , 1,
( 1)

qk k

q k

y y
D y q

q k
 

Where yk is a sequence of real numbers. In [5], the 

authors introduced the derivative operator on two 

variables which turned out to be suitable for dealing 

with the Cauchy polynomials and also derived a 

binomial identity which unifies  the two identities of 

Rota and Goldman, as well as, the q-vandermonde 

identity. Using this operator, the q-Leibnitz formula 

and the generating function of the homogeneous 

Rogers-Szego polynomials are derived in [6].  

In 2014, G.Britto Antony Xavier, et al. [7],[8] 

proved several interesting results of geometric 

progression using q-differencee operator 
q

. Hence 

in this paper, we define the Generalized q-derivative 

operator 
( )
D

q 

 and we develop the basic theory for 

( )
D

q 

, relations connecting 
( )
D

q 

, the shift operator 

qE , q-difference operator 
q

 and the q-derivative 

operator 
( )

.D
q 

  Also we obtain formula for finding the 

sum of higher powers of geometric progression by 

using Generalized inverse q-alpha derivative operator.  

 
II. PRELIMINARIES 

 
Before stating and proving our results, we 

present basic definitions and preliminary results which 

will be used for the subsequent discussions. Let u(k) be 

a real valued function on ( , ), ,q is a 

non-zero real and m  is a positive integer. 

 

Definition 2.1 [7]  Let ( )u k  be a real valued 

function on ( , )  and 1 q  be a fixed real 

number. Then the q-difference operator, denoted by 

q
, on ( )u k  is defined as  

  ( ) = ( ) ( ).qu k u qk u k                     

(1) 

  

Definition 2.2 [7]  Let n  be a positive integer, 

0k  be real and (0, )q . Then the generalized 

positive reciprocal polynomial factorial is defined by  

        
( )

1 1 1 1 1
2 ... ( 1)

n

q

q q n q
k k k k k

     

(2) 

 and  

     

( ) 1
= ,

( )( 2 ) ( ( 1) )

n

qk
k k q k q k n q

            

(3) 

 where 
n

rs  are stirling numbers of first kind.  

Definition 2.3 [9]  Let ( )u k  be a real valued 

function on ( , ) , then the generalized 

q-derivative operator on ( )u k  is defined as  

 
( )

( ) ( )
( ) = , .D

( )q

u qk u k
u k q

q k





      

(4) 
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Lemma 2.4 [10]  Let (1)n N , 0q , 
0

0 = 1s  

and 
0

0= = 0r

rs s  if 0r . If 

1
( )

=0

= ( )
n

n

q

i

k k iq , 

then we have  

    
( )

=1

=
n

n n n r r

q r

r

k s q k                        

(5) 

and  

    

( )

=1

1 1
.

n rn
n n r

r

rq

s q
k k

               

(6) 

  

Definition 2.5  Let ( )u k  be a real valued function 

on ( , )  and q  be fixed real. Then the 

q  derivative operator, denoted by 
( )
D

q 

, on 

( )u k  is defined as  

 
( )

( ) ( )
( ) = ,D

( )q

u qk u k
u k

q k




              

(7) 

        1

( )( ) ( )

( ) = ( )DD Dm m

qq q

u k u k
 

 

 

and q-shift operator is defined as  

    ( ) = ( ).qE u k u qk
                         

(8) 

  

Remark 2.6  From (1), (7), (8) and by taking =1 , 

=1, we can easily arrive  

 

1 2 1 2
( ) ( ) ( )

( ( ) ( )) = ( ) ( ),D D D
q q q

c u k c v k c u k c v k
  

   

(9) 

  
( )

( ) ( )
( ) = ,D

( )

q

q

E u k
u k q

q k





        

(10) 

 and  

 
(1)

( )
( ) = , 1.D

( 1)

q

q

u k
u k q

q k
           

(11) 

  

Theorem 2.7  If m  is any positive integer, q   

and 0,k  then  

 

( ) =0

1
( ) = ( 1) ( ) ( ).D

( )

m
r r m rm

rm m
q r

u k mc u q k
q k




 

(12) 

Proof:  The proof follows from (8) and by operating 

q  derivative operator (m-1) times on equation 

(10).  

III. MAIN RESULTS 

 

We are in a position to state and prove our 

main results. The purpose of this section is for 

obtaining sum of finite and infinite series of geometric 

progression using inverse q  derivative operator. 

Definition 3.1 A function ( )v k  satisfying 
thm  order 

q-alpha difference equation 
( )

( ) = ( )Dm

q

v k u k


 is 

called solution of that equation and it is denoted as 

( )( ) = ( )m

qv k D u k  and in particular,  

 
1

( ) ( )

if ( ) = ( ), then ( ) = ( ).D D
q q

v k u k v k u k
      

(13) 

  

Theorem 3.2  If n  is any positive integer, then we 

have  

 

( )=0

( ) = ( ) ( ) ( ).D

n
n n r r r r
q r

qr

E u k nc q k u k


 
 

Proof:  From equation (10), we have 

( )

( ) = ( ( ) ) ( ).Dq
q

E u k q k u k


    

Raising the power 'n  on both sides and using 

Binomial theorem, we get the proof of the theorem.  

 

Lemma 3.3  If m  and n  are positive integers, then 

we can write  

 

1

=0

( )

( )

= .D
( )

m
n i n m

n im
m

q

q k

k
q




             

(14) 

Proof:  From equation (7), we have  

 

1

( )

( )
= .D

n n
n

q

q k
k

q




 

Operating 
( )
D

q 

 on both sides, we obtain  

 

1 2

2

( )

( ) ( )
= .D

n n n
n

q

q q k
k

q q

 

 
 

Repeat the process ( 2)m  times to complete the 

proof.  

 

Corollary 3.4  For any positive integer n  and 

,q  we have  

 

1

=0

( )

( )

= .D
( )

n
n i

n in
n

q

q

k
q




 

Proof:  The proof completes by putting =m n  in 
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(14).  

 

 

 

 

Corollary 3.5  If 
1nq   and n  is any positive 

integer, then  

    

1

1
1

( )

( )
= .D

n
n

n
q

q k
k

q




                 

(15) 

Proof:  Taking 
1( ) = nu k k  in (7), we get  

 

1 1
1

( )

( )
= ,D

( )

n n
n

q

q k
k

q k




 

which completes the proof of the corollary.  

 

Theorem 3.6 Let ( )u k  be a real valued function on 

( , )  and .q  Then  

1

( )=0

( )( ) = ( )D

m
r

r r
qr

k k
q u u qk

q q 

 

 

                     
1 1

( )

( ) D
m

m
q

k
u

q

       

(16) 

is a solution of the q  difference equation 

( )

( ) = ( )D
q

v k u k


 and hence  

1 1

( )= 1 =

( )( ) = ( ) D

m
n

r t

r r t
qr m t n

k k k
q u u

q q q

  

 

                                for < .m n     

(17)                  

Proof:  Taking 1

( )

( ) = ( )D
q

u k v k


 and by using (7),  

we get  

 ( ) = ( ) ( ) ( ).v qk q ku k v k          

(18) 

Replacing k  by 
k

q
,  we get  

 ( ) = ( ) .
k k k

v k q u v
q q q

       

(19) 

Substituting (19) in (18) gives  

 

2( ) = ( ) ( ) ( ) ( ) .
k k k

v qk q ku k q u v
q q q

                                                       

                                              

(20) 

Replacing k  by 
k

q
 in (19)  gives  

 
2 2 2

= ( ) .
k k k k

v q u v
q q q q

              

(21) 

 

Substituting (21) in (20) gives                           

 

 

( ) = ( ) ( ) ( )
k k

v qk q ku k q u
q q

     

2 3

2 2 2
( ) ( ) ( ) .

k k k
q u v

q q q
          

(22) 

Again replacing k  by 
2 3 1/ , / / ,...,, / mk q k q k q k q in (21) repeatedly 

and substituting the resultant expressions in (18), we 

arrive  

 

1

=0

( )( ) = ( ) ( ) ,
m

r m

r r m
r

k k k
q u v qk v

q q q
  

 

which yields (16). 

Replacing m  by n  in (16), where <m n , we get  

1

( )=0

( )( ) = ( )D

n
r

r r
qr

k k
q u u qk

q q 

    

                              
1 1

( )

( ) .D
n

n
q

k
u

q

    

(23) 

Hence (17) follows by subtracting (16) from (23).  

The following example illustrates Theorem 3.6:  

 

Example 3.7  Consider 
3( ) =u k k  in (15). Then 

(17) becomes 

3 4

1

4
= 1

=

( )
( )( ) = ( ) .

m
n

r t

r r t
r m

t n

k k q k
q

q q q q


  



(24)

 
Taking = 3, = 4, = 2, = 5, = 6m n q  and 

=15k  in (24), we get 

L.H.S = 

4 4
03

12

12 3
= 6.879707136 10

5
  

and  

R.H.S =
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3
4

1 03

4

=4

( 1) 15
(12) = 6.879707136 10 .

5 12 5

t

t

t

  

The following corollary gives formula for infinite 

series.  

 

Corollary 3.8 If < ,q ( )u k  is bounded and 

1 1

( )

( ) = 0,lim D
n

n
n q

k
u

q


 

then  

1 1

( )= 1

( )( ) = ( ) .D
r m

r r m
qr m

k k k
q u u

q q q

  
      

(25) 

 

In particular, we have  

    

1

1
1

( ) =0

( )
( ) = .D

r

r
q r

q k k
u k u

q q

 


     

(26) 

Proof. The proof of (25) follows by taking  n   

in (17) and the proof of (26) follows by putting m=0 in 

(25).  

 

The example given below illustrates Corollary 3.8.  

 

Example 3.9  Taking 
2( ) =u k k  in (15) and using 

(26), we get 

   

1 23

3 1
=0

( ) ( )
= .

r

r
r

q k q k k

q q q

  

 
     

(27) 

Putting = 5, = 4, = 9, = 3q k  in (27), we 

obtain  
3

3

(5 4)9
. . = = 6.451327434

5 12
L H S   

and  
1 2

1
=0

(5 4)9 12 9
. . = = 6.451327434.

12 5 5

r

r
r

R H S

  

  

Theorem 3.10  If p  is a positive integer, > 0k  

and  
11 0pq , then  

 

1

1
1 1

( )

1 ( )
=D

(1 )

p p

p p
q

q q

k q k




         

(28) 

and hence  

 

1 ( 1)( 1)
( 1)

1
= 1 =

( )
( ) = .

1

m
t p tn

r r p

p
r m t n

q
q

q





        

(29) 

Proof:  Taking 

1
1

( ) =

p

u k
k

 in (7), we get  

       

1 1

1
( )

1 1
= ,D

( )

p p

p p
q

q

k q q k




             

(30) 

which yields (28).  

Using (28) in (17) gives  

 

1

1 1

( )= 1
=

( )( ) ( ) .D

m
p p

r tn
r t

qr m
t n

q q
q

k k

  

  
(31) 

The relation (29) follows from (15) and (31).  

The following example is a verification of (29).  

 

Example3.11 Putting = = 2, = = 3, = 4q p m  

and = 5n  in (29), we obtain 

   

( 1) 5 10 5 10

= 1

( ) = ( ) = 6 2 = 7962624
n

r r p

r m

q q       

and  

 

1 ( 1)( 1)

1

=

( )

1

m
t p t

p

t n

q

q




= 

4
1 2( 1)

=5

6 2
= 7962624.

1 6 4

t t

t

  

 

Corollary 3.12  Let 
( )

1
p

k 

be the generalized 

polynomial factorial for 
1

k
. Then  

( ) 1

1
1 1

( ) =1

( )1
=D

(1 )

p p p r rp

r

r r
q r

s q q

k q k 

 


      

(32) 

and  

 

( )
( 1)( 1)

1

1
=1 = 1

=

( )
( ) = .

1

m
p

p p r r t r rp n
t r

rr r
r r m

t n

s q q

q kq k


 



  

(33) 

Proof:  Using (2), we can write  

 

( )

1 1

( ) ( )=1

1 1
= ,D D

p rp
p p r

r
q qr

s
k k 

      

(34) 

which yields (32) and the proof of (33) completes by 

applying (32) in (17).  

  

Theorem 3.13  Let , > 0,1 0q k   and ,m n  

are positive integers. Then  
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       1

( )

log log
= logD

1 1q

k q q
k

k



 
       

(35) 

and hence  

 

1 1

( )= 1

=

log( )

( )( ) log = ( ) .D
( )

m

tn
r t

r
qr m

t

t n

k

k q
q

kq

q



  

(36) 

Proof:  By taking ( ) = logu k k  in (7),  we get  

 
( )

log( ) log
log =D

( )q

qk k
k

q k




 

     

log (1 ) log
= .

( )

q k

q k




               

(37) 

Since 1

( )
D
q 

  is linear, we have  

 

1 1

( ) ( )

1 log log 1
log = .D D

( )q q

k q
k

q k q k 



 

 

              

                             

(38) 

The proof of (35) completes by applying (28) in (38) 

and (36) follows from (17) and (35).  

An example given below illustrates the Theorem 3.13.  

 

Example 3.14  Putting 

= 3, = 4, = 5, =10,m n   = 6q and =18k  

in equation (36), we get 

L.H.S = 
5

4

3
4 30 log( ) = 256169020.2

6
    

and  

R.H.S = 

4

1 1

( )

=5

log( )
630 D

( )
6

t
t

q

t
t

k

k

  

4

1

=5

log
= 30 log( ) = 256169020.2.

1 6 1

t

t

t

q k q

 

  

Theorem 3.15   If ( )u k  and ( )v k  are real valued 

functions on ( , ) , then  

1

( )

( ( ) ( )) =D
( 1)q

q
u k v k

q




1

(1)

( ) ( )D
q

u k v k                                       

 

                     1 1

( )( ) (1)

( ( ) ( )) .DD D
qq q

v qk u k


  

(39) 

Proof:  By (7), we find that  

( ) ( )

( ( ) ( )) = ( ( )) ( )D D
q q

u k w k u k w qk
 

  

             
(1)

( 1)
( ) ( ).D

q

q
u k w k

q




    

(40) 

Hence the proof follows by applying equation (13) in 

(40) and by taking 
(1)

( ) = ( )D
q

v k w k  and 

1

(1)

( ) = ( ).D
q

w k v k   

The following corollary gives formula for finding the 

sum of finite series involving polynomial and 

logarithmic function.  

 

Corollary 3.16  Let > 0k  and p  be any integer. 

Then we have  

11
1

( )

(log ) = (log )D
p p

p
q

q
k k k k

q





    

                                

1

1

( ) log
,

p

p

qk q

q 
  

(41) 

which yields  
1 11

1
= 1

( )
( ) log =

p ptn
r

r r p t
r m

k k k

q q q q





                           

1

1

=

log
log .

m
p

t p

t n

k q q

q q 
    (42) 

Proof:  Taking ( ) = logu k k  and ( ) = pv k k  in 

(39), we get  

1

( )

(log ) =D
( 1)

p

q

q
k k

q




1

(1)

log D
p

q

k k

 

                 

1 1

( )( ) (1)

( log ( ) ) .DD D
p

qq q

k qk


    

(43)

 Taking = =1  and =n p  in (15), we have 

 

1

1
1

(1)

( 1)
=D

1

p
p

p
q

q k
k

q
                     

(44) 

and  

 

1

1
1

(1)

( 1)( )
( ) = .D

1

p
p

p
q

q qk
qk

q
            

(45) 

The proof of (41) completes by using (37), (44) and 

(45) in (43).  And (42) follows by applying (41) in 

(17).  

Similarly the Theorem 3.15 can be verified for the 
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rational function 
1

pk
 and the polynomial factorials 

( )p

qk  and 

( )
1

p

qk
We present an example below to 

illustrate Corollary 3.16.  

 

Example 3.17  Taking = = 2, = = 3,p q m  

= 4, = 5n  and =17k  in (42), we obtain  

3

4

4 4

17 17
. . =10 log = 62.68224219

3 3
L H S    

and  
3

31 3

3 3

=4

(10) 17 17 3 log3
. . = log

3 10 3 3 3 10

t

t t

t

R H S

 

        

= 62.68224219.  

 

 

IV. CONCLUSION 

 

In this paper, we have derived some identities 

and formulas for sum of finite and infinite series of 

terms of product of geometric function and logarithmic 

functions. By using the results obtained in this paper, 

one can find the sum of certain generation population 

of animal propagation problems in Mathematical 

Biology.  
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