Construction New Types of Matrices

Abedal-Hamza Mahdi Hamza^{#1}, Hussein Ali Hussein^{*2}

Department of Mathematics Faculty of Computer Sciences and Mathematics, University of Kufa, IRQ

Abstract— In this paper, we introduced new types of matrices. We called them h-orthogonal matrix and h-unitary matrix depend on h-transpose. We discussed the properties of these matrices such as, their eigenvalues and determinants. These matrices preserve the length and the inner product.

Keywords— Orthogonal matrix, unitary matrix, eigenvalues.

I. INTRODUCTION

Orthogonal matrices and unitary matrices are important types of matrices. These matrices have important applications in many fields of sciences.

This paper introduce new types of matrices: horthogonal and h-unitary. These matrices have many properties.

In this paper, \langle, \rangle , $\| \|, \|$, $\|$, and mean the inner product, norm, and determinant, respectively.

II. FUNDAMENTAL CONCEPTS

2.1 Definition ^[2]

Let V be a complex vector. An inner product on V is a function that assigns to each ordered pair of vectors u, v in V, a complex number $\langle u, v \rangle$ satisfying the following conditions:

(i)
$$\langle u, v \rangle \ge 0; \langle u, u \rangle = 0 \text{ if } f u = 0_v$$

(ii) $\langle u, v \rangle = \langle v, u \rangle, \forall u, v \text{ in } V$
(iii) $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle, \forall u, v, w \in V$
(iv) $\langle cu, v \rangle = c \langle u, v \rangle, \forall u, v \in V, and c \in$
2.2 Example
Let u, $v \in {}^n, u = \begin{bmatrix} 2\\3\\1 \end{bmatrix}, v = \begin{bmatrix} -1\\1\\2 \end{bmatrix}$, then $\langle u, v \rangle = 3$

2.3 Definition ^[1] A matrix $A \in M_{n \times n}(\Box)$, is called orthogonal matrix iff $AA^T = I$.

This means that $A^T = A^{-1}$.

2.4 Definition [3]

A matrix $A \in M_{n \times n}(\Box)$, is called unitary matrix iff $AA^{\theta} = I$.

This means that $A^{\theta} = A^{-1}$. III. MAIN RESULTS

3.1 Definition

Let $A = [a_{ij}]$ is an $m \times n$ matrix. We define the htranspose of A, denoted by A^h , as the $n \times m$ matrix where

$$A^{h} = [a_{ij}^{h}] = [a_{(m+1-j)(n+1-i)}]_{n \times m}, i=1, 2... m, j=1, 2... n$$

(1)
$$A = \begin{bmatrix} 8 & 6 & 7 \\ 4 & -2 & 5 \end{bmatrix}$$
, (2) $B = \begin{bmatrix} 2i & 1+i & 3 \\ i & 2 & 2-i \\ 3i & 4 & 1 \end{bmatrix}$

(1)
$$A^{h} = \begin{bmatrix} 5 & 7 \\ -2 & 6 \\ 4 & 8 \end{bmatrix}$$
, (2) $B^{h} = \begin{bmatrix} 1 & 2-i & 3 \\ 4 & 2 & 1+i \\ 3i & i & 2i \end{bmatrix}$.

3.3 Theorem

Properties of h-Transpose: If r is a scalar and A and B are matrices of the appropriate size, then.

(a) $(A^h)^h = A$. (b) $(A^h)^T = (A^T)^h$. (c) $(\overline{A})^h = \overline{(A^h)}$. (d) $(A+B)^h = A^h + B^h$ (e) $(AB)^h = B^h A^h$. (f) $(rA)^h = rA^h$. (g) $(A^h)^{-1} = (A^{-1})^h$, if $A \neq 0$. Proof: (a) Let $A = [a_{ii}]_{m \times n}$, then A^h $= \left[a_{(m+1-j)(n+1-i)}\right]_{n \times m}.$ So $(A^h)^h = [a_{(n+1-(n+1-i))(m+1-(m+1-j))}]_{m \times n}$. $= [a_{(n+1-n-1+i)(m+1-m-1+j)}]_{m \times n}$ $= [a_{ij}]_{m \times n}$. = A. (b) Let $A = [a_{ij}]_{m \times n}$, then $A \Box = [a_{ji}]_{n \times m}$ So $(A^T)^h = [a_{(n+1-i)(m+1-j)}]_{m \times n}$ $= [a_{(m+1-i)(n+1-i)}]_{m \times n}$ $=([a_{(m+1-j)(n+1-i)}]_{n\times m}) \square$ $= (A^h)^T$. (c)Let A = $[a_{ij}]_{m \times n}$, then A $\Box = [\overline{a}_{ij}]_{m \times n}$ So $(\overline{A})^h = [\overline{a}_{(m+1-i)(n+1-i)}]_{n \times m}$ $=\overline{([a_{(m+1-j)(n+1-i)}])_{n\times m}}$ $=\overline{(A^h)}.$ (d) Let $A = [a_{ij}]_{m \times n}$, $B = [b_{ij}]_{m \times n}$, then A+B = $[a_{ij} + b_{ij}]_{m \times n}$ = C = $[c_{ij}]_{m \times n}$; $c_{ij} = a_{ij}$ $+b_{ij}, \forall i, j.$ So $(A+B)^h = [c_{ij}^h]_{n \times m}$ $= [C_{(m+1-j)(n+1-i)}]_{n \times m}$ $= [a_{(m+1-i)(n+1-i)} + b_{(m+1-i)(n+1-i)}]_{n \times m}$ $= [a_{(m+1-j)(n+1-i)}]_{n \times m} + [b_{(m+1-j)(n+1-i)}]_{n \times m}$ $=A^{h}+B^{h}.$ (e) Let A = $[a_{ij}]_{m \times p}$, B = $[b_{ij}]_{p \times n}$, then $AB = C = [c_{ij}]_{m \times n}; c_{ij} = \sum_{r=1}^{p} a_{ir}b_{rj}$

So $(AB)^{h} = C^{h} = [c_{(n+1-j)(m+1-i)}]_{n \times m}$ Let $c_{ij}^{h} \in (AB)^{h}$, then $c_{ij}^{h} = c_{(m+1-j)(n+1-i)}$ $= \sum_{r=1}^{p} a_{(m+1-j)r} b_{r(n+1-i)}$ $= \sum_{r=1}^{p} a_{r(m+1-j)}^{T} b_{(n+1-i)r}^{T}$ = $\sum_{r=1}^{p} b_{(n+1-i)r}^{T} a_{r(m+1-j)}^{T}$ = the (i, j) entry in $B^{h}A^{h}$. (f) It is clear $(rA)^{h} = rA^{h}$. (g)Let $A \in M_{m \times n}(\Box)$ and $|A| \neq 0$, then $AA^{-1} = I$ So $(AA^{-1})^{h} = I^{h}$ $\Rightarrow (A^{-1})^{h}A^{h} = I$ Thus $(A^{h})^{-1} = (A^{h})^{-1}$ 3.4 Theorem

- Let $A \in M_{n \times n}(\Box)$, then (a) $|A| = |A^h| = |A^T| = |(A^T)^h|$.
 - (b) $\operatorname{tr}(A) = \operatorname{tr}(A^h) = \operatorname{tr}(A \Box) = \operatorname{tr}((A^T)^h).$
 - (c) Let $A \in M_{n \times n}(\Box)$, then A and A^h have the same eigenvalues.

Proof:

(a) Let $A \in M_{n \times n}(\Box)$, then $A^{h} = [a_{(n+1-j)(n+1-i)}]_{n \times n}$ $= [a_{(n+1-i)(n+1-j)}]_{n \times n}$ $= ([a_{(n+1-i)(n+1-j)}]_{n \times n}) \Box$ So $(A^{h})^{T} = [a_{(n+1-i)(n+1-j)}]_{n \times n}$.

$$= \begin{pmatrix} a_{nn} & a_{n(n-1)} & a_{n(n-2)} & \cdots & a_{n1} \\ a_{(n-1)n} & a_{(n-1)(n-1)} & a_{(n-1)(n-2)} & \cdots & a_{(n-1)1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{1n} & a_{1(n-1)} & a_{1(n-2)} & \cdots & a_{11} \end{pmatrix}$$

We have that:
$$|(A^h)^T| = \\ a_{nn} & a_{n(n-1)} & a_{n(n-2)} & \cdots & a_{n1} \\ a_{(n-1)n} & a_{(n-1)(n-1)} & a_{(n-1)(n-2)} & \cdots & a_{(n-1)1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{1n} & a_{1(n-1)} & a_{1(n-2)} & \cdots & a_{11} \end{bmatrix}$$

$$\begin{cases} = \\ \left\{ (-1)^{n/2} \begin{vmatrix} a_{1n} & a_{1(n-1)} & a_{1(n-2)} & \cdots & a_{11} \\ a_{2n} & a_{2(n-1)} & a_{2(n-2)} & \cdots & a_{21} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{nn} & a_{n(n-1)} & a_{n(n-2)} & \cdots & a_{n1} \end{vmatrix} \right\}, if n is even \\ \begin{cases} (-1)^{(n-1)/2} \begin{vmatrix} a_{1n} & a_{1(n-1)} & a_{1(n-2)} & \cdots & a_{11} \\ a_{2n} & a_{2(n-1)} & a_{2(n-2)} & \cdots & a_{21} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{nn} & a_{n(n-1)} & a_{n(n-2)} & \cdots & a_{n1} \end{vmatrix} \\, if n is odd \\ Since (^{n}_{2}) and (^{n-1}_{2}) are even numbers \\ So \mid (A^{h})^{T} \mid = \begin{vmatrix} a_{2n} & a_{2(n-1)} & a_{2(n-2)} & \cdots & a_{21} \\ a_{2n} & a_{2(n-1)} & a_{2(n-2)} & \cdots & a_{21} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{2n} & a_{2(n-1)} & a_{2(n-2)} & \cdots & a_{21} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{2n} & a_{2(n-1)} & a_{2(n-2)} & \cdots & a_{21} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \end{array} \right]$$

So
$$| (A^{n})^{*} | = \begin{vmatrix} \vdots & \vdots & \vdots & \vdots \\ a_{nn} & a_{n(n-1)} & a_{n(n-2)} & \cdots & a_{n1} \end{vmatrix}$$

By the same way, we are interchanging the columns Therefore, we have that

$$| (A^{h})^{T} | = \begin{vmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} \end{vmatrix} = | A |$$

Since $| A | = | A \Box |$ and $| A^{h} | = | (A^{h})^{T} |$

Since |A| = |A| and |A| = |A|So $|A| = |A| = |A^h| = |(A^h)^T|$ b) Let $A \in M_{n \times n}(\square)$, then $A^h = [a_{(n+1-j)(n+1-i)}]_{n \times n}$ Let $A^h = D_{n \times n}$, then

tr (A^h) = $d_{11} + d_{22} + \dots + d_{nn}$ Since $d_{ij} = a_{ij}^h = a_{(n+1-j)(n+1-i)}$ So tr (A^h) = $a_{nn} + a_{(n-1)(n-1)} + a_{(n-2)(n-2)} + \dots +$ a_{11} $=a_{11}+a_{22}+\cdots+a_{nn}$ $= \operatorname{tr} (\mathbf{A}) = \operatorname{tr} (\mathbf{A}^{\mathrm{h}}) = \operatorname{tr} (\mathbf{A}^{\mathrm{h}}) = \operatorname{tr} ((\mathbf{A}^{\mathrm{h}})^{T}).$ Since $|A| = |A^h|$ c) $|A^{h}-\lambda I| = |(A^{h}-\lambda I)^{h}| = |A-\lambda I|.$ So Note (1) We define $A \square$ as $A \square = (\overline{A})^h = \overline{(A^h)}$. (2) We define A^* as $A^* = (\tilde{A})^T = \overline{(A^T)}$. 3.5Theorem Let $x, y \in {}^n$, then $x^* y = x^{\theta} (y^h)^T$. Proof: Let $x \in \square^n$, $x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$, $y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$ So $x^{\theta} (y^h)^T = \begin{bmatrix} \bar{x}_n & \bar{x}_{n-1} & \cdots & \bar{x}_1 \end{bmatrix} \begin{bmatrix} y_n \\ y_{n-1} \\ \vdots \\ y_1 \end{bmatrix}$ $=\bar{x}_ny_n+\bar{x}_{n-1}y_{n-1}+\cdots+\bar{x}_1y_1$ $= \bar{x}_1 y_1 + \bar{x}_2 y_2 + \dots + \bar{x}_n y_n$ $= x^* y$. Note

We shall denote the matrix $\begin{pmatrix} 0 & & 1 \\ & 1 & \\ & \ddots & & \\ 1 & & 0 \end{pmatrix}_{n \times n}$, b

 yS_n .

- 3.6 Theorem (Properties of S_n): (1) $S = S^h = S^T = (S^h) \square = S$ (2) |S| = -1(3) $S^{-1} = S$ (4) 4) $tr(S) = \begin{cases} 1 , if n is odd \\ 0 , if n is even \end{cases}$ (5) Let $x \in \square^m, y \in {n and A \in M_{m \times n}}()$, then
 - (a) $x = S_m(x^h)^T = ((S_m x)^h)^T$. (b) $A = S_m(A^h)^T S_n = ((SAS)^h)^T$. (c) $x_1^T x_2 = x_1^h (x_2^h)^T, \forall x_1, x_2 \in \square^m$. (d) $x_1^h x_2 = x_1^T (x_2^h)^T, \forall x_1, x_2 \in \square^m$. (e) $x_1 x_2^T = x_1 x_2^h S = (x_2 x_1^h S)^T, \forall x_1, x_2 \in \square^m$. (f) $x_1 x_2^h = x_1 x_2^T S = (x_2 x_1^T S)^h, \forall x_1, x_2 \in \square^m$.

Proof: (5) Let $x \in \square^m$, $y \in {}^n$ and $A \in M_{m \times n}()$, then

(5) 5⇒6: Suppose *A* is h-orthogonal matrix. So (\overline{A}) $(\overline{A})^h = I$ $\Rightarrow \overline{(\bar{A} \ (\bar{A})^h)} = \overline{I}$ $\Rightarrow \overline{(\overline{A})} (\overline{(\overline{A})})^h = I$ $\Rightarrow AA^h = I$ $\Rightarrow (A^h)^h A^h = I$ Hence A^h is h-orthogonal matrix. (6) 6⇒7: Suppose A^h is h-orthogonal matrix. So $A^h (A^h)^h = I$ $\Rightarrow A^h A = I$ $\Rightarrow (A^h A)^{\theta} = I^{\theta}$ $\Rightarrow A^{\theta} (A^h)^{\theta} = I$ $\Rightarrow A^{\theta} (A^{\theta})^h = I$ Hence A^{θ} is h-orthogonal matrix. (7)7⇒8: Suppose A^{θ} is h-orthogonal matrix. So $A^{\theta} (A^{\theta})^h = I$ $\Rightarrow (A^{\theta} (A^{\theta})^{h})^{*} = I^{*}$ $\Rightarrow ((A^{\theta})^*)^h (A^{\theta})^* = I$ $\Rightarrow ((A^{\hat{h}})^T)^{\hat{h}} (A^{\hat{h}})^T = I$ Hence $(A^h)^T$ is h-orthogonal matrix. (8)8⇒9: Suppose $(A^h)^T$ is h-orthogonal matrix. So $((A^{h})^{T})^{h}(A^{h})^{T} = I$ $\Rightarrow \overline{[((A^h)^T)^h (A^h)^T]} = I$ $\overline{\Rightarrow \left[((A^h)^T)^h \right] \left[(A^h)^T \right]} = I$ $\Rightarrow ((A^{\theta})^T)^h (A^{\theta})^T = I$ Hence $(A^{\theta})^T$ is h-orthogonal matrix. (9)9⇒1: Suppose $(A^{\theta})^{T}$ is h-orthogonal matrix. So $((A^{\theta})^T)^h (A^{\theta})^T = I$ $\Rightarrow ((A^{\theta})^{h})^{T} (A^{*})^{h} = I$ $\Rightarrow A^*(A^*)^h = I$ $\Rightarrow (A^*(A^*)^h)^* = I^*$ $\Rightarrow A^h A = I$ Hence A is h-orthogonal matrix. 3.9 Theorem If A is h-orthogonal matrix, then Aⁿ is h-orthogonal matrix, n=2, 3...Proof: Suppose A is h-orthogonal matrix So $A^n (A^n)^h = (AA \cdots A) (AA \cdots A)^h$ n_times n_times $= (AA \cdots A) \quad (A^h A^h \cdots A^h)$ $= (AA \cdots A) \quad (AA^h) (A^hA^h \cdots A^h)$ $(n-1)_{times}$ $(n-1)_{times}$ $= (AA \cdots A) I (A^h A^h \cdots A^h)$ (n-1)_times (n-1)_times ÷ $= AA^h$ = IHence A^n is h-orthogonal matrix.

3.10 Theorem Let $A \in M_{n \times n}(\square)$, then the following statements areequivalent. (1) A is h-orthogonal matrix. (2) $(A \Box)^{-1} = A \Box$. (3) $(A\Box)^{-1} = (A^h) \Box$. (4) $(A^*)^{-1} = (A \Box) \Box = (A^*)^h$. Proof: (1) $1 \Rightarrow 2$: Suppose A is h-orthogonal matrix, then $AA^h = A^h A = I$ So $\overline{(AA^h)} = \overline{I}$ $\bar{A}A^{\theta} = I$ Hence $(\overline{A})^{-1} = A \square$. (2) 2⇒3: Suppose $(\overline{A})^{-1} = A$, So $\overline{((\overline{A})^{-1})} = \overline{(A)}$ $\Rightarrow A^{-1} = A^h$ $\Rightarrow (A^{-1})^T = (A^h)^T$ (3) 3⇒4: $\operatorname{Suppose}(A^{-1})^T = (A^h)^T,$ So $\overline{(A^T)^{-1}} = \overline{(A^h)^T}$ $\Rightarrow (A^*)^{-1} = (A^*)^h = (A^\theta)^T$ (4) 4⇒1: $Suppose(A^*)^{-1} = (A^*)^h,$ So $((A^*)^{-1})^* = ((A^*)^h)^*$ $\Rightarrow A^{-1} = A^h$ Hence A is h-orthogonal matrix. 3.11 Theorem If A is h-orthogonal matrix, then (1) If $A \Box A^h = A^h A \Box$ then $A^h A \Box$ is Orthogonal matrix. (2) If $A^*A^h = A^h A^*$ then $A^h A^*$ is Unitary matrix. Proof: (1) Suppose A is h-orthogonal matrix and $A \Box A^h =$ $A^h A \Box$ So $(A^h A)^T (A^h A^T) = (A(A^h)^T)(A^h A^T)$ $= A((A^h)^T)A^T)A^h (A \Box A^h = A^h A \Box)$ $= A(I)A^{h}$ (Theorem 3.8) = IHence $A^h A^T$ is orthoganl matrix. (2) Suppose A is h-orthogonal matrix and $A^*A^h =$ $A^h A^*$ So $(A^h A^*)^* (A^h A^*) = (A(A^h)^*) (A^h A^*)$ $= A((A^{h})^{*})A^{*})A^{h} (A^{*}A^{h} = A^{h}A^{*})$ $= A((AA^h)^*)A^h$ $= A(I^*)A^h$ = IHence $A^h A^*$ is unitary matrix. 3.12 Theorem If $A_1, A_2, A_3 \dots A_n$ are h-orthogonal matrices, and 1.2 ... ń be any rearrangement of the indices 1, 2 ... n, then $A_1A_2 A_3 \dots A_n$ is h-orthogonal matrix.

Proof:

Let $A_1, A_2, A_3 \dots A_n$ be h-orthogonal matrices and $1, 2 \dots n$

be any rearrangement of the indices $1, 2 \dots n$, then $(A_1 A_2 \dots A_n) (A_1 A_2 \dots A_n)^h$

$$= (A_{1}A_{2} \dots A_{n})(A_{n}^{h}A_{(n-1)}^{n} \cdots A_{1}^{n})$$

= $(A_{1}A_{2} \dots A_{(n-1)})(A_{n}A_{n}^{h})(A_{(n-1)}^{h} \cdots A_{1}^{h})$
= $(A_{1}A_{2} \dots A_{(n-1)})I(A_{(n-1)}^{h} \cdots A_{1}^{h})$
:
= $A_{1}A_{1}^{h}$
= I

Hence, $A_1 A_2 A_3 \dots A_n$ is h-orthogonal matrix.

3.13 Theorem

If AB is h-orthogonal matrix, then A is h-orthogonal matrix ⇔ B is h-orthogonal matrix. *Proof:* ⇒

Suppose AB and A are h-orthogonal matrices So $(AB)^h(AB) = I$ $\Rightarrow (B^hA^h)(AB) = I$ $\Rightarrow B^h(A^hA)B = I$ $\Rightarrow B^h(I) \ B = I \Rightarrow B^hB = I$ Hence, B is h-orthogonal matrix. \Leftarrow Suppose AB and B are h-orthogonal matrices So $(AB)(AB)^h = I$ $\Rightarrow (AB)(B^hA^h) = I$ $\Rightarrow A(BB^h)A^h = I$ $\Rightarrow AA^h = I$ Hence, A is h-orthogonal matrix. 3.14 Theorem

Let $A \in M_{n \times n}(\Box)$ be a h-orthogonal matrix, if $A = (A^T)^h$, then (1) $|| Ax|| = || x||, x \in \Box^n$. (2) $\langle Ax, Ay \rangle = \langle x, y \rangle, x, y \in \Box^n$. *Proof:*

(1)Let $A \in M_{n \times n}(\Box)$ be a h-orthogonal matrix and A $=(A^T)^h$, then $||Ax||^2 = \langle Ax, Ax \rangle, x \in \square^n$ $= (Ax)^*Ax$ $= x^* (A^*A) x$ $= x^* (SA^{\theta} (A^h)^T S) x$ (Theorem 3.5(5, b)) $= x^* S(A^{\theta}(A^h)^T) Sx$ $= x^{\theta} (A^{\theta} A) (x^{h})^{T}$ (Theorem 3.5(5, a) and A = $(A^{h})^{T}$). $= x^{\theta} I(x^h)^T$ $= x^*x$ (Theorem 3.5) $= ||x||^2$ Hence $\|Ax\| = \|x\|$. (2) Let $A \in M_{n \times n}(\Box)$ be a h-orthogonal matrix, x, y $\in \square^n$ and $A = (A^T)^h$, then $\langle Ax, Ay \rangle = (Ax)^*Ay$

 $= x^* (A^*A) y$ $= x^{*}(SA^{\theta}(A^{h})^{T}S)y$ (Theorem 3.5(5, b)) $= x^* S(A^{\theta}(A^h)^T)Sy$ $= x^{\theta} (A^{\theta} A) (y^{h})^{T}$ (Theorem 3.5(5, a) and A = $(A^{h})^{T}$). $= x^{\theta} I(y^h)^T$ (Theorem 3.5) $= x^*y$ $=\langle x,y\rangle$ Hence, $\langle Ax, Ay \rangle = \langle x, y \rangle$. 3.15 Theorem Let A be h-orthogonal matrix, then (1) The eigenvalues of A are of modulus 1. (2) $|A| = \pm 1.$ Proof: (1) Suppose that λ be an eigenvalue of A So $Ax = \lambda x, x \neq 0$ $\Rightarrow ||Ax|| = ||\lambda x||$ $\Rightarrow ||x|| = |\lambda| ||x||$ (Theorem 3.14) Hence, $|\lambda| = 1$. (2) Let A be h-orthogonal matrix, then $AA^h = I$ $|AA^h| = |I|$ $|A||A^{h}| = 1$ |A||A| = 1(Theorem 3.4) $|A|^2 = 1$ Hence, $A = \pm 1$ 3.16 Definition A matrix $A \in M_{n \times n}(\Box)$, is called hunitary matrix $iff AA^{\theta} = I.$ This means that $A^{\theta} = A^{-1}$. 3.17 Example (1) A = $\begin{pmatrix} i & 0 & i \\ 0 & i & 0 \\ 0 & 0 & i \end{pmatrix}$, (2) B = $\begin{pmatrix} 0 & ai \\ \frac{1}{a}i & 0 \end{pmatrix}$, a $\in R \setminus \{0\}$. A and B are h-unitary matrices. (3) $C = \begin{pmatrix} 2i & 0 \\ 0 & 3i \end{pmatrix}$ is not h-unitary matrix. 3.18 Theorem Let $A \in M_{n \times n}(\Box)$, then the following statements are equivalent: (1) A is h-unitary matrix. (2) A^{-1} is h-unitary matrix. (3) $A \square$ is h-unitary matrix. (4) A* is h-unitary matrix. (5) A is h-unitary matrix. (6) A^h is h-unitary matrix. (7) $A\Box$ is h-unitary matrix. (8) $(A^h) \square$ is h-unitary matrix. (9) $(A\Box) \Box$ is h-unitary matrix. Proof: (1) $1 \Rightarrow 2$: Suppose A is h- unitary matrix So $AA^{\theta} = I$ $\Rightarrow (AA^{\theta})^{-1} = I^{-1}$

Thus $(A^{-1})^{\theta}A^{-1} = I$ Hence A^{-1} is h-unitary matrix.

(2) 2⇒3:
 Suppose A⁻¹is h-unitary matrix.

So $A^{-1}(A^{-1})^{\theta} = I$ $\Rightarrow (A^{\theta}A)^{-1} = I$ $\Rightarrow ((A^{\theta}A)^{-1})^{-1} = I^{-1}$ $\Rightarrow A^{\theta}A = I$ $\Rightarrow (A^{\theta}A)^T = I^{T}$ $\Rightarrow A^T (A^\theta)^T = I$ $\Rightarrow A^T (A^T)^{\theta} = I$ Hence A^{T} is h-unitary matrix. (3) 3⇒4: Suppose A^{T} is h-unitary matrix. So $A^T (A^T)^{\theta} = I$ $\Rightarrow \overline{(A^T (A^\theta)^T)} = \overline{I}$ $\Rightarrow \overline{(A^T)}\overline{((A^T)^{\theta})} = I$ $A^*(A^*)^{\theta} = I \Rightarrow$ Hence A^* is h-unitary matrix. (4) 4⇒5: Suppose *A*^{*}is h-unitary matrix. So $A^*(A^*)^{\theta} = I$ $\Rightarrow (A^*(A^*)^{\theta})^T = I^T$ $\Rightarrow ((A^*)^{\theta})^T (A^*)^T = I$ $\Rightarrow (\bar{A})^{\theta} \quad \bar{A} = I$ Hence \overline{A} is h-unitary matrix. (5) 5⇒6: Suppose *A* is h-unitary matrix. So $(\bar{A}) (\bar{A})^{\theta} = I$ $\overline{\Rightarrow (\bar{A} \ (\bar{A})^{\theta})} = \bar{I}$ $\overline{\Rightarrow (\overline{A})} (\overline{(\overline{A})})^{\theta} = I$ $\Rightarrow AA^{\theta} = I$ $\Rightarrow (AA^{\theta})^h = I^h$ $\Rightarrow (A^h)^{\theta} A^h = I$ Hence A^h is h-unitary matrix. (6) 6⇒7: Suppose A^h is h-unitary matrix. So $A^h (A^h)^{\theta} = I$ $\Rightarrow A^h \overline{A} = I$ $\Rightarrow \overline{(A^h \overline{A})} = \overline{I}$ $\Rightarrow A^{\theta} A = I$ $\Rightarrow A^{\theta} (A^{\theta})^{\theta} = I$ Hence A^{θ} is h-unitary matrix. (7)7⇒8: Suppose A^{θ} is h-unitary matrix. So $A^{\theta} (A^{\theta})^{\theta} = I$ $\Rightarrow (A^{\theta} (A^{\theta})^{\theta})^* = I^{*}$ $\Rightarrow ((A^{\theta})^*)^{\theta} (A^{\theta})^* = I$ $\Rightarrow ((A^h)^T)^{\theta} (A^h)^T = I$ Hence $(A^h)^T$ is h-unitary matrix. (8)8⇒9: Suppose $(A^h)^T$ is h-unitary matrix. So $((A^h)^T)^{\theta}(A^h)^T = I$ $\Rightarrow \overline{\left[\left(\left(A^{h}\right)^{T}\right)^{\theta}\left(A^{h}\right)^{T}\right]} = \overline{I}$ $\Rightarrow \overline{\left[\left((A^h)^T \right)^{\theta} \right] \left[(A^h)^T \right]} = I$ $\Rightarrow ((A^{\theta})^T)^{\theta} (A^{\theta})^T = I$ Hence $(A^{\theta})^T$ is h-unitary matrix.

(9)9⇒1: Suppose $(A^{\theta})^T$ is h-unitary matrix. So $((A^{\theta})^T)^{\theta}(A^{\theta})^T = I$ $\Rightarrow ((A^{\theta})^{\theta})^T (A^{\theta})^T = I$ $\Rightarrow \hat{A}^T (\hat{A}^\theta)^T = I$ $\Rightarrow (A^T (A^\theta)^T)^T = I^T$ $\Rightarrow A^{\theta}A = I$ Hence A is h-unitary matrix. 3.19 Theorem If A is h-unitary matrix, then Aⁿ is h-unitary matrix Proof: Suppose A is h-unitary matrix So $A^n (A^n)^{\theta} = (AA \cdots A) (AA \cdots A)^{\theta}$ n_times n_times $= (AA\cdots A) (A^{\theta}\overline{A}^{\theta}\cdots A^{\theta})$ $= (AA \cdots A) \quad (AA^{\theta}) (A^{\theta}A^{\theta} \cdots A^{\theta})$ $\underbrace{(n-1)_times}_{(n-1)_times} = \underbrace{(AA \cdots A)}_{(n-1)_times} I \underbrace{(A^{\theta}A^{\theta} \cdots A^{\theta})}_{(n-1)_times}$ ÷ $= AA^{\theta}$ = IHence A^n is h-unitary matrix. 3.20 Theorem Let $A \in M_{n \times n}(\Box)$, then the following are equivalent (1) A is h-unitary matrix. (2) $(A)^{-1} = A^h.$ (3) $(A^T)^{-1} = (A^*)^h = (A^\theta)^T.$ (4) $(A^*)^{-1} = (A^T)^h$. Proof: (1) $1 \Rightarrow 2$: Suppose A is h- unitary matrix, then $AA^{\theta} = I$ $So(AA^{\theta})^h = I^h$ $\bar{A}A^h = I$ Hence $(\overline{A})^{-1} = A^h$ (2) 2⇒3: Suppose $(\bar{A})^{-1} = A^h$. So $\overline{((\overline{A})^{-1})} = \overline{(A^h)}$ $\Rightarrow A^{-1} = A^{\theta}$ $\Rightarrow (A^{-1})^T = (A^\theta)^T$ $\Rightarrow (A^T)^{-1} = (A^{\theta})^T = (A^*)^h$ (3) 3⇒4: Suppose $(A^T)^{-1} = (A^\theta)^T$ So $\overline{(A^T)^{-1}} = \overline{(A^\theta)^T}$ $\Rightarrow (A^*)^{-1} = (A^T)^h = (A^h)^T$ (4) 4⇒1: Suppose $(A^*)^{-1} = (A^T)^h$, then So $((A^*)^{-1})^* = ((A^T)^h)^*$ $\Rightarrow A^{-1} = A^{\dot{\theta}}$ Hence A is h-orthogonal matrix.

3.21Corollary Let A be a real matrix, then A is horthogonalmatrix⇔ A is h-unitary matrix 3.22 Theorem

Let A beh-unitary matrix

- (1) If $(A \Box) \Box A = A (A \Box) \Box$, then $A (A \Box) \Box$ is orthogonal matrix.
- (2) If $A \Box A^h = A^h A \Box$, then $A^h A \Box$ is unitary matrix.
- (3) If $AA^h = A^h A$, then $A^h A$ is h-unitary matrix.
- (4) If $AA \square = A \square A$, then $AA \square$ is h-orthogonal matrix.
- (5) If $A^h A \Box = A \Box A^h$, then $A^h A \Box$ is horthogonal matrix.

Proof:

(1) Suppose A is h-unitary matrix and $A(A^{\theta})^{T} =$ $A(A^{\theta})^T$ So $(A(A^{\theta})^T)^T (A(A^{\theta})^T) = (A^{\theta}A^T) (A(A^{\theta})^T)$ $= (A^{\theta}A^{T})((A^{\theta})^{T}A) \quad (A(A^{\theta})^{T} = A(A^{\theta})^{T})$ $= A^{\theta} (A^T (A^{\theta})^T) A)$ (Theorem 3.20(3)) $= A^{\theta}(I)A$ = IHence $A(A^{\theta})^T$ is orthoganl matrix. 2) Suppose A is h-unitary matrix and $A^T A^h = A^h A^T$ So $(A^h A^T)^* (A^h A^*) = (\bar{A} (A^h)^*) (A^h A^T)$ $= \overline{A}((A^h)^*)A^T)A^h(A^TA^h = A^hA^T)$ $= \overline{A}(I) A^{h}$ (Theorem 3.20(3)) $= \overline{A}A^h$ (Theorem 3.20(2)) = IHence $A^h A^*$ is unitary matrix. Similarly, we can prove 3, 4, 53.23 Theorem If $A_1, A_2, A_3 \dots A_n$ are h-unitary matrices, and $1, 2 \dots n$ be any rearrangement of the indices 1, 2 ... n then $A_1 A_2 A_3 \dots A_n$ is h-unitary matrix. Proof: Let $A_1, A_2, A_3 \dots A_n$ be h-unitary matrices and 1,2 ... ń be any rearrangement of the indices 1, 2 ... n, then $(A_1A_2 \dots A_n)(A_1A_2 \dots A_n)^{\theta}$ $= (A_1 A_2 \dots A_n) (A_n^{\theta} A_{(n-1)}^{\theta} \cdots A_1^{\theta})$ $= (A_{1}A_{2} \dots A_{(n-1)})(A_{n}A_{n}^{\theta})(A_{(n-1)}^{\theta} \dots A_{1}^{\theta})$ $= (A_{1}A_{2} \dots A_{(n-1)})I(A_{(n-1)}^{\theta} \cdots A_{1}^{\theta})$ ÷ $= A_{i}A_{i}^{\theta}$ = I

Hence, $A_1A_2 A_3 \dots A_n$ is h-unitary matrix. 3.24 Theorem If AB is h-unitary matrix, then A is h-unitary matrix \Leftrightarrow B is h-unitary matrix. Proof: \Rightarrow Suppose AB and A are h-unitary matrices So $(AB)^{\theta}(AB) = I$ $\Rightarrow (B^{\theta}A^{\theta})(AB) = I$ $\Rightarrow B^{\theta}(A^{\theta}A)B = I$ $\Rightarrow B^{\theta}(I) B = I \Rightarrow B^{\theta}B = I$ Hence, B is h-unitary matrix. \Leftarrow Suppose AB and *B* are h-unitary matrices So $(AB)(AB)^{\theta} = I$ $\Rightarrow (AB)(B^{\theta}A^{\theta}) = I$ $\Rightarrow A(BB^{\theta})A^{\theta} = I$ $\Rightarrow A(I) \quad A^{\theta} = I$ $\Rightarrow AA^{\hat{\theta}} = I$ Hence, A is h-unitarymatrix. 3.25 Theorem Let $A \in M_{n \times n}(\Box)$ be a h-Unitary matrix, if A $=(A^T)^h$, then (1) $\| Ax \| = \| x \|, x \in \square^n$. (2) $\langle Ax, Ay \rangle = \langle x, y \rangle, x, y \in \square^n$. Proof: (1) Let $A \in M_{n \times n}(\Box)$ be an h-unitary matrix and A $=(A^T)^h$, then $||Ax||^2 = \langle Ax, Ax \rangle \mathbf{x} \in \square^n$ $= (Ax)^*Ax$ $= x^* (A^*A) x$ $= x^{*}(SA^{\theta}(A^{h})^{T}S)x$ (Theorem 3.5(5, b)) $= x^* S(A^{\theta}(A^h)^T) Sx$ $= x^{\theta} (A^{\theta} A) (x^{h})^{T}$ (Theorem 3.5) (5, a) and A = $(A^h)^T$. $= x^*x$ (Theorem 3.5) $= ||x||^2$ Hence || Ax || = || x ||. (2) Let $A \in M_{n \times n}(\Box)$ be an h-unitary matrix, x, $\mathbf{y} \in \square^n$ and $A = (A^T)^h$, then $\langle Ax, Ay \rangle = (Ax)^* Ay$ $= x^* (A^*A) y$ $= x^{*}(SA^{\theta}(A^{h})^{T}S)y$ (Theorem 3.5(5, b)) $= x^* S(A^{\theta}(A^h)^T) Sy$ $= x^{\theta} (A^{\theta} A) (y^{h})^{T}$ (Theorem 3.5(5, b)) $= x^{\theta} I(y^h)^T$ $= x^* y$ (Theorem 3.5) $=\langle x,y\rangle$ Hence, $\langle Ax, Ay \rangle = \langle x, y \rangle$. 3.26 Theorem Let A be an h-unitary matrix, then the eigenvalues of A are of modulus 1. Proof: Suppose that λ be an eigenvalue of A So $Ax = \lambda x, x \neq 0$ $\Rightarrow ||Ax|| = ||\lambda x||$ $\Rightarrow \|x\| = \|\lambda\| \|x\|$ (Theorem 3.25) Hence, $|\lambda| = 1$.

IV. CONCLUSION

We have new types of matrices with important properties. They preserve the length and the inner product. Eigenvalues of these matrices are of modulus 1.

REFERENCES

- [1] Hoffman K., Linear Algebra ,2nd Ed.,Printce-Hall,1971.
- [2] Kolman B., *Linear Algebra*, 9th Ed., Printce-Hall, 2008.
 [3] Meyer C. D., *Matrix Analysis and Applied Linear*
- Algebra, Siam, 2000.