Construction New Types of Matrices

Abedal-Hamza Mahdi Hamza ${ }^{\# 1}$, Hussein Ali Hussein ${ }^{* 2}$
Department of Mathematics Facultyof Computer Sciences and Mathematics, University of Kufa, IRQ

Abstract

In this paper, we introduced new types of matrices. We called them h-orthogonal matrix and h-unitary matrix depend on h-transpose. We discussed the properties of these matrices such as, their eigenvalues and determinants. These matrices preserve the length and the inner product. Keywords- Orthogonal matrix, unitary matrix, eigenvalues.

I. INTRODUCTION

Orthogonal matrices and unitary matrices are important types of matrices. These matrices have important applications in many fields of sciences.
This paper introduce new types of matrices: h orthogonal and h-unitary. These matrices have many properties.
In this paper, $\langle\rangle,,\| \|, \| \quad$, and mean the inner product, norm, and determinant, respectively.

II. FUNDAMENTAL CONCEPTS

2.1 Definition ${ }^{[2]}$

Let V be a complex vector. An inner product on V is a function that assigns to each ordered pair of vectors u, v in V , a complex number $\langle u, v\rangle$ satisfying the following conditions:
(i) $\langle u, v\rangle \geq 0 ;\langle u, u\rangle=0$ iff $u=0_{v}$
(ii) $\overline{\langle u, v\rangle}=\langle v, u\rangle, \forall u, v$ in V
(iii) $\langle u+v, w\rangle=\langle u, w\rangle+\langle v, w\rangle, \forall u, v, w \in V$
(iv) $\langle c u, v\rangle=c\langle u, v\rangle, \forall u, v \in V$, and $c \in$

2.2 Example

Let $\mathrm{u}, \mathrm{v} \in^{n}, u=\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right], v=\left[\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right]$, then $\langle u, v\rangle=3$

2.3 Definition ${ }^{[1]}$

A matrix $\mathrm{A} \in \mathrm{M}_{n \times n}(\square)$, is called orthogonal matrix iff $A A^{T}=\mathrm{I}$.
This means that $A^{T}=A^{-1}$.
2.4 Definition ${ }^{[3]}$

A matrix $A \in \mathrm{M}_{n \times n}(\square)$, is called unitary matrix iff $A A^{\theta}=\mathrm{I}$.
This means that $A^{\theta}=A^{-1}$.

III. MAIN RESULTS

3.1 Definition

Let $\mathrm{A}=\left[a_{i j}\right]$ is an $m \times n$ matrix. We define the $\mathrm{h}-$ transpose of A , denoted by A^{h}, as the $n \times m$ matrix where
$\mathrm{A}^{\mathrm{h}}=\left[a_{\mathrm{ij}}^{\mathrm{h}}\right]=\left[a_{(m+1-j)(n+1-i)}\right]_{n \times m}, \mathrm{i}=1,2 \ldots \mathrm{~m}, \mathrm{j}=1$, 2... n

3.2 Example

(1) $A=\left[\begin{array}{ccc}8 & 6 & 7 \\ 4 & -2 & 5\end{array}\right]$,
(2) $\mathrm{B}=\left[\begin{array}{ccc}2 i & 1+i & 3 \\ i & 2 & 2-i \\ 3 i & 4 & 1\end{array}\right]$
(1) $\mathrm{A}^{\mathrm{h}}=\left[\begin{array}{cc}5 & 7 \\ -2 & 6 \\ 4 & 8\end{array}\right]$, (2) $\mathrm{B}^{\mathrm{h}}=\left[\begin{array}{ccc}1 & 2-i & 3 \\ 4 & 2 & 1+i \\ 3 i & i & 2 i\end{array}\right]$.

3.3 Theorem

Properties of h -Transpose:
If r is a scalar and A and B are matrices of the appropriate size, then.
(a) $\left(A^{h}\right)^{h}=A$.
(b) $\left(A^{h}\right)^{T}=\left(A^{T}\right)^{h}$.
(c) $(\bar{A})^{h}=\overline{\left(A^{h}\right)}$.
(d) $(A+B)^{h}=A^{h}+B^{h}$
(e) $(A B)^{h}=B^{h} A^{h}$.
(f) $(r A)^{h}=r A^{h}$.
(g) $\left(A^{h}\right)^{-1}=\left(A^{-1}\right)^{h}$, if $A \neq 0$.

Proof:
(a) Let $\mathrm{A}=\left[a_{i j}\right]_{m \times n}$, then A^{h}
$=\left[a_{(m+1-j)(n+1-i)}\right]_{n \times m}$.
So $\left(A^{h}\right)^{h}=\left[a_{(n+1-(n+1-i))(m+1-(m+1-j))}\right]_{m \times n}$.
$=\left[a_{(n+1-n-1+i)(m+1-m-1+j)}\right]_{m \times n}$
$=\left[a_{i j}\right]_{m \times n}$.
$=\mathrm{A}$.
(b) Let $\mathrm{A}=\left[a_{i j}\right]_{m \times n}$, then $\mathrm{A} \square=\left[a_{j i}\right]_{n \times m}$

So $\left(A^{T}\right)^{h}=\left[a_{(n+1-i)(m+1-j)}\right]_{m \times n}$
$=\left[a_{(m+1-j)(n+1-i)}\right]_{m \times n}$
$=\left(\left[a_{(m+1-j)(n+1-i)}\right]_{n \times m}\right) \square$
$=\left(A^{h}\right)^{T}$.
(c)Let $\mathrm{A}=\left[a_{i j}\right]_{m \times n}$, then $\mathrm{A} \square=\left[\bar{a}_{i j}\right]_{m \times n}$

So $(\bar{A})^{h}=\left[\bar{a}_{(m+1-j)(n+1-i)}\right]_{n \times m}$
$={\overline{\left(\left[a_{(m+1-J)(n+1-l)}\right]\right)}}_{n \times m}$
$=\overline{\left(A^{h}\right)}$.
(d) Let $\mathrm{A}=\left[a_{i j}\right]_{m \times n}, \mathrm{~B}=\left[b_{i j}\right]_{m \times n}$, then
$\mathrm{A}+\mathrm{B}=\left[a_{i j}+b_{i j}\right]_{m \times n}=\mathrm{C}=\left[c_{i j}\right]_{m \times n} ; c_{i j}=a_{i j}$
$+b_{i j}, \forall i, j$.
So $(A+B)^{h}=\left[c_{i j}^{h}\right]_{n \times m}$
$=\left[c_{(m+1-j)(n+1-i)}\right]_{n \times m}$
$=\left[a_{(m+1-j)(n+1-i)}+b_{(m+1-j)(n+1-i)}\right]_{n \times m}$
$=\left[a_{(m+1-j)(n+1-i)}\right]_{n \times m}+\left[b_{(m+1-j)(n+1-i)}\right]_{n \times m}$
$=A^{h}+B^{h}$.
(e) Let $\mathrm{A}=\left[a_{i j}\right]_{m \times p}, \mathrm{~B}=\left[b_{i j}\right]_{p \times n}$, then
$\mathrm{AB}=\mathrm{C}=\left[c_{i j}\right]_{m \times n} ; c_{i j}=\sum_{r=1}^{p} \quad a_{i r} b_{r j}$

So $(A B)^{h}=\mathrm{C}^{\mathrm{h}}=\left[c_{(n+1-j)(m+1-i)}\right]_{n \times m}$
Let $c_{i j}^{h} \in(A B)^{h}$, then
$c_{i j}^{h}=c_{(m+1-j)(n+1-i)}$
$=\sum_{r=1}^{p} \quad a_{(m+1-j) r} b_{r(n+1-i)}$
$=\sum_{r=1}^{p} a_{r(m+1-j)}^{T} b_{(n+1-i) r}^{T}$
$=\sum_{r=1}^{p} b_{(n+1-i) r}^{T} a_{r(m+1-j)}^{T}$
$=$ the (i, j) entry in $B^{h} A^{h}$.
(f) It is clear $(r A)^{h}=r A^{h}$.
(g) Let $\mathrm{A} \in \mathrm{M}_{m \times n}(\square)$ and $\mathrm{Al} \neq 0$, then $\mathrm{AA}^{-1}=\mathrm{I}$
So $\left(\mathrm{AA}^{-1}\right)^{h}=\mathrm{I}^{h}$
$\Rightarrow\left(A^{-1}\right)^{h} A^{h}=I$
Thus $\left(A^{h}\right)^{-1}=\left(A^{h}\right)^{-1}$
3.4 Theorem

Let $A \in \mathrm{M}_{n \times n}(\square)$, then
(a) $|\mathrm{A}|=\left|\mathrm{A}^{\mathrm{h}}\right|=\left|\mathrm{A}^{T}\right|=\left|\left(A^{T}\right)^{h}\right|$.
(b) $\operatorname{tr}(\mathrm{A})=\operatorname{tr}\left(\mathrm{A}^{\mathrm{h}}\right)=\operatorname{tr}(\mathrm{A} \square)=\operatorname{tr}\left(\left(A^{T}\right)^{h}\right)$.
(c) Let $\mathrm{A} \in \mathrm{M}_{n \times n}(\square)$, then A and A^{h} have the same eigenvalues.

Proof:

(a) Let $A \in \mathrm{M}_{n \times n}(\square)$, then
$\mathrm{A}^{\mathrm{h}}=\left[a_{(n+1-j)(n+1-i)}\right]_{n \times n}$
$=\left[a_{(n+1-i)(n+1-j)}\right]_{n \times n}$
$=\left(\left[a_{(n+1-i)(n+1-j)}\right]_{n \times n}\right) \square$
So $\left(A^{h}\right)^{T}=\left[a_{(n+1-i)(n+1-j)}\right]_{n \times n}$.
$=\left(\begin{array}{ccccc}a_{n n} & a_{n(n-1)} & a_{n(n-2)} & \cdots & a_{n 1} \\ a_{(n-1) n} & a_{(n-1)(n-1)} & a_{(n-1)(n-2)} & \cdots & a_{(n-1) 1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{1 n} & a_{1(n-1)} & a_{1(n-2)} & \cdots & a_{11}\end{array}\right)$
We have that:
$\left|\left(A^{h}\right)^{T}\right|=$
$\left|\begin{array}{lcccc}a_{n n} & a_{n(n-1)} & a_{n(n-2)} & \cdots & a_{n 1} \\ a_{(n-1) n} & a_{(n-1)(n-1)} & a_{(n-1)(n-2)} & \cdots & a_{(n-1) 1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{1 n} & a_{1(n-1)} & a_{1(n-2)} & \cdots & a_{11}\end{array}\right|$
$=$
$\left\{\begin{array}{c}(-1)^{\mathrm{n} / 2}\left|\begin{array}{ccccc}a_{1 n} & a_{1(n-1)} & a_{1(n-2)} & \cdots & a_{11} \\ a_{2 n} & a_{2(n-1)} & a_{2(n-2)} & \cdots & a_{21} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n n} & a_{n(n-1)} & a_{n(n-2)} & \cdots & a_{n 1}\end{array}\right| \text {, if } n \text { is even } \\ (-1)^{(n-1) / 2}\left|\begin{array}{ccccc}a_{1 n} & a_{1(n-1)} & a_{1(n-2)} & \cdots & a_{11} \\ a_{2 n} & a_{2(n-1)} & a_{2(n-2)} & \cdots & a_{21} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n n} & a_{n(n-1)} & a_{n(n-2)} & \cdots & a_{n 1}\end{array}\right| \text { if } n \text { is odd }\end{array}\right.$
Since (${ }^{\mathrm{n}} \square_{2}$) and ($\mathrm{n}^{-1} \square_{2}$) are even numbers
So $\left|\left(A^{h}\right)^{T}\right|=\left|\begin{array}{ccccc}a_{1 n} & a_{1(n-1)} & a_{1(n-2)} & \cdots & a_{11} \\ a_{2 n} & a_{2(n-1)} & a_{2(n-2)} & \cdots & a_{21} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n n} & a_{n(n-1)} & a_{n(n-2)} & \cdots & a_{n 1}\end{array}\right|$
By the same way, we are interchanging the columns Therefore, we have that

$$
\left|\left(A^{h}\right)^{T}\right|=\left|\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & a_{n 3} & \cdots & a_{n n}
\end{array}\right|=|\mathrm{A}|
$$

Since $\quad|\mathrm{A}|=|\mathrm{A} \square|$ and $\left|A^{h} \quad\right|=\left|\left(A^{h}\right)^{T}\right|$
So $\quad|\mathrm{A}|=|\mathrm{A} \square|=\left|A^{h} \quad\right|=\left|\left(A^{h}\right)^{T}\right|$
b) Let $\mathrm{A} \in \mathrm{M}_{n \times n}(\square)$, then $\mathrm{A}^{\mathrm{h}}=\left[a_{(n+1-j)(n+1-i)}\right]_{n \times n}$

Let $\mathrm{A}^{\mathrm{h}}=D_{n \times n}$, then
$\operatorname{tr}\left(\mathrm{A}^{\mathrm{h}}\right)=d_{11}+d_{22}+\cdots+d_{n n}$
Since $d_{i j}=a_{i j}^{h}=a_{(n+1-j)(n+1-i)}$
So $\operatorname{tr}\left(\mathrm{A}^{\mathrm{h}}\right)=a_{n n}+a_{(n-1)(n-1)}+a_{(n-2)(n-2)}+\cdots+$
a_{11}
$=a_{11}+a_{22}+\cdots+a_{n n}$
$=\operatorname{tr}(\mathrm{A})=\operatorname{tr}\left(\mathrm{A}^{\mathrm{h}}\right)=\operatorname{tr}(\mathrm{A} \square)=\operatorname{tr}\left(\left(A^{h}\right)^{T}\right)$.
Since $\left.|\mathrm{A}|=\left|A^{h}\right| \mathrm{c}\right)$
$\left|A^{h}-\lambda \mathrm{I}\right|=\left|\left(A^{h}-\lambda \mathrm{I}\right)^{h}\right|=|\mathrm{A}-\lambda \mathrm{I}| . \quad$ So
Note
(1) We define $\mathrm{A} \square$ as $\mathrm{A} \square=(\bar{A})^{h}=\overline{\left(A^{h}\right)}$.
(2) We define A^{*} as $A^{*}=(\overparen{A})^{T}=\overline{\left(A^{T}\right)}$.

3.5Theorem

Let $\mathrm{x}, \mathrm{y} \in{ }^{n}$, then $x^{*} y=x^{\theta}\left(y^{h}\right)^{T}$.
Proof:
Let $x \in \square^{n}, x=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right], y=\left[\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right]$
So $x^{\theta}\left(y^{h}\right)^{T}=\left[\begin{array}{llll}\bar{x}_{n} & \bar{x}_{n-1} & \cdots & \bar{x}_{1}\end{array}\right]\left[\begin{array}{c}y_{n} \\ y_{n-1} \\ \vdots \\ y_{1}\end{array}\right]$
$=\bar{x}_{n} y_{n}+\bar{x}_{n-1} y_{n-1}+\cdots+\bar{x}_{1} y_{1}$
$=\bar{x}_{1} y_{1}+\bar{x}_{2} y_{2}+\cdots+\bar{x}_{n} y_{n}$
$=x^{*} y$.
Note
Weshalldenotethe matrix $\left(\begin{array}{cccc}0 & & & 1 \\ & & 1 & \\ 1 & & & 0\end{array}\right)_{n \times n}, \mathrm{~b}$
$\mathrm{y} S_{n}$.
3.6 Theorem (Properties of S_{n}):
(1) $\mathrm{S}=S^{h}=S^{T}=\left(S^{h}\right) \square=S$
(2) $\mid \mathrm{Sl}=-1$
(3) $\mathrm{S}^{-1}=\mathrm{S}$
(4) 4) $\operatorname{tr}(\mathrm{S})= \begin{cases}1 & \text {, if } n \text { is odd } \\ 0 & \text {, if } n \text { is even }\end{cases}$
(5) Let $x \in \square^{m}, y \in{ }^{n}$ and $A \in M_{m \times n}()$, then
(a) $x=S_{m}\left(x^{h}\right)^{T}=\left(\left(S_{m} x\right)^{h}\right)^{T}$.
(b) $A=S_{m}\left(A^{h}\right)^{T} S_{n}=\left((S A S)^{h}\right)^{T}$.
(c) $x_{1}^{T} x_{2}=x_{1}^{h}\left(x_{2}^{h}\right)^{T}, \forall x_{1}, x_{2} \in \square^{m}$
(d) $x_{1}^{h} x_{2}=x_{1}^{T}\left(x_{2}^{h}\right)^{T}, \forall x_{1}, x_{2} \in \square^{m}$.
(e) $x_{1} x_{2}^{T}=x_{1} x_{2}^{h} S=\left(x_{2} x_{1}^{h} S\right)^{T}, \forall x_{1}, x_{2} \in$
(f) $x_{1} x_{2}^{h}=x_{1} x_{2}^{T} S=\left(x_{2} x_{1}^{T} S\right)^{h}, \forall x_{1}, x_{2} \in$

Proof:
(5) Let $x \in \square^{m}, y \in{ }^{n}$ and $A \in M_{m \times n}($), then
$x=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots\end{array}\right], y=\left[\begin{array}{c}y_{1} \\ y_{2} \\ \vdots\end{array}\right]$ and \quad Note
(1) $\left(A^{\theta}\right)^{\theta}=A$.
(2) $(A+B)^{\theta}=A^{\theta}+B^{\theta}$.
(3) $(A B)^{\theta}=B^{\theta} A^{\theta}$.
(4) $(k A)^{\theta}=\bar{k} A^{\theta}, k \in$.

3.7 Definition

A matrix $\mathrm{A} \in \mathrm{M}_{n \times n}(\square$) is called h-orthogonal matrix iff $A A^{h}=\mathrm{I}$.
This means that $A^{h}=A^{-1}$.

1) $\mathrm{A}=\left(\begin{array}{cc}\mathrm{Z} & 0 \\ 0 & 1 / \mathrm{Z}\end{array}\right), 0 \neq \mathrm{z} \in \square$,
2) $\mathrm{B}=\left(\begin{array}{ccc}i & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -i\end{array}\right)$.

A and B are h -orthogonal matrices.
3) $\mathrm{C}=\left(\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right)$ is not h-orthogonal matrix.
3.8 Theorem

Let $A \in \mathrm{M}_{n \times n}(\square)$ then the following statements are equivalent:
(1) A is h-orthogonal matrix.
(2) A^{-1} is h -orthogonal matrix.
(3) $\mathrm{A} \square$ is h-orthogonal matrix.
(4) A^{*} is h-orthogonal matrix.
(5) $\mathrm{A} \square$ is h-orthogonal matrix.
(6) A^{h} is h-orthogonal matrix.
(7) $\mathrm{A} \square$ is h-orthogonal matrix.
(8) $\left(A^{h}\right) \square$ is h-orthogonal matrix.
(9) (A \square) is h-orthogonal matrix.

Proof:
(1) $1 \Rightarrow 2$:

Suppose A is h-orthogonal matrix
So $A A^{h}=I$
$\Rightarrow\left(A A^{h}\right)^{-1}=I^{-1}$
Thus $\left(A^{-1}\right)^{h} A^{-1}=I$
Hence A^{-1} is h-orthogonal matrix.
(2) $2 \Rightarrow 3$:

Suppose A^{-1} is h-orthogonal matrix.
So $A^{-1}\left(A^{-1}\right)^{h}=I$
$\Rightarrow\left(A^{h} A\right)^{-1}=I$
$\Rightarrow\left(A^{h} A\right)=I$
$\Rightarrow\left(A^{h} A\right)^{T}=I^{T}$
$\Rightarrow A^{T}\left(A^{h}\right)^{T}=I$
$\Rightarrow A^{T}\left(A^{T}\right)^{h}=I$
Hence A^{T} is h-orthogonal matrix.
(3) $3 \Rightarrow 4$:

Suppose A^{T} is h-orthogonal matrix.
So $A^{T}\left(A^{T}\right)^{h}=I$
$\Rightarrow \overline{\left(A^{T}\left(A^{h}\right)^{T}\right)}=\bar{I}$
$\Rightarrow \overline{\left(A^{T}\right)\left(\left(A^{T}\right)^{h}\right)}=I$
$\Rightarrow A^{*}\left(A^{*}\right)^{h}=I$
Hence A^{*} is h-orthogonal matrix.
(4) $4 \Rightarrow 5$:

Suppose A^{*} is h-orthogonal matrix.
So $A^{*}\left(A^{*}\right)^{h}=I$
$\Rightarrow\left(A^{*}\left(A^{*}\right)^{h}\right)^{T}=I^{T}$
$\Rightarrow\left(\left(A^{*}\right)^{h}\right)^{T}\left(A^{*}\right)^{T}=I$
$\Rightarrow(\bar{A})^{h} \quad \bar{A}=I$
Hence \bar{A} is h-orthogonal matrix.
(5) $5 \Rightarrow 6$:

Suppose \bar{A} is h-orthogonal matrix.
So $(\bar{A})(\bar{A})^{h}=I$
$\Rightarrow \overline{\left(\bar{A}(\bar{A})^{h}\right)}=\bar{I}$
$\Rightarrow \overline{(\bar{A})}(\overline{(\bar{A})})^{h}=I$
$\Rightarrow A A^{h}=I$
$\Rightarrow\left(A^{h}\right)^{h} A^{h}=I$
Hence A^{h} is h-orthogonal matrix.
(6) $6 \Rightarrow 7$:

Suppose A^{h} is h-orthogonal matrix.
So $A^{h}\left(A^{h}\right)^{h}=I$

$$
\Rightarrow A^{h} A=I
$$

$$
\Rightarrow\left(A^{h} A\right)^{\theta}=I^{\theta}
$$

$\Rightarrow A^{\theta}\left(A^{h}\right)^{\theta}=I$
$\Rightarrow A^{\theta}\left(A^{\theta}\right)^{h}=I$
Hence A^{θ} is h-orthogonal matrix.
(7) $7 \Rightarrow 8$:

Suppose A^{θ} is h-orthogonal matrix.

$$
\text { So } \begin{aligned}
A^{\theta}\left(A^{\theta}\right)^{h} & =I \\
& \Rightarrow\left(A^{\theta}\left(A^{\theta}\right)^{h}\right)^{*}=I^{*} \\
& \Rightarrow\left(\left(A^{\theta}\right)^{*}\right)^{h}\left(A^{\theta}\right)^{*}=I \\
& \Rightarrow\left(\left(A^{h}\right)^{T}\right)^{h}\left(A^{h}\right)^{T}=I
\end{aligned}
$$

Hence $\left(A^{h}\right)^{T}$ is h-orthogonal matrix.
(8) $8 \Rightarrow 9$:

Suppose $\left(A^{h}\right)^{T}$ is h-orthogonal matrix.
So $\left(\left(A^{h}\right)^{T}\right)^{h}\left(A^{h}\right)^{T}=I$

$$
\left.\begin{array}{l}
\Rightarrow \overline{\left[\left(\left(A^{h}\right)^{T}\right)^{h}\left(A^{h}\right)^{T}\right]}=I \\
\Rightarrow\left[\left(\left(A^{h}\right)^{T}\right)^{h}\right]\left[\left(A^{h}\right)^{T}\right]
\end{array}=I\right)
$$

Hence $\left(A^{\theta}\right)^{T}$ is h-orthogonal matrix.
(9) $9 \Rightarrow 1$:

Suppose $\left(A^{\theta}\right)^{T}$ is h-orthogonal matrix.

$$
\begin{aligned}
& \text { So }\left(\left(A^{\theta}\right)^{T}\right)^{h}\left(A^{\theta}\right)^{T}=I \\
& \Rightarrow\left(\left(A^{\theta}\right)^{h}\right)^{T}\left(A^{*}\right)^{h}=I \\
& \Rightarrow A^{*}\left(A^{*}\right)^{h}=I \\
& \Rightarrow\left(A^{*}\left(A^{*}\right)^{h}\right)^{*}=I^{*} \\
& \quad \Rightarrow A^{h} A=I
\end{aligned}
$$

Hence A is h-orthogonal matrix.
3.9 Theorem

If A is h -orthogonal matrix, then A^{n} is h -orthogonal matrix, $\mathrm{n}=2,3 \ldots$
Proof:
Suppose A is h-orthogonal matrix
So $A^{n}\left(A^{n}\right)^{h}=\underbrace{(A A \cdots A)}_{n_{\text {_times }}} \underbrace{(A A \cdots A)^{h}}_{n_{-} \text {times }}$
$=(A A \cdots A)\left(A^{h} A^{h} \cdots A^{h}\right)$
$=\underbrace{(A A \cdots A)}_{(n-1)_{\text {_times }}}\left(A A^{h}\right) \underbrace{\left(A^{h} A^{h} \cdots A^{h}\right)}_{(n-1)_{-} \text {times }}$

$$
=\underbrace{(A A \cdots A)}_{(n-1)^{\prime} \text { times }} I \underbrace{\left(A^{n}\right)}_{(n-1)_{\text {_times }}^{\left(A^{h} A^{h} \cdots A^{h}\right)}}
$$

!
$=A A^{h}$
$=I$
Hence A^{n} is h-orthogonal matrix.

3.10 Theorem

Let $A \in M_{n \times n}(\square)$, then the following statements areequivalent.
(1) A is h-orthogonal matrix.
(2) $(\mathrm{A} \square)^{-1}=\mathrm{A} \square$.
(3) $(\mathrm{A} \square)^{-1}=\left(A^{h}\right) \square$.
(4) $\left(\mathrm{A}^{*}\right)^{-1}=(\mathrm{A} \square) \square=\left(A^{*}\right)^{h}$.

Proof:
(1) $1 \Rightarrow 2$:

Suppose A is h-orthogonal matrix, then
$A A^{h}=A^{h} A=I$
So $\overline{\left(A A^{h}\right)}=\bar{I}$
$\bar{A} A^{\theta}=I$
Hence $(\bar{A})^{-1}=\mathrm{A} \square$.
(2) $2 \Rightarrow 3$:

Suppose $(\bar{A})^{-1}=A$,
So $\left((\bar{A})^{-1}\right)=\overline{(A)}$
$\Rightarrow A^{-1}=A^{h}$
$\Rightarrow\left(A^{-1}\right)^{T}=\left(A^{h}\right)^{T}$
(3) $3 \Rightarrow 4$:

Suppose $\left(A^{-1}\right)^{T}=\left(A^{h}\right)^{T}$,
So $\overline{\left(A^{T}\right)^{-1}}=\overline{\left(A^{h}\right)^{T}}$
$\Rightarrow\left(A^{*}\right)^{-1}=\left(A^{*}\right)^{h}=\left(A^{\theta}\right)^{T}$
(4) $4 \Rightarrow 1$:

Suppose $\left(A^{*}\right)^{-1}=\left(A^{*}\right)^{h}$,
So $\left(\left(A^{*}\right)^{-1}\right)^{*}=\left(\left(A^{*}\right)^{h}\right)^{*}$
$\Rightarrow A^{-1}=A^{h}$
Hence A is h-orthogonal matrix.

3.11 Theorem

If A is h -orthogonal matrix, then
(1) If $\mathrm{A} \square A^{h}=A^{h} \mathrm{~A} \square$ then $A^{h} \mathrm{~A} \square$ is Orthogonal matrix.
(2) If $\mathrm{A} * A^{h}=A^{h} \mathrm{~A}^{*}$ then $A^{h} \mathrm{~A} *$ is Unitary matrix.
Proof:
(1) Suppose A is h -orthogonal matrix and $\mathrm{A} \square A^{h}=$ $A^{h} \mathrm{~A} \square$
So $\left(A^{h} \mathrm{~A}\right)^{T}\left(A^{h} A^{T}\right)=\left(A\left(A^{h}\right)^{T}\right)\left(A^{h} A^{T}\right)$
$\left.=A\left(\left(A^{h}\right)^{T}\right) A^{T}\right) A^{h}\left(\mathrm{~A} \square A^{h}=A^{h} \mathrm{~A} \square\right)$
$=A(I \quad) A^{h} \quad$ (Theorem 3.8)
$=I$
Hence $A^{h} A^{T}$ is orthoganl matrix.
(2) Suppose A is h-orthogonal matrix and $A^{*} A^{h}=$ $A^{h} A^{*}$
So $\left(A^{h} A^{*}\right)^{*}\left(A^{h} A^{*}\right)=\left(A\left(A^{h}\right)^{*}\right)\left(A^{h} A^{*}\right)$
$\left.=A\left(\left(A^{h}\right)^{*}\right) A^{*}\right) A^{h}\left(A^{*} A^{h}=A^{h} A^{*}\right)$
$=A\left(\left(A A^{h}\right)^{*}\right) A^{h}$
$=A\left(I^{*}\right) A^{h}$
$=I$
Hence $A^{h} A^{*}$ is unitary matrix.
3.12 Theorem

If $A_{1}, A_{2}, A_{3} \ldots A_{n}$ are h-orthogonal matrices, and 1, 2 ... n
be any rearrangement of the indices $1,2 \ldots n$, then $A_{1} A_{\dot{2}} A_{\dot{3}} \ldots A_{\dot{n}}$ is h-orthogonal matrix.

Proof:

Let $A_{1}, A_{2}, A_{3} \ldots A_{n}$ be h-orthogonal matrices and
1, 2 ... n
be any rearrangement of the indices $1,2 \ldots n$, then
$\left(A_{1} A_{\dot{2}} \ldots A_{\dot{n}}\right)\left(A_{1} A_{\dot{2}} \ldots A_{\dot{n}}\right)^{h}$

$$
=\left(A_{1} A_{\dot{2}} \cdots A_{\dot{n}}\right)\left(A_{\dot{n}}^{h} A_{(n-1)}^{h} \cdots A_{1}^{h}\right)
$$

$=\left(A_{1} A_{\dot{2}} \ldots A_{(n-1)}\right)\left(A_{\dot{n}} A_{\dot{n}}^{h}\right)\left(A_{(n-1)}^{h} \cdots A_{1}^{h}\right)$
$=\left(A_{1} A_{2} \ldots A_{(n-1)}\right) I\left(A_{(n-1)}^{h} \cdots A_{1}^{h}\right)$
!

$$
=A_{\hat{1}} A_{\mathrm{i}}^{h}
$$

$=I$
Hence, $A_{\dot{1}} A_{\dot{2}} A_{\dot{3}} \ldots A_{\dot{n}}$ is h-orthogonal matrix.

3.13 Theorem

If AB is h -orthogonal matrix, then A is h -orthogonal
matrix \Leftrightarrow
B is h -orthogonal matrix.
Proof:
\Rightarrow
Suppose AB and A are h-orthogonal matrices
So $(A B)^{h}(A B)=I$
$\Rightarrow\left(B^{h} A^{h}\right)(A B)=I$
$\Rightarrow B^{h}\left(A^{h} A\right) B=I$
$\Rightarrow B^{h}(I) \quad B=I \Rightarrow B^{h} B=I$
Hence, B is h-orthogonal matrix.
\Leftarrow
Suppose AB and B are h-orthogonal matrices
So $(A B)(A B)^{h}=I$
$\Rightarrow(A B)\left(B^{h} A^{h}\right)=I$
$\Rightarrow A\left(B B^{h}\right) A^{h}=I$
$\Rightarrow A(I) \quad A^{h}=I$
$\Rightarrow A A^{h}=I$
Hence, A is h-orthogonal matrix.
3.14 Theorem

Let $\mathrm{A} \in \mathrm{M}_{n \times n}(\square)$ be a h-orthogonal matrix, if A $=\left(A^{T}\right)^{h}$, then
(1) $\|\mathrm{Ax}\|=\|\mathrm{x}\|, x \in \square^{n}$.
(2) $\langle A x, A y\rangle=\langle x, y\rangle, \mathrm{x}, \mathrm{y} \in \square^{n}$.

Proof:
(1)Let $\mathrm{A} \in \mathrm{M}_{n \times n}(\square \quad$) be a h -orthogonal matrix and A $=\left(A^{T}\right)^{h}$, then
$\|A x\|^{2}=\langle A x . A x\rangle, \mathrm{x} \in \square^{n}$
$=(A x)^{*} A x$
$=x^{*}\left(A^{*} A\right) x$
$=x^{*}\left(S A^{\theta}\left(A^{h}\right)^{T} S\right) x \quad($ Theorem 3.5(5, b))
$=x^{*} S\left(A^{\theta}\left(A^{h}\right)^{T}\right) S x$
$=x^{\theta}\left(A^{\theta} A\right)\left(x^{h}\right)^{T} \quad$ (Theorem 3.5(5, a) and $A=$
$\left.\left(A^{h}\right)^{T}\right)$.
$=x^{\theta} I\left(x^{h}\right)^{T}$
$=x^{*} x \quad$ (Theorem 3.5)
$=\|x\|^{2}$
Hence $\|A x\|=\|x\|$.
(2) Let $\mathrm{A} \in \mathrm{M}_{n \times n}(\square$)be a h-orthogonal matrix, x, y $\in \square^{n}$
and $\mathrm{A}=\left(A^{T}\right)^{h}$,then
$\langle A x, A y\rangle=(A x)^{*} A y$

$$
\begin{aligned}
& =x^{*}\left(A^{*} A\right) y \\
& =x^{*}\left(S A^{\theta}\left(A^{h}\right)^{T} S\right) y \quad(\text { Theorem } 3.5(5, \mathrm{~b}))
\end{aligned}
$$

$$
=x^{*} S\left(A^{\theta}\left(A^{h}\right)^{T}\right) S y
$$

$=x^{\theta}\left(A^{\theta} A\right)\left(y^{h}\right)^{T} \quad($ Theorem 3.5(5, a) and $A=$
$\left.\left(A^{h}\right)^{T}\right)$.
$=x^{\theta} I\left(y^{h}\right)^{T}$
$=x^{*} y \quad$ (Theorem 3.5)
$=\langle x, y\rangle$
Hence, $\langle A x, A y\rangle=\langle x, y\rangle$.
3.15 Theorem

Let A be h-orthogonal matrix, then
(1) The eigenvalues of A are of modulus 1 .
(2) $\mid \mathrm{Al}= \pm 1$.

Proof:
(1) Suppose that λ be an eigenvalue of A

So $A x=\lambda x, x \neq 0$
$\Rightarrow\|A x\|=\|\lambda x\|$
$\Rightarrow\|x\|=|\lambda|\|x\|($ Theorem 3.14)
Hence, $|\lambda|=1$.
(2) Let A be h -orthogonal matrix, then
$A A^{h}=I$
$\left|A A^{h}\right|=|I|$
$|A|\left|A^{h}\right|=1$
$|A||A|=1$ (Theorem 3.4)
$|A|^{2}=1$
Hence, $|A|= \pm 1$
3.16 Definition

A matrix $\mathrm{A} \in \mathrm{M}_{n \times n}(\square)$, is called hunitary matrix iff $A A^{\theta}=\mathrm{I}$.
This means that $A^{\theta}=A^{-1}$.
3.17 Example
(1) $\mathrm{A}=\left(\begin{array}{ccc}i & 0 & i \\ 0 & i & 0 \\ 0 & 0 & i\end{array}\right)$, (2) $\mathrm{B}=\left(\begin{array}{cc}0 & a i \\ \frac{1}{a} i & 0\end{array}\right), \mathrm{a} \in R \backslash\{0\}$.

A and B are h -unitary matrices.
(3) $\mathrm{C}=\left(\begin{array}{cc}2 \mathrm{i} & 0 \\ 0 & 3 \mathrm{i}\end{array}\right)$ is not h-unitary matrix.

3.18 Theorem

Let $\mathrm{A} \in \mathrm{M}_{n \times n}(\square)$, then the following statementsare equivalent:
(1) A is h-unitary matrix.
(2) A^{-1} is h-unitary matrix.
(3) $A \square$ is h-unitary matrix.
(4) A^{*} is h-unitary matrix.
(5) A is h-unitary matrix.
(6) A^{h} is h-unitary matrix.
(7) $\mathrm{A} \square$ is h-unitary matrix.
(8) (A^{h}) \square is h-unitary matrix.
(9) (A $\square) \square$ is h-unitary matrix.

Proof:
(1) $1 \Rightarrow 2$:

Suppose A is h- unitary matrix
So $A A^{\theta}=I$
$\Rightarrow\left(A A^{\theta}\right)^{-1}=I^{-1}$
Thus $\left(A^{-1}\right)^{\theta} A^{-1}=I$
Hence A^{-1} is h-unitary matrix.
(2) $2 \Rightarrow 3$:

Suppose A^{-1} is h-unitary matrix.

So $A^{-1}\left(A^{-1}\right)^{\theta}=I$
$\Rightarrow\left(A^{\theta} A\right)^{-1}=I$
$\Rightarrow\left(\left(A^{\theta} A\right)^{-1}\right)^{-1}=I^{-1}$
$\Rightarrow A^{\theta} A=I$
$\Rightarrow\left(A^{\theta} A\right)^{T}=I^{T}$
$\Rightarrow A^{T}\left(A^{\theta}\right)^{T}=I$
$\Rightarrow A^{T}\left(A^{T}\right)^{\theta}=I$
Hence A^{T} is h-unitary matrix.
(3) $3 \Rightarrow 4$:

Suppose A^{T} is h-unitary matrix.
So $A^{T}\left(A^{T}\right)^{\theta}=I$
$\Rightarrow \overline{\left(A^{T}\left(A^{\theta}\right)^{T}\right)}=\bar{I}$
$\Rightarrow \overline{\left(A^{T}\right) \overline{\left(\left(A^{T}\right)^{\theta}\right)}}=I$
$A^{*}\left(A^{*}\right)^{\theta}=I \Rightarrow$
Hence A^{*} is h-unitary matrix.
(4) $4 \Rightarrow 5$:

Suppose A^{*} is h-unitary matrix.
So $A^{*}\left(A^{*}\right)^{\theta}=I$

$$
\begin{gathered}
\Rightarrow\left(A^{*}\left(A^{*}\right)^{\theta}\right)^{T}=I^{T} \\
\Rightarrow\left(\left(A^{*}\right)^{\theta}\right)^{T}\left(A^{*}\right)^{T}=I \\
\Rightarrow(\bar{A})^{\theta} \quad \bar{A}=I
\end{gathered}
$$

Hence \bar{A} is h-unitary matrix.
(5) $5 \Rightarrow 6$:

Suppose A is h-unitary matrix.
So $(\bar{A})(\bar{A})^{\theta}=I$

$$
\begin{gathered}
\frac{\Rightarrow\left(\bar{A}(\bar{A})^{\theta}\right)}{\Rightarrow(\bar{A})((\bar{A}))^{\theta}=I} \\
\Rightarrow A A^{\theta}=I \\
\Rightarrow\left(A A^{\theta}\right)^{h}=I^{h} \\
\Rightarrow\left(A^{h}\right)^{\theta} A^{h}=I
\end{gathered}
$$

Hence A^{h} is h-unitary matrix.
(6) $6 \Rightarrow 7$:

Suppose A^{h} is h-unitary matrix.
So $A^{h}\left(A^{h}\right)^{\theta}=I$
$\Rightarrow A^{h} \bar{A}=I$
$\Rightarrow \overline{\left(A^{h} \bar{A}\right)}=\bar{I}$
$\Rightarrow A^{\theta} A=I$
$\Rightarrow A^{\theta}\left(A^{\theta}\right)^{\theta}=I$
Hence A^{θ} is h-unitary matrix.
(7) $7 \Rightarrow 8$:

Suppose A^{θ} is h-unitary matrix.
So $A^{\theta}\left(A^{\theta}\right)^{\theta}=I$
$\Rightarrow\left(A^{\theta}\left(A^{\theta}\right)^{\theta}\right)^{*}=I$
$\Rightarrow\left(\left(A^{\theta}\right)^{*}\right)^{\theta}\left(A^{\theta}\right)^{*}=I$
$\Rightarrow\left(\left(A^{h}\right)^{T}\right)^{\theta}\left(A^{h}\right)^{T}=I$
Hence $\left(A^{h}\right)^{T}$ is h-unitary matrix.
(8) $8 \Rightarrow 9$:

Suppose $\left(A^{h}\right)^{T}$ is h-unitary matrix.
So $\left(\left(A^{h}\right)^{T}\right)^{\theta}\left(A^{h}\right)^{T}=I$
$\Rightarrow \overline{\left[\left(\left(A^{h}\right)^{T}\right)^{\theta}\left(A^{h}\right)^{T}\right]}=\bar{I}$
$\Rightarrow \overline{\left[\left(\left(A^{h}\right)^{T}\right)^{\theta}\right]\left[\left(A^{h}\right)^{T}\right]}=I$
$\Rightarrow\left(\left(A^{\theta}\right)^{T}\right)^{\theta}\left(A^{\theta}\right)^{T}=I$
Hence $\left(A^{\theta}\right)^{T}$ is h-unitary matrix.
(9) $9 \Rightarrow 1$

Suppose $\left(A^{\theta}\right)^{T}$ is h-unitary matrix.
So $\left(\left(A^{\theta}\right)^{T}\right)^{\theta}\left(A^{\theta}\right)^{T}=I$
$\Rightarrow\left(\left(A^{\theta}\right)^{\theta}\right)^{T}\left(A^{\theta}\right)^{T}=I$
$\Rightarrow A^{T}\left(A^{\theta}\right)^{T}=I$
$\Rightarrow\left(A^{T}\left(A^{\theta}\right)^{T}\right)^{T}=I^{T}$
$\Rightarrow A^{\theta} A=I$
Hence A is h-unitary matrix.
3.19 Theorem

If A is h-unitary matrix, then A^{n} is h-unitary matrix
Proof:
Suppose A is h-unitary matrix

$$
\begin{aligned}
& \text { So } A^{n}\left(A^{n}\right)^{\theta}=\underbrace{(A A \cdots A)}_{n_{n} \text { times }} \underbrace{(A A \cdots A)^{\theta}}_{n_{n} \text { times }} \\
& =(A A \cdots A)\left(A^{\theta} A^{\theta} \cdots A^{\theta}\right) \\
& =\underbrace{(A A \cdots A)}_{(n-1)^{\prime} \text { _times }}\left(A A^{\theta}\right) \underbrace{(n+\text { times }}_{\left.(n-1)^{\left(A^{\theta}\right.} A^{\theta} \cdots A^{\theta}\right)} \\
& =\underbrace{(\underbrace{\left(A^{\theta} A^{\theta}\right.}_{\left.(n-1)^{\theta} A^{\theta} \cdots A^{\theta}\right)}}_{(n-1)_{\text {_times }}^{(A A \cdots A)}} \\
& \vdots \\
& =A A^{\theta} \\
& =I
\end{aligned}
$$

Hence A^{n} is h-unitary matrix.
3.20 Theorem

Let $\mathrm{A} \in \mathrm{M}_{n \times n}(\square)$, then the following are equivalent
(1) A is h-unitary matrix.
(2) $(\bar{A})^{-1}=A^{h}$.
(3) $\left(A^{T}\right)^{-1}=\left(A^{*}\right)^{h}=\left(A^{\theta}\right)^{T}$.
(4) $\left(\mathrm{A}^{*}\right)^{-1}=\left(A^{T}\right)^{h}$.

Proof:
(1) $1 \Rightarrow 2$:

Suppose A is h- unitary matrix, then
$A A^{\theta}=I$
$\operatorname{So}\left(A A^{\theta}\right)^{h}=I^{h}$
$\bar{A} A^{h}=I$
Hence $(\bar{A})^{-1}=A^{h}$
(2) $2 \Rightarrow 3$:

Suppose $(\bar{A})^{-1}=A^{h}$,
So $\overline{\left((\bar{A})^{-1}\right)}=\overline{\left(A^{h}\right)}$
$\Rightarrow A^{-1}=A^{\theta}$
$\Rightarrow\left(A^{-1}\right)^{T}=\left(A^{\theta}\right)^{T}$
$\Rightarrow\left(A^{T}\right)^{-1}=\left(A^{\theta}\right)^{T}=\left(A^{*}\right)^{h}$
(3) $3 \Rightarrow 4$:

Suppose $\left(A^{T}\right)^{-1}=\left(A^{\theta}\right)^{T}$
So $\overline{\left(A^{T}\right)^{-1}}=\overline{\left(A^{\theta}\right)^{T}}$
$\Rightarrow\left(A^{*}\right)^{-1}=\left(A^{T}\right)^{h}=\left(A^{h}\right)^{T}$
(4) $4 \Rightarrow 1$:

Suppose $\left(A^{*}\right)^{-1}=\left(A^{T}\right)^{h}$, then
So $\left(\left(A^{*}\right)^{-1}\right)^{*}=\left(\left(A^{T}\right)^{h}\right)^{*}$
$\Rightarrow A^{-1}=A^{\theta}$
Hence A is h-orthogonal matrix.

3.21Corollary

Let A be a real matrix, then A is h-
orthogonalmatrix \Leftrightarrow
A is h -unitary matrix

3.22 Theorem

Let A beh-unitary matrix
(1) If $(\mathrm{A} \square) \square \mathrm{A}=\mathrm{A}(\mathrm{A} \square) \square$, then $\mathrm{A}(\mathrm{A} \square) \square$ is orthogonal matrix.
(2) If $\mathrm{A} \square A^{h}=A^{h} \mathrm{~A} \square$, then $A^{h} \mathrm{~A} \square$ is unitary matrix.
(3) If $\mathrm{A} A^{h}=A^{h} \mathrm{~A}$, then $A^{h} \mathrm{~A}$ is h-unitary matrix.
(4) If $\mathrm{AA} \square=\mathrm{A} \square \mathrm{A}$, then $\mathrm{AA} \square$ is h-orthogonal matrix.
(5) If $A^{h} \mathrm{~A} \square=\mathrm{A} \square A^{h}$, then $A^{h} \mathrm{~A} \square$ is horthogonal matrix.
Proof:
(1) Suppose A is h-unitary matrix and $A\left(A^{\theta}\right)^{T}=$ $A\left(A^{\theta}\right)^{T}$
So $\left(A\left(A^{\theta}\right)^{T}\right)^{T}\left(A\left(A^{\theta}\right)^{T}\right)=\left(A^{\theta} A^{T}\right)\left(A\left(A^{\theta}\right)^{T}\right)$
$=\left(A^{\theta} A^{T}\right)\left(\left(A^{\theta}\right)^{T} A\right) \quad\left(A\left(A^{\theta}\right)^{T}=A\left(A^{\theta}\right)^{T}\right)$
$\left.=A^{\theta}\left(A^{T}\left(A^{\theta}\right)^{T}\right) A\right)($ Theorem 3.20(3))
$=A^{\theta}(I) A$
$=I$
Hence $A\left(A^{\theta}\right)^{T}$ is orthoganl matrix.
2) Suppose A is h-unitary matrix and $A^{T} A^{h}=A^{h} A^{T}$

So $\left(A^{h} A^{T}\right)^{*}\left(A^{h} A^{*}\right)=\left(\bar{A}\left(A^{h}\right)^{*}\right)\left(A^{h} A^{T}\right)$
$\left.=\bar{A}\left(\left(A^{h}\right)^{*}\right) A^{T}\right) A^{h}\left(A^{T} A^{h}=A^{h} A^{T}\right)$
$=\bar{A}\left(I \quad A^{h}(\right.$ Theorem 3.20(3))
$=\bar{A} A^{h}($ Theorem 3.20(2))
$=I$
Hence $A^{h} A^{*}$ is unitary matrix.
Similarly, we can prove $3,4,5$
3.23 Theorem

If $A_{1}, A_{2}, A_{3} \ldots A_{n}$ are h-unitary matrices, and 1 í, $2 \ldots$ ń be any rearrangement of the indices $1,2 \ldots n$ then $A_{\dot{1}} A_{\dot{2}} A_{\dot{3}} \ldots A_{\dot{n}}$ is h-unitary matrix.

Proof:

Let $A_{1}, A_{2}, A_{3} \ldots A_{n}$ be h-unitary matrices and
1, $2 \ldots$ ń
be any rearrangement of the indices $1,2 \ldots n$, then

$$
\begin{aligned}
& \left(A_{\dot{1}} A_{\dot{2}} \ldots A_{\dot{n}}\right)\left(A_{\mathrm{i}} A_{\dot{2}} \ldots A_{\dot{n}}\right)^{\theta} \\
& \quad=\left(A_{\dot{1}} A_{\dot{2}} \ldots A_{\dot{n}}\right)\left(A_{\dot{n}}^{\theta} A_{(n-1)}^{\theta} \cdots A_{1}^{\theta}\right) \\
& =\left(A_{\dot{1}} A_{\dot{2}} \ldots A_{(n-1)}\right)\left(A_{\dot{n}} A_{n}^{\theta}\right)\left(A_{(n-1)}^{\theta} \cdots A_{1}^{\theta}\right) \\
& =\left(A_{1} A_{\dot{2}} \ldots A_{(n-1)}\right) I\left(A_{(n-1)}^{\theta} \cdots A_{1}^{\theta}\right) \\
& \vdots \\
& \quad=A_{1} A_{1}^{\theta}
\end{aligned}
$$

$=I$
Hence, $A_{\dot{1}} A_{\dot{2}} A_{\dot{3}} \ldots A_{\dot{n}}$ is h-unitary matrix.
3.24 Theorem

If $A B$ is h-unitary matrix, then A is h-unitary matrix \Leftrightarrow
B is h-unitary matrix.
Proof:
\Rightarrow
Suppose AB and A are h-unitary matrices
So $(A B)^{\theta}(A B)=I$
$\Rightarrow\left(B^{\theta} A^{\theta}\right)(A B)=I$
$\Rightarrow B^{\theta}\left(A^{\theta} A\right) B=I$
$\Rightarrow B^{\theta}(I) \quad B=I \Rightarrow B^{\theta} B=I$
Hence, B is h -unitary matrix.

Suppose AB and B are h-unitary matrices
So $(A B)(A B)^{\theta}=I$
$\Rightarrow(A B)\left(B^{\theta} A^{\theta}\right)=I$
$\Rightarrow A\left(B B^{\theta}\right) A^{\theta}=I$
$\Rightarrow A(I) \quad A^{\theta}=I$
$\Rightarrow A A^{\theta}=I$
Hence, A is h-unitarymatrix.
3.25 Theorem

Let $\mathrm{A} \in \mathrm{M}_{n \times n}(\square)$ be a h-Unitary matrix, if A $=\left(A^{T}\right)^{h}$, then
(1) $\|A x\|=\|x\|, x \in \square^{n}$.
(2) $\langle A x, A y\rangle=\langle x, y\rangle, \mathrm{x}, \mathrm{y} \in \square^{n}$.

Proof:
(1) Let $\mathrm{A} \in \mathrm{M}_{n \times n}(\square \quad$ be an h-unitary matrix and A $=\left(A^{T}\right)^{h}$, then
$\|A x\|^{2}=\langle A x, A x\rangle \mathrm{x} \in \square^{n}$
$=(A x)^{*} A x$
$=x^{*}\left(A^{*} A\right) x$
$=x^{*}\left(S A^{\theta}\left(A^{h}\right)^{T} S\right) x \quad$ (Theorem 3.5(5, b))

$$
=x^{*} S\left(A^{\theta}\left(A^{h}\right)^{T}\right) S x
$$

$=x^{\theta}\left(A^{\theta} A\right)\left(x^{h}\right)^{T} \quad($ Theorem 3.5) $(5$, a) and $A=$
$\left(A^{h}\right)^{T}$.
$=x^{*} x$ (Theorem 3.5)
$=\|x\|^{2}$
Hence $\|\mathrm{Ax}\|=\|\mathrm{x}\|$.
(2) Let $A \in M_{n \times n}(\square)$ be an h-unitary matrix, x,
$\mathrm{y} \in \square^{n}$
and $\mathrm{A}=\left(A^{T}\right)^{h}$,then
$\langle A x, A y\rangle=(A x)^{*} A y$
$=x^{*}\left(A^{*} A\right) y$
$=x^{*}\left(S A^{\theta}\left(A^{h}\right)^{T} S\right) y($ Theorem 3.5(5, b))
$=x^{*} S\left(A^{\theta}\left(A^{h}\right)^{T}\right) S y$
$=x^{\theta}\left(A^{\theta} A\right)\left(y^{h}\right)^{T}($ Theorem 3.5(5, b))
$=x^{\theta} I\left(y^{h}\right)^{T}$
$=x^{*} y$ (Theorem 3.5)
$=\langle x, y\rangle$
Hence, $\langle A x, A y\rangle=\langle x, y\rangle$.
3.26 Theorem

Let A be an h-unitary matrix, then the eigenvalues of
A are of
modulus 1 .
Proof:
Suppose that λ be an eigenvalue of A
So $A x=\lambda x, x \neq 0$
$\Rightarrow\|A x\|=\|\lambda x\|$
$\Rightarrow\|x\|=|\lambda|\|x\|$
(Theorem 3.25)
Hence, $|\lambda|=1$.

IV. CONCLUSION

We have new types of matrices with important properties. They preserve the length and the inner product. Eigenvalues of these matrices are of modulus 1.

REFERENCES

[1] Hoffman K. , Linear Algebra ,2nd Ed.,Printce-Hall,1971.
[2] Kolman B. ,Linear Algebra, 9th Ed. , Printce-Hall, 2008.
[3] Meyer C. D., Matrix Analysis and Applied Linear Algebra, Siam, 2000.

