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Abstract— In this paper, we introduced new types of
matrices. We called them h-orthogonal matrix and h-unitary
matrix depend on h-transpose. We discussed the properties
of these matrices such as, their eigenvalues and
determinants. These matrices preserve the length and the
inner product.
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I. INTRODUCTION
Orthogonal matrices and unitary matrices are
important types of matrices. These matrices have
important applications in many fields of sciences.
This paper introduce new types of matrices: h-
orthogonal and h-unitary. These matrices have many
properties.
In this paper, (,),1I Il,| |,and mean the inner
product, norm, and determinant, respectively.
II. FUNDAMENTAL CONCEPTS

2.1 Definition ™
Let V be a complex vector. An inner product on V is a
function that assigns to each ordered pair of vectors u,
vinV, acomplex number (u,v) satisfying the
following conditions:

(i vy =20wu)y=0iffu=0,

(i) (u,v) =W,u)vuvinV

@ii) (u +v,w) = (u,w) + (v,w),vu,v,w €V

(iv) {cu,v) = c{u,v),Yu,v€V,and c €
2.2 Example

2 -1
Letu,ve™, u= [3],1} = [ 1 ],then (u, vy =3
1 2

2.3 Definition ™
A matrix A € M,,5,,([1),is called orthogonal matrix
iff AAT =1.
This means that AT = 4™,
2.4 Definition [
A matrix A € M,,»,,([1),is called unitary matrix
iff 449 = 1.
This means that A% = A1,
Il. MAIN RESULTS
3.1 Definition
Let A= [a;;] is an m x n matrix. We define the h-
transpose of A, denoted byAP", as the n x mmatrix
where
AP = [aft]= [a(mﬂ_j)(nﬂ_i)]nxm, i=1,2...m, j=1,
2...n
3.2 Example
20 141 3
1) A:[Z _62 g] 2)B :[ i 2 2- i]
3i 4 1

5 7 1 2-—i 3
()AP=|-2 6|, (@B"=[4 2 1+i].

4 8 3i i 20
3.3 Theorem

Properties of h-Transpose:
If ris a scalar and A and B are matrices of the
appropriate size, then.
(@ (AMH'=A.
(b) (AM)T=(AN".
© (D" = (4.
(d (A+B)r= A"+ B
(e) (AB)" = BhAl .
H T = ran.
@ (AN =@ if A#0,
Proof:
(8) Let A= [a;j]mxn , then AP

:[a(m+1—j)(n+1—i)]

nxm
S0 (AM)" = [a(n+1-(+1-1))m+1-(m+1-7) Imxn -

[a(n+1—n—1+i)(m+1—m—1+j)]mxn

= [aijlmxn -

=A.

(b) Let A= [aij]mxn: then A= [aji]nxm
So (AT)h = [a(n+1—i)(m+1—j)]m><n

= [a(m+1—j)(n+1—i)]m><n

= ([apns1-jn+1-iInxm) [

- (Ah)T.

(C)I—et A= [aij]mxna then Al'= [C_lij]mxn

So (A)h = [a(m+1—j)(n+1—i)]n><m
=%m+1—1)(n+1—1)])nxm

=(AM).

(d) LetA= [aij]mxnl B= [bij]mxn’ then
A+B=Ta;; + bij lmxn =C=[Cij lmxns Cij = Qi
+byj Y i,].

S0 (A + B)"= [cfi]nxm

=[C(m+1—j)(n+1—i)]n><m

=[am+1-jm+1-i) T bem+1-jm+1-plnxm
=[am+1-jm+r1-plaxm T [Dmi1-jpmr1-p] axm
= A" + BM,

(e) Let A= [al-j]mxp, B= [bij]pxn: then

AB = C = [Cij lmxn) €ij = Yooy Qirby;

S0 (AB)" = C" = [cini1-jyema1-iy Inxm
Let c/; € (AB)", then

h —
Cij = Ctm+1-j)(n+1-i)

=¥,

a(m+1—j)rbr(n+1—i)
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= 25:1 a;(m+1—j) bgn+1—i)r

= er’=1 b(Tn+1—i)raI(m+1—j)

=the (i,j) entry inB"4",

() ltis clear(rd)* = ra".

(g)Let A € M,,, (0 ) andl Al #0, then AA™L =1

So (AAHr =1"

=AY = 1

Thus (A"~ = (4M)~!

3.4 Theorem

Let A € M, (1), then
@ | Al =1 AP =1 ATI =1 (ADM .
(b) tr(A) = tr(AM) = tr(A11) = tr((4AT)").
(c) Let A€ M,,, (), then A andA" have the

same eigenvalues.
Proof:
(@) Let A € M,,,,(1)), then

AM = [a(n+1—j)(n+1—i)]n><n

= [ans1-iyns1-j)lnxn

= ([a(n+1—i)(n+1—j)]n><n) U

So (AM)T= [An+1-i)n+1-j)lnxn

Ann an(n—l) an(n—z) an
An-n An-1D(n-1) An-1)(n-2) Amn-1)1
Ain A1(n-1) A1(n-2) a1
We have that:
[CONE
Ann Anmn-1) An(n-2) an1
An-n An-1)(n-1) An-1)(n-2) Am-1)1
Ain a1(n-1) A1(n-2) ai
A1n  A1(n-1) A1(n-2) Qa1
n, |A2n  A2(n- Az(n-2 a1
D" (r:l Y (T:l ) .| ,if nis even
Ann an(n—l) an(n—z) An1
A1n  A1(n-1) A1(n-2) Qa1
nn, | @2 Az (n— Aym-2) *° QA21
(G S NEY (1:1 K (7:1 ) . |,ifnisodd
Ann an(n—l) an(n—z) An1
Since ("[1;) and (""'[],) are even numbers
Ain  A1(n-1) Nn-2) aiq
a; Az(n-1) 42(n-2 azq
So | AamT |= :n (r:l ) (r:l ) :
Ann Anm-1) Ann-2) an1

By the same way, we are interchanging the columns
Therefore, we have that

ai1 42 Qg3 Ain
a a a a
| @)= T = 1Al
an1 an2 an3 ann
Since |A|=|Al| and [A* |=| (47|
So |Al=[AC]=]a" =] @M

b) Let A € My,,(1), then AN = [a(n+1—j)(n+1—i)]n><n
Let A =D, ., then

tr (AM) =d,; + dyy + -+ dyy,
Sinced;; = aﬁ' = A(n+1-j)(n+1-i)
Sotr (Ah) =y, + A(n-1)(n-1) + A(n-2)(n-2) + -+
a1
=G taxnt ot apy
=tr (A) = tr(AP) = tr(AL)) = tr((AM7).
Since | Al =1 A"l ¢)
[ ARl =1 @A =AD" 1 =l A-MI .
Note
(1) We define ALl as ALl = (A)" =(4M).
(2) We define A*as 4* = (&) =(47).
3.5Theorem
Letx,ye ", then x*y = x%(yMT.
Proof:

X1 Y1
x
Letx € Jn,xz :2 Yy = y:z
xn yn
In

So

So x0T = [Fn Fnoy - T] [TV
V1
=XpVn + X1 Yn-1+ -+ X1
= f})ﬁ + Xy, + o+ Xy
=x"y.
Note

Weshalldenotethe matrix .
1 0
VA
3.6 Theorem (Properties of S,,):
(1) S=sht=sT=(M11=5
2 I'sl =1
(3) st=S
1 ,ifnisodd
4) Ht(S) =
0 ,ifniseven
() Letx € [,y €M and A € My, (), then
@ x =S5,(xM" = ((Sn0)")".
(b) A =S5,(4")7S, = ((SASM)T.
(©) xTx, = XMW Vi, x, € 10
(d) xPx, = xT ) Va0, €0
(@) xx} = xxfS = (oxd'S),V a2, €
a .
(O xx} = 2ix]S = (x] )"V xi,x; €
0

Proof:
G)Letx € ",y €™ and A € M., (), then
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X1 N
X2 V2 Note
x=|.|,y=|""|and Note
YT (1) (4%)° = 4.
axn . yrg g (2) (A+B)? = A% + BY.
all a12 a13 aln (3) (AB)B — BGAG_
] (4) (kA)® = kA% k €.
a a a - q 3.7 Definition
myo Tmz Tm3 m A matrix A € M,,,.,(1] )is called h-orthogonal matrix
0 1 Xn iff AAh =1
T 1 Xp1 This means that A" = A™".
@S (x*)" = . ;| =x 7 0 i 0 0
) 1A:( ),Ozeu, 2)B={0o 1 o0 |
1 0/l %1 ) A=o 1/2) 0 _)OO—i
A and B are h-orthogonal matrices.
(b) 2 0y, .
Sp(AM" = 3) C:( ) is not h-orthogonal matrix.
0 1 Amn am(nfl) am(nfz) Am1 0 3
1 Um-tyn Am-n(-1)  Am-n@-2)  Gm-1n |3.8 Theorem
L o) a, a;(ﬂ_l) a’l(n_z) o a, JLEtAE My, (L)) then the following statements are
equivalent :
Qin Ain-1) Gmn-2z) s (1) A'is h-orthogonal matrix.
Aon Ayn-1) Gz2n-2) = G2 (2) A™tis h-orthogonal matrix.

(3) Al is h-orthogonal matrix.
(4) A*is h-orthogonal matrix.

a A1) Amm—2y = @
m mn=n - Emne2) ™ (5) AT is h-orthogonal matrix.
S, (AMTS, (6) A" is h-orthogonal matrix.
Qip Gm-1) Gim-2) " G\ /0 1 (7) ALD is h-orthogonal matrix.
- ( P Geen Beep ‘f“)( 1 > (8) (A™) I is h-orthogonal matrix.
AR A U 0 f.(9) (AD) O is h-orthogonal matrix.
a1 Q12 Q43 0 Qip (;.(;?I.=>2
a a a cee a .
= 21 22 23 : Zn Suppose A is h-orthogonal matrix
h —
Am1 Am2 rfllm3 t Amp So jih jll /-1
= =
(C) Letxl,xz el Thl(JS (Azl)hA—l =]
To — (+h -
Ther;xl Xz = (x1°5)xz Hence A~ is h-orthogonal matrix.
=% (%) (2) 223:
=x1'(x2) m Suppose A~ tis h-orthogonal matrix.
(d) Letx,,x, € [J So A—l(A—l)h =]
Thenxlx, = (xTS)x, = (AhA) =1
= x7'(Sx;) = (4"4) =1
=xe)" =@ =1 "
(e) Letxy, x, € [ =>ATAMT =1
Thenx; x] = x, (x25) = AT(ATY = |
= (x;x1)$ Hence AT is h-orthogonal matrix.
= S((x.xMT P (3) 3=4:
(Ca2)™ ) Suppose ATis h-orthogonal matrix.
=S x,7 So AT(AT" =1
T = ATAN =1
=( 2t S) = (AN(ANH =1
(f) Let x;,x, € [ SA (A =1
Thenx, x} = x,(x15) (T;n:e ,54* is h-orthogonal matrix.
= (x; xS =b:
_ g(l(xziT)T ) Suppose A*is h-orthogonal matrix.
- o So A4 =1
=S(xT x," ﬁ(A*(A}:)h)T =1
=AM =1
h
= x{ S) S(A A =1

Hence A is h-orthogonal matrix.
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(5) 5=6:
Suppose A is h-orthogonal matrix.
So(Ad) (D =1

>A@"H =1

=>(A) (D) =1

= AA" =1

S(AMh AR = |

Hence A" is h-orthogonal matrix.
(6) 6=>7:

Suppose A"is h-orthogonal matrix.
So At (A =1

s> AMA=1
= (A" AP =1°
=A4%(4M° =1
=494 =1
Hence A% is h-orthogonal matrix.
(7)7=8:

Suppose A%is h-orthogonal matrix.
So A% (A" =1
= (A% (A =1
= (A4 =1
= ((AHHAMT =1
Hence (4™)T is h-orthogonal matrix.
(8)8=9:
Suppose (A" Tis h-orthogonal matrix.
So ((AMHM AT =1
= [(AMTHANT] =1
= [(AM)DR][AM)T] =1
= (AU =1
Hence (4%)7 is h-orthogonal matrix.
(9)9=1:
Suppose (A9)Tis h-orthogonal matrix.
So ((AHNH@AN" =1
= (AU =1
= A*(A*)h =1
=>4 =1
Hence A is h-orthogonal matrix.
3.9 Theorem
If A is h-orthogonal matrix, then A" is h-orthogonal
matrix,n=2, 3...
Proof:
Suppose A is h-orthogonal matrix
So A"(AM" = (AA - A) (AA-- A"
n_times
= (44--A) (A“Ah ---Ah)
= (AA--A) (AAM) (Ah4l ... A1)

(n—1)_times

n_times

(n—-1)_times
= (4A--A4) I(AhA“ ...Ah)

(n—-1)_times

(n—1)_times

= AA"
=1
Hence A™ is h-orthogonal matrix.

3.10 Theorem

Let A € M,,.,(7 ), then the following statements
areequivalent.
(1) Ais h-orthogonal matrix.
(2) (A7) t=AL.
(3) (AD) =(AM) L.
@) (A% 1= (AD) 0 =AD"
Proof:
1) 1=2:
Suppose A is h-orthogonal matrix, then
AAR = ARA =1
So (A4 =T
AA® = |
Hence (4) "t =AL.
(2) 2=3:
Suppose (4) "1 =4,
So ((A)™1) =(4)
=A™ = AR
:(A—l)T — (Ah)T
(3) 3=4:
Suppose(4™)" = (AT,
So (AT)—l = (Ah)T
(AN = A" = A"
(4) 4=>1:
Suppose(47) ™" = (4",
So (A7) = (A"
A=A
Hence A is h-orthogonal matrix.
3.11 Theorem
If A is h-orthogonal matrix, then
(1) If ADAM = ARAL then APAL is
Orthogonal matrix.
(2) If A*Ar=A"A* then A"A* is Unitary
matrix.

Proof:
(1) Suppose A is h-orthogonal matrix and AL A" =
ArAL
So (AMA)T(ARAT) = (A(AMT)(4mAT)
= A((AMTATY AN (ALAM = ARAL)
= A(I )A" (Theorem 3.8)
=1
HenceA" AT is orthoganl matrix.
(2) Suppose A is h-orthogonal matrix and A*A" =
ArA*
So (AMAM)*(ARAY) = (A(AM)") (A4
= A((AMMHAHAN (A AN = AhAY)
= A((AAM* Har
= A(I")AM
=1
HenceA"A*is unitary matrix.
3.12 Theorem
If Ay, A,, A5 ... Ajare h-orthogonal matrices, and
1,2..4
be any rearrangement of the indices 1,2 ... n, then
AjiAs As ... Ay is h-orthogonal matrix.

Proof:
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Let A, A,, As ... A,be h-orthogonal matrices and
1,2..1

be any rearrangement of the indices 1,2 ... n, then
(AiAs ... A)(Aids ... AN

= (447 . AR)(ATAG,- )+ A})
= (AiAs . A ) (AR AR (AL - - AD)

h
by AD)

= (AiAz . A (AL
= A;A}

=1

Hence,A{As As ... A; is h-orthogonal matrix.

3.13 Theorem

If AB is h-orthogonal matrix, then A is h-orthogonal
matrix <

B is h-orthogonal matrix.

Proof:

=

Suppose AB and A are h-orthogonal matrices
So (AB)"(AB) = I

= (B"AM(4B) =1

= B"(A"A)B =1

= B"() B=1=>B"B=1

Hence, B is h-orthogonal matrix.

&

Suppose AB and B are h-orthogonal matrices
So (AB)(AB)* =1

= (AB)(B"AM) =1

= A(BBMA" =1

= A At =1

= AAM =1

Hence, A is h-orthogonal matrix.

3.14 Theorem

Let AeM,,, (77 ) be a h-orthogonal matrix, if A
=(AT", then

@ IAXI =l xll,xe "
(2) (Ax,Ay) = (x,y),x y€ 1"
Proof:

(1)Let AeM,, (] ) be a h-orthogonal matrix and A
=(AT)", then
l|Ax||? = (Ax. Ax)x € O
= (Ax)"Ax
= x"(A"A)x
= x"(SA%(AMTS)x (Theorem 3.5(5, b))

= x*S(A%(AMT)Sx

= x%(4%4)(x™)T (Theorem 3.5(5,a) and A =
(AMN.

=x01(xMT

= x'x (Theorem 3.5)
= [IxII?

Hence I AxIl =1 xII .

(2) Let AeM,, (7 )be a h-orthogonal matrix, X, y
el

and A =(AT)" then

(Ax, Ay) = (Ax)" Ay

=x"(A"A)y
= x"(SA%(A™TS)y  (Theorem 3.5(5, b))
= x"S(A°(AM)")Sy
= x9(4%4)(y™T (Theorem 3.5(5,a) and A =
(AMN.
=x°1M7"
= x"y  (Theorem 3.5)
= (x, )

Hence, (Ax, Ay) =(x, y).
3.15 Theorem
Let A be h-orthogonal matrix, then
(1) The eigenvalues of A are of modulus 1.
2 I Al =£1.
Proof:
(1) Suppose that A be an eigenvalue of A
SoAx =Ax,x # 0
=||Ax]| = || Ax]]
=|lx|| = |A||lx||(Theorem 3.14)
Hence, || = 1.
(2) Let A be h-orthogonal matrix, then
AAM =]
|Aar| = 1|
|Al14"] =1
|Al|A | = 1(Theorem 3.4)
lAI? =1
Hence |4 | = +1
3.16 Definition
A matrix A € M,,,,(11),is called hunitary matrix
iff AA% = 1.
This means that A° = A=,

3.17 Example
i 0 i 0 ai
MHA=lo i 0 ,(2)8:(1l- 0>.aeR\{0}-
00 i \a
A and B are h-unitary matrices.
_(21 0Y. e :
3 C —(0 Si) is not h-unitary matrix.

3.18 Theorem
Let A € M, (1), then the following statementsare
equivalent:
(1) Ais h-unitary matrix.
(2) A7tis h-unitary matrix.
(3) AL is h-unitary matrix.
(4) A*is h-unitary matrix.
(5) Ais h-unitary matrix.
(6) A" is h-unitary matrix.
(7) AL is h-unitary matrix.
(8) (A™) 1 is h-unitary matrix.
(9) (AD) I is h-unitary matrix.

Proof:

(1) 1=2:

Suppose A is h- unitary matrix
So AA% =1

= (AA%) =171
Thus (A~ )04 1 =1
Hence A~ is h-unitary matrix.

(2) 2=3:
Suppose A~ tis h-unitary matrix.
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So AY(ATHYI =1

= (A%A4) 1 =1

> (APt =1 7
=4% =1

> @A =1 "

= AT(AD" =1

= AT(AT)Y =1

Hence AT is h-unitary matrix.
(3) 3=4:

Suppose ATis h-unitary matrix.
So AT(AT)? =1
= @@ =1
= (A") (AN =1
A (AN =1=
Hence A* is h-unitary matrix.
(4) 4=5:
Suppose A*is h-unitary matrix.
So A*(A"P =1
= (A*(A*)B)T — IT
= (AN A" =1
=>@A°% 4 =1
Hence 4 is h-unitary matrix.
(5) 5=6:
Suppose A s h-unitary matrix.
So(4) (AP =1
=A@ =1
= (A) (A ) =1

= AA® =1
= (A4 = 1"
= (AMoar =1

Hence A" is h-unitary matrix.
(6) 6=>7:

Suppose Ais h-unitary matrix.
So Ah (AM°? =1

=AM =1

=>(ArA) =1

=A% A=1

=A49(49)° =1

Hence A9 is h-unitary matrix.
(7)7=8:

Suppose A%is h-unitary matrix.
So A9 (49)° =1

>(4° (490 =1~
=((ANHH° A% =1
=(AMHNHAM" =1

Hence (4™)T is h-unitary matrix.
(8)8=9:

Suppose (A" Tis h-unitary matrix.
So ((AMN°@AM" =1
=>[((@MH @AM =1
=[(AMN][(AMT] =1
=(AHNH AN =1

Hence (A%)7 is h-unitary matrix.

(9)9=1:

Suppose (A%)Tis h-unitary matrix.
So (AN (AN =1
=>((ANHTAN" =1

=ATANDT =1
:(AT(AG)T)T — IT
=24%4=1

Hence A is h-unitary matrix.
3.19 Theorem
If A is h-unitary matrix, then A» is h-unitary matrix
Proof:
Suppose A is h-unitary matrix
S0 AM(A™)? = (AA--- A) (AA - A)°
n_times n_times

= (AA--A) (A94°9...49)
= (AA--A) (AA?)(A%4° .- A%)

= (AA--A) 1 (A%A° ... 4%)

(n—1)_times (n—1)_times

= AA?

=1

Hence A™ is h-unitary matrix.

3.20 Theorem

Let A € M,,,,(00), then the following are equivalent
(1) A ish-unitary matrix.
2) &) =AM
(3) (AN =AD" = A"
@) (AT =(a""

Proof:

1) 1=2:

Suppose A is h- unitary matrix, then

AA® = |

So(AA%Hh = [t

AAr =]

Hence (4) ~* =4"

(2) 2=3:

Suppose (4) ~* =A",

So (D1 = (4"

=A"1 = A°

=>(A_1)T — (AG)T

ﬁ(AT)_l — (AB)T — (A*)h

(3) 3=4:

Suppose (AT)™! = (49T

So (AT)~1 = (A%)T

=(A)71 = (AT = (AM)T

(4) 4=1:

Suppose (4*)~! = (A7), then

So ((A)™)" = ((AHM"

A" = A9

Hence A is h-orthogonal matrix.

3.21Corollary

Let A be a real matrix, then A is h-
orthogonalmatrixe

A is h-unitary matrix
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3.22 Theorem
Let A beh-unitary matrix
(1) If(AD) DA=A(AD) [, then A (AD) [ is
orthogonal matrix.
(2) If ADAM= ARAL, then A" AL is unitary
matrix.
(3) If AA™ =A"A, then A"A is h-unitary matrix.
(4) If AADI = ATJA, then AATT is h-orthogonal
matrix.
(5) If ARAL = ADAR, then AMAL is h-
orthogonal matrix.
Proof:
(1) Suppose A is h-unitary matrix and A(A%)T =
AT
So (A4 (A(A)T) = (A°AT)(A(A%)")
= (A°ATY((A%)"A) (A(A%)" = A(A%)")
= A9(AT(A%)T)A)(Theorem 3.20(3))
=A°(DA
=1
HenceA(49)T is orthoganl matrix.
2) Suppose A is h-unitary matrix and ATA" = ARAT
So (A"AT)"(A"A") = (A(A")")(A"AT)
= A((AM)")AT)AM(AT AR = AR AT)
= A(I )A"(Theorem 3.20(3))
= AA"(Theorem 3.20(2))
=1
HenceA"A* is unitary matrix.
Similarly, we can prove 3, 4,5
3.23 Theorem
If A, A,, As ... Ajare h-unitary matrices, and 1,2 ... 7
be any rearrangement of the indices 1, 2 ... n then
AjAs As ... Ay IS h-unitary matrix.
Proof:
Let A,,A,, A ... A,be h-unitary matrices and
1,2..1
be any rearrangement of the indices 1,2 ... n, then
(AiAs ... Az)(AiAs ... Ay)°
= (4445 ... A;)(A

6
= (A1As .. Az (AAD A0 -

= (AiAs Az DAY 2, -+ AD)

049

1 (nl1)

---A?)

...Aif’)

(n“1)"

= A4}
=1
Hence, A;As Az ... Ay is h-unitary matrix.
3.24 Theorem
If AB is h-unitary matrix, then A is h-unitary matrix
s
B is h-unitary matrix.
Proof:
=
Suppose AB and A are h-unitary matrices
So (AB)?(AB) =1
= (B?A%)(AB) =1
= B%(4%A)B =1
=>B%(1I) B=1=>B°B=1
Hence, B is h-unitary matrix.
—

Suppose AB and B are h-unitary matrices
So (AB)(AB)? =1

= (AB)(BA%) =1

= A(BB9A® =1

= A A% =1

= A4°% = |

Hence, A is h-unitarymatrix.

3.25 Theorem

Let A € M, ("7 ) be a h-Unitary matrix, if A
=(4T", then

@ Al =l xll xe "

n

(2) (Ax,Ay)=(x,y), xye [
Proof:
(1) Let A € M,;»,(T7 )be an h-unitary matrix and A
=(AT)" then
l|Ax||? = (Ax, Ax)x € (1"

= (Ax)"Ax
=x"(A"A)x
= x"(SA%(A")TS)x (Theorem 3.5(5, b))
= x"S(A%(AMT)Sx
=x9(4%4)(x™)T (Theorem 3.5) (5,a) and A =
amr,
= x*x (Theorem 3.5)
= [IxII?
Hence Il AxIl =1l xII .

(2) Let A € M., (1] ) be an h-unitary matrix, X,
ye 1"
and A =(AT)" then
(Ax, Ay) = (Ax)" Ay
=x"(A"A)y
= x*(SA%(A")TS)y (Theorem 3.5(5, b))
= x"S(A°(AM")Sy

x8(A%A)(y™)T (Theorem 3.5(5, b))
x@[(yh)T

x*y (Theorem 3.5)
= (x, )
Hence, (Ax, Ay) =(x, y).
3.26 Theorem
Let A be an h-unitary matrix, then the eigenvalues of
A are of
modulus 1.
Proof:

Suppose that A be an eigenvalue of A
SOAx =Ax,x # 0

=||Ax]| = || Ax]]
=>|x|| = |1A]]lx]| (Theorem 3.25)
Hence, |1] = 1.

V. CONCLUSION
We have new types of matrices with important

properties. They preserve the length and the inner
product. Eigenvalues of these matrices are of modulus
1.
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