On *(gr)-Closed Sets in Topological Spaces

¹Rajendran.V, ²Indirani.K, ³Vijesh.C and ⁴Suresh.N

^{1,3&4}Assistant Professor, Dept. of Mathematics, KSG CAS, Coimbatore, TN, India. ²Associate Professor & Head, Dept. of Mathematics, Nirmala College, Coimbatore, TN, India.

Abstract: In this paper we introduced and study the notions of *(gr)-closed sets and *(gr)-open sets in topological spaces and also we discussed their properties.

Keywords: (gr)-closed set, (gr)-open set, \hat{g} -open.

1. Introduction & Preliminaries

In 1970, Levine [8], introduced and investigated the notion of g-closed sets in topological spaces. In 1987, Bhattacharya, et. al [3], introduced and studied the notion of semi generalized closed sets in topological spaces. In 1990, Arya, et. al [2] introduced the notion of generalized semi closed sets.

In 1993, Maki, et. al [10], introduced generalized α - closed sets in topology. In 1993, Palaniappan, et. al [13], introduced the notion of Regular generalized closed sets and in 1996, Maki, et. al [11], introduced generalized pre closed sets in topological spaces and in 1995, Dontchev [5] introduced and investigated the notion of generalized semi- pre open sets in topological spaces. In 1997, Gnanambal [6] introduced the generalized pre-regular closed sets in topological spaces. In 2011, Bhattacharya [4], introduced generalized regular closed sets in topological spaces.

Let (X, τ) be a topological space with no separation axioms are assumed. If $A \subseteq X$, cl(A) and int(A) will respectively denote the closure and interior of A in (X, τ) .

Definition 1.1 A subset A of a topological space (X, τ) is called

1) Pre- closed set [9], if $cl(int(A)) \subseteq A$.

- 2) Semi- closed set [7], if $int(cl(A)) \subseteq A$.
- 3) Semi- pre closed set [1], if $int(cl(int(A))) \subseteq A$.
- 4) Regular closed set [14], if A = cl(int(A)).
- 5) α closed set [12], if cl(int(cl(A))) \subseteq A.

Definition 1.2 [13] For any subset A of (X, τ) , $rcl(A) = \cap \{B: B \supseteq A, B \text{ is a regular closed subsets of } X\}$.

Definition 1.3 A subset A of a topological space (X, τ) is called

- 1) g- closed set [8], if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- 2) gs- closed set [2], if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- 3) sg- closed set [3], if scl(A) \subseteq U whenever A \subseteq U and U is semi open in (X, τ).
- 4) ga closed set [10], if α cl(A) \subseteq U whenever A \subseteq U and U is α open in (X, τ).
- 5) αg closed set [10], if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- 6) gp- closed set [11], if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- 7) gsp- closed set [5], if spcl(A) \subseteq U whenever A \subseteq U and U is open in (X, τ).
- 8) rg- closed set [13], if cl(A) \subseteq U whenever A \subseteq U and U is regular open in (X, τ).
- 9) gpr- closed set [6], if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in (X, τ) .
- 10) \hat{g} closed set [15], if cl(A) \subseteq U whenever A \subseteq U and U is semiopen in (X, τ).

2. *(gr) - CLOSED SETS

Definition 2.1. A subset A of a topological space (X, τ) is called a star generalized regular closed set [briefly ^{*}(gr)-closed set], if rcl(A) \subseteq U whenever A \subseteq U and U is \hat{g} -open subset of X.

Theorem 2.2 If A is r-closed set in (X, τ) . Then A is (gr)-closed set in (X, τ) .

Proof: Let A be an r-closed set in (X, τ) . Let U be a \hat{g} -open set such that A \subseteq U. Therefore, we have rcl(A) = A \subseteq U, implies rcl(A) \subseteq U. Hence A is *(gr)-closed in (X, τ) .

The converse of the above theorem need not be true as seen from the following example.

Example 2.3 Let $X = \{a, b, c, d\}$ with $\tau = \{\emptyset, X, \{d\}, \{b, c\}, \{b, c, d\}\}$. The subset $A = \{a, c\}$ is *(gr)- closed set but not r-closed set.

Theorem 2.4 For a topological space (X, τ) , the following hold.

(i) Every *(gr)- closed set is g-closed.

(ii) Every *(gr)- closed set is rg-closed.

(iii) Every *(gr)- closed set is gs-closed.

(iv) Every *(gr)- closed set is gp-closed.

(v) Every *(gr)- closed set is gsp-closed.

(vi) Every *(gr)- closed set is gpr-closed.

(vii) Every *(gr)- closed set is αg-closed.

Proof:

(i) Let A be *(gr)- closed set in (X, τ) .Let U be an open set such that A \subseteq U. Since every open set is \hat{g} -open set, $cl(A) \subseteq rcl(A) \subseteq U$, Therefore $cl(A) \subseteq U$. Hence A is a g-closed set in X.

(ii) Let A be *(gr)- closed set in (X, τ) .Let U be an r-open set such that A \subseteq U. Since every r-open set is \hat{g} -open set, $cl(A) \subseteq rcl(A) \subseteq U$, Therefore $cl(A) \subseteq U$. Hence A is a rg-closed set in X.

(iii) Let A be *(gr)- closed set in (X, τ) .Let U be an open set such that A \subseteq U. Since every r-open set is \hat{g} -open set, scl(A) \subseteq rcl(A) \subseteq U, Therefore scl(A) \subseteq U. Hence A is a gs-closed set in X.

(iv) Let A be *(gr)- closed set in (X, τ).Let U be an open set such that A \subseteq U. Since every open set is \hat{g} -open set, pcl(A) \subseteq rcl(A) \subseteq U, Therefore pcl(A) \subseteq U. Hence A is a gp-closed set in X.

(v) Let A be *(gr)- closed set in (X, τ) .Let U be an open set such that A \subseteq U. Since every open set is \hat{g} -open set, spcl(A) \subseteq rcl(A) \subseteq U, Therefore spcl(A) \subseteq U. Hence A is a gsp-closed set in X.

(vi) Let A be *(gr)- closed set in (X, τ) .Let U be an r-open set such that A \subseteq U. Since every r-open set is open set, and every open set is \hat{g} -open set, pcl(A) \subseteq rcl(A) \subseteq U, Therefore pcl(A) \subseteq U. Hence A is a gpr-closed set in X.

(vii) Let A be *(gr)- closed set in (X, τ) .Let U be an open set such that A \subseteq U. Since every open set is \hat{g} -open set, $\alpha cl(A) \subseteq rcl(A) \subseteq U$, Therefore $\alpha cl(A) \subseteq U$. Hence A is a αg -closed set in X.

The converse of the above theorem need not be true as seen from the following examples.

Example: 2.5

(i) Let $X = \{a, b, c, d\}$ with $\tau = \{\emptyset, X, \{a, b, c\}, \{d\}\}$. The g-closed sets are $\{\{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X, \emptyset\}$ and *(gr)-closed sets are $\{\{a, b, c\}, \{d\}, X, \emptyset\}$. The set $A = \{a, d\}$ is a g-closed set but not *(gr)-closed set in X.

(ii) Let $X = \{a, b, c, d\}$ with $\tau = \{\emptyset, X, \{a, b, c\}, \{a, b\}, \{c\}\}$. The rg-closed sets are $\{\{d\}, \{a, c\}, \{b, c\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{a, c, d\}, \{b, c, d\}, X, \emptyset\}$ and *(gr)-closed sets are $\{\{d\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X, \emptyset\}$. Let $A = \{a, c\}$ is a rg-closed set but not *(gr)-closed set in X.

(iii) Let $X = \{a, b, c, d\}$ with $\tau = \{\emptyset, X, \{a, b, c\}, \{b, c\}, \{a\}\}$. The gs-closed sets are $\{\{a\}, \{b\}, \{c\}, \{d\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X, \emptyset\}$ and *(gr)-closed sets are $\{\{d\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X, \emptyset\}$. The set $A = \{a\}$ is a gs-closed set but not *(gr)-closed set in X.

(iv) Let $X = \{a, b, c, d\}$ with $\tau = \{\emptyset, X, \{a, b, c\}, \{a, b\}, \{a\}, \{b\}\}$. The gp-closed sets are $\{\{c\}, \{d\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, X, \emptyset\}$ and *(gr)-closed sets are $\{\{d\}, \{a, d\}, \{b, d\}, \{c, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X, \emptyset\}$. The set $A = \{c\}$ is a gp-closed set but not *(gr)-closed set in X.

(v) Let $X = \{a, b, c, d\}$ with $\tau = \{\emptyset, X, \{b, c, d\}, \{b, c\}, \{b\}\}$. The gsp-closed sets are $\{\{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, X, \emptyset\}$ and *(gr)-closed sets are $\{\{a\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, X, \emptyset\}$. The set $A = \{b\}$ is a gsp-closed set but not *(gr)-closed set in X.

(vi) Let $X = \{a, b, c, d\}$ with $\tau = \{\emptyset, X, \{a, c, d\}, \{a, c\}, \{a\}, \{c\}\}$. The gpr-closed sets are $\{\{b\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}, \{a, c, d\}, X, \emptyset\}$ and *(gr)-closed sets are $\{\{b\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, c\}, \{c, d\}, \{c, d\}, \{a, b, c\}, \{a, b, c\}, \{a, c, d\}, \{a, c, d\}, X, \emptyset\}$ and *(gr)-closed sets are $\{\{b\}, \{a, c\}, \{a, c$

 $\{b, c\}, \{b, d\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}, X, \emptyset\}$. The set A = $\{d\}$ is a gpr-closed set but not *(gr)-closed set in X.

(vii) Let X = {a, b, c, d} with topology $\tau = \{\emptyset, X, \{b, c, d\}, \{b, c\}, \{c\}\}$. Then αg -closed sets are {{a}, {d}, {a, b}, {a, c}, {a, d}, {a, b, c}, {a, b, d}, {a, c, d}, X, \emptyset} and *(gr)-closed sets are {{a}, {a, b}, {a, c}, {a, d}, {a, c}, {a, d}, {a, b, c}, {a, b, d}, {a, c, d}, X, \emptyset}. Then A = {d} is an αg -closed set but not *(gr)-closed set in X.

Remark 2.6

1. Closed set and gr-closed sets are independent of each other.

2. *(gr)-closed set and sg-closed sets are independent of each other.

3. ^{*}(gr)-closed set and gr-closed sets are independent of each other. It is shown by the following example.

Example 2.7

1. Let $X = \{a, b, c, d\}$ with $\tau = \{\emptyset, X, \{a\}, \{d\}, \{a, d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$. The subset $\{c, d\}$ is "(gr)-closed set but not closed set and the subset $\{a, c, d\}$ is closed set but not "(gr)-closed set in (X, τ) .

2. Let $X = \{a, b, c, d\}$ with $\tau = \{\emptyset, X, \{c\}, \{a, b\}, \{a, b, c\}\}$. The subset $\{a, b, d\}$ is ^{*}(gr)-closed set but not sg-closed set and the subset $\{a\}$ is sg-closed set but not ^{*}(gr)-closed set in (X, τ) .

3. Let X={a, b, c, d} with $\tau = \{\emptyset, X, \{c\}, \{b\}, \{c\}, \{b, c\}, \{b, c, d\}\}$. The subset {a, b} in $\tau = \{\emptyset, X, \{b\}, \{c\}, \{b, c\}, \{b, c, d\}\}$. The subset {a, b} is ^{*}(gr)- closed but not ga-closed set and the subset {d} is ga-closed set but not ^{*}(gr)-closed set in (X, τ).

Theorem 2.8 The finite union of the ^{*}(gr)-closed sets is a ^{*}(gr)-closed set.

Proof: Let A and B be $^*(gr)$ -closed set in X. Let U be a \hat{g} -open in X such that $A \cup B \subseteq U$. Then $A \subseteq U$ and $B \subseteq U$. Since A and B are $^*(gr)$ -closed sets, $rcl(A) \subseteq U$ and $rcl(B) \subseteq U$. Hence $rcl(A \cup B) = rcl(A) \cup rcl(B) \subseteq U$. Therefore $A \cup B$ is a $^*(gr)$ -closed set, whenever A and B be $^*(gr)$ -closed.

Remark 2.9 The finite intersection of two *(gr)-closed sets need not be a *(gr)-closed set.

Example 2.10 Let $X = \{a, b, c\}$ with $\tau = \{\emptyset, \{b\}, X\}$. Let $A = \{a, b\}$ be a ^{*}(gr)- closed set and $B = \{b, c\}$ be also a ^{*}(gr)- closed set. But $A \cap B = \{b\}$ is not ^{*}(gr)- closed set in (X, τ) .

Theorem 2.11 If $A \subseteq B \subseteq rcl(A)$ and A is ^{*}(gr)-closed subset of (X, τ) then B is also a ^{*}(gr)-closed subset of (X, τ) . **Proof:** Let U be a \hat{g} -open subset such that $A \subseteq B \subseteq U$, since A is ^{*}(gr)-closed subset of (X, τ) , $rcl(A) \subseteq U$, by hypothesis $A \subseteq B \subseteq rcl(A)$, rcl(A) = rcl(B). Hence $rcl(B) \subseteq U$ whenever $B \subseteq U$. Therefore B is also a ^{*}(gr)-closed subset of (X, τ) .

Theorem 2.12 Let A be a \hat{g} -open subset of (X, τ) . Then A is r-closed set if A is *(gr)-closed set.

Proof: Since A is \hat{g} -open and $^{*}(gr)$ -closed set in (X, τ) , rcl $(A) \subseteq A$. Therefore A is r-closed set.

Theorem 2.13 Let $A \subseteq B \subseteq X$, where B is \hat{g} - open and A is ^{*}(gr)-closed in B then A is a ^{*}(gr)- closed in X.

Proof: Let U be a \hat{g} -open subset of X such that $A \subseteq U$. Since $A \subseteq U \cap B$, where $U \cap B$ is \hat{g} -open is B and A is $^*(gr)$ -closed in B, $rcl(A) \subseteq U \cap B$ holds we have $rcl(A) \cap B \subseteq U \cap B$. Since $A \subseteq B$ we have $rcl(A) \subseteq rcl(B)$. Since B is \hat{g} -open and $^*(gr)$ - closed is X, by the above theorem, B is r-closed. Therefore rcl(B) = B. Thus $rcl(B) \subseteq B$ implies $rcl(A) = rcl(A) \cap B \subseteq U \cap B \subseteq U$. Hence A is $^*(gr)$ - closed is X.

Theorem 2.14 A subset A of X is a (gr)-closed set in X if and only if rcl(A) - A contains no non-empty \hat{g} -closed set in X.

Proof: Suppose that F is a non-empty \hat{g} -closed subset of rcl(A) - A. Now $F \subseteq rcl(A) - A$. Then $F \subseteq rcl(A) \cap A^{C}$. Therefore $F \subseteq rcl(A)$ and $F \subseteq A^{C}$. Since F^{C} is \hat{g} -open such that $A \subseteq F^{C}$ and A is $^{*}(gr)$ -closed, $rcl(A) \subseteq F^{C}$, ie, $F \subseteq rcl(A)^{C}$. Hence $F \subseteq rcl(A) \cap [rcl(A)]^{C} = \emptyset$. ie $F = \emptyset$. Thus rcl(A) - A contains no non-empty \hat{g} -closed set.

Conversely assume that rcl(A) - A contains no non-empty \hat{g} -closed set. Let $A \subseteq U$ and U is \hat{g} -open. Suppose that rcl(A) is not contained in U. Then $rcl(A) \cap U^C$ is a non-empty \hat{g} -closed set and contained in rcl(A) - A which is a contradiction. Therefore $rcl(A) \subseteq U$ and hence A is (gr)-closed set.

Theorem 2.15 For each $x \in X$, either $\{x\}$ is \hat{g} -closed or $\{x\}^{C}$ is $^{*}(gr)$ -closed set in X.

Proof: If $\{x\}$ is not \hat{g} -closed, then only \hat{g} -open set containing $\{x\}^C$ is X. Thus $rcl\{x^C\}$ is contained in X and hence $\{x\}^C$ is *(gr)-closed set in X.

Remark 2.16

For the subsets defined above, we have the following implications.

4. *(gr)-OPEN SETS

Definition 4.1 A subset A of a topological space (X, τ) is called a star generalized regular open set (briefly *(gr)-open) if its complement is *(gr)- closed set.

Theorem 4.2 A subset A of a topological space (X, τ) is ^{*}(gr)- open if and only if $B \subseteq rint(A)$ where B is a g-closed subset of X and $B \subseteq A$.

Proof: Necessity: Let A be (gr)- open in X with $N \subseteq A$, where N is \hat{g} -closed. We have A^C is (gr)-closed with $A^C \subseteq N^C$ where N^C is \hat{g} -open. Then $rcl(A^C) \subseteq N^C$ implies $N^C \subseteq X$ - $rcl(A^C) = r$ int $(X - A^C) = r$ int(A).

Sufficiency: Suppose $B \subseteq r$ int (A) where B is \hat{g} -closed in (X, τ) and $B \subseteq A$. Let $A^C \subset M$, where M is \hat{g} -open. Hence M is $M^C \subseteq A$, where M^C is \hat{g} -closed. Hence by assumption $M^C \subseteq r$ int(A), which implies $(r \text{ int}(A))^C \subseteq M$. Therefore $rcl(A^C) \subseteq M$. Thus A^C is *(gr)-closed, implies A is *(gr)-open.

Theorem 4.3 Every r-open set is ^{*}(gr)-open set.

Proof: Let A be an r-open set. Then X-A is r-closed set. Then by theorem 3.1.2, X-A is ^{*}(gr)-closed. Hence A is ^{*}(gr)-open set.

Theorem 4.4 If $r int(A) \subseteq B \subseteq A$ and A is a ^{*}(gr)-open subset of (X, τ) then B is also a ^{*}(gr)-open subset of (X, τ) .

Proof: Let r int(A) \subseteq B \subseteq A implies A^C \subseteq B^C \subseteq rcl(A^C). It is known that A^C is *(gr)-closed. Hence by theorem 3.1.13. B^C is *(gr)-closed. Therefore B is *(gr)-open.

Theorem 4.5 If a subset A of a topological space (X, τ) is ^{*}(gr)- open in X then F = X, whenever F is \hat{g} - open and r int(A) $\subseteq A^C \subseteq F$.

Proof: Let A be ^{*}(gr)- open in X and F be \hat{g} - open, r int(A) $\cup A^C \subseteq F$. This gives $F^C \subseteq (X-r int(A)) \cap A = rcl(A^C) \cap A = rcl(A^C) - A^C$. Since F^C is \hat{g} -closed and A^C is ^{*}(gr)- open by theorem 2.14. we have $F^C = \emptyset$. Thus F = X.

References

1. M. E. Abd, El. Monsef, S. N. El. Deeb and R. A. Mashmand, β- open sets and β-Continuous mappings, Bull, Fac. Sci., Assiut Univ., 12(1983), 77-90.

- 2. S. P. Arya and T. Naur, Characterizations of S- Normal spaces, Indian J. Pure. Appl. Math., 21(8)(1990), 717-719.
- 3. P. Bhattacharya and B. K. Lahiri, Semi- generalized closed sets in topology, Indian J. Math., 29(3)(1987), 375-382.
- 4. S. Bhattacharya, On generalized regular closed sets, Int. J. Contemp. Math.Sciences, (6)(2011), 145-152.
- 5. J. Dontjev, On generalizing semi- pre open sets, MEM. Fac. Kochi Univ. Ser.A, Math., (16)(1995), 35-48.
- 6. Y. Gnanambal, On generalized pre regular closed sets in topological spaces, Indian J. Pure Appl. Math., (28)(1997), 351-360.
- 7. N. Levine, Semi- open sets and Semi- continuity in topological spaces, Amer. ath. Monthly., 70(1963), 36-41.

8. N. Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo., 19(2)(1970), 89-96.

9. S. Mashhour, M. E. Abd El. Monsef and S. N. El. Deeb, ON Pre- continuous and weak Pre- continuous mappings, Proc. Math. and Phys. Soc. Egypt, 53(1982), 47-53.

- 10. H. Maki, R. Devi and K. Balachandran, Generalized α- closed sets in topology, Bull. Fukuoka Univ. Ed. Part III, 42(1993), 13-21.
- 11. H. Maki, J. Uniehara and T. Noiri, Every topological spaces in Pre-T_{1/2}, Mem.Fac. Sci. Kochi Univ. Ser. A, Math., 17(1996), 33-42.
- 12. O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- 13. N. Palaniappan and K. C. Rao, Regular generalized closed sets, Kyungpook Math 33(2)(1993), 211-219.
- 14. M. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41(1937), 374-481.
- 15.M. K. S. Veera Kumar, On ĝ-closed sets in topological spaces, Bull. Allah.Math. Soc. 18(2003), 99-112