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Abstract
In this paper, we derive Multi-series of Generalized
alpha difference equation with suitable example. Also
we find the closed form solution which is coinciding
with the infinite summation form solution of the

higher order generalized ¢; — difference equation.
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1 INTRODUCTION
In 1984, Jerzy Popenda [5] introduced a particular
type of difference operator A, defined on u(k) as
A u(k) =u(k +1)—au(k) . In 1989, Miller and

Rose [9] introduced the discrete analogue of the
Riemann-Liouville fractional derivative and proved
some properties of the fractional difference operator.
The general fractional h-difference Riemann-

Liouville operator and its inverse A." f(t) were
mentioned in [1, 2]. In 2011, M.Maria Susai Manuel,
etal, [8, 11] extended the definition of A to A,
defined on u(k) as
AyV(K)=v(k+0)—av(k), where a=#0,
£>0 are fixed and k €[0,00) is variable. The
results derived in [11] are coincide with the results in
[7]when o =1.

An equation involving both A and A, is called

mixed difference equation. Oscillatory behaviour of
solutions certain types of mixed difference equations
have been dicussed in [3, 4, 6, 12]. An equation

involving A, and A, is called as generalized
mixed difference equation.

The higher order generalized «; —
equation

BBy (B, ((K)--)
=u(k),ke[0,),7¢,>0¢c; #0

difference

becomes generalized mixed difference equation if
a, =1 forsome i and N>2. The equation (1)

has three types of solutions which are closed, finite
and infinite multi-series forms. Equation (1) becomes

backward alpha difference equation when [, is

replaced by —/, .

2 PRELIMINARIES

In this section, we define the generalized backward
alpha difference operator and we presents certain
results on its inverse alpha difference operator with
polynomial and polynomial factorials for positive and

negative variable K .
Definition 2.1 If v(K) is a real valued function on

(—o0,0), then the generalized « —difference
operator for negative ¢ denoted by A, , is
defined as

A, nyV(K) =v(k—=0)—av(k),/ e (0,)

The inverse generalized backward « —difference
operator is defined as

: — — A1

it A,_,Vv(k)=u(k), then v(k)=A, _,u(k)
Definition 2.2 The higher order generalized
backward ¢; — difference equation is defined as

Aal(—él) (Aaz (ty) " 'Aan (4q) (V(k))))
=u(k),k €[0,0),-¢, >0

Lemma 2.3 If afS(i -, #0 for i=1,2,---,n,
then we have

n
-1 sk —
HAai (—[i)a -
i=1

ask

n
H(a_sei —-a;)
i=1
is a closed form solution of the equation (4) when
u(k) =a*.
Proof: Since
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sk — ~S(k=£5) sk — Sk £S5
A,p@ =a T-gat=at(@ ' -a)
a‘sk
from (3) we get A~ 1( . )a = —,— Wwhich
a '—q;
yields (5).

3 FINITE @ SUMMATION FOR POSITIVE
VARIABLE k

Lemma 3.1 (Finite « -summation formula for
k >0)For £ >0, we have
[ ]
A yu(k)- Q" Aa( [)u(k+[ -10) = Zar Wk +re) (6)

Proof: By taking Aa(_f)u(k)—v(k), we get
A, ,V(k) =u(k) and

v(k—0) =u(k) + av(k) (7)
Replacing K by K+ in (7), we get

v(k) = u(k +£) + av(k + £) (8)
Substituting (8) in (7), we get

v(k —2) =u(k) + au(k + ) + a’v(k + £) (9)

Replacing K by K+ in (9), we obtain

V(K) =u(k + )+ au(k + 20) ++a*v(k + 2/) (10)

Substituting (10) in (7), we get

v(k—¢) =u(k) +au(k +¢) "
+a’u(k+20) +a’v(k +20) )

Replacing K by K-+ in (11), we get
v(k) =u(k +0) + au(k + 2¢)

+a’u(k +30) +a’v(k +30)
Proceeding like this we get

(12)

V(K) = Uk +£) +---

+af u(k+[ ]£)+a v(k+[ 10),

which gives (6).
Theorem 3.2 1f a8 = a,k > 0,7 >0, then we
have

[-1] ;

/ sk k sj

- . ) a [-] a

E a st = —— ' — (13)
oy at -« at-a
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Proof: The proof follows by taking u(k) = a* in

(6) and putting N =1 in (5).
Example 3.3 Let
s=1,a=2k=7,/=3, =2 in (13)

2 7 13
er—127+3r = 732 _ 22 73
i 2°-2 27°-2

= 17408 =17408
Theorem 3.4 1f ¢ #1,k >0,¢ >0, then

: 1 1
; k+r0)° = )—a {—(1—05)} (14)

a( 0) (1) =

follows by taking u(k) = k0 in (6).
Theorem 3.5 If o =1,k €[¢,0), then we have

Proof: Since , the proof
-

[]
1 _ !
Za (K+r0) = 1_a oy

—a["]{ i, }
(l-a) (1-a)

Proof: From (2), we have
Ayok=(k=-0)-ak =(1-a)k—¢
—_ -1
=k=1-a)A} k—(A,,
)4

(1- a)Aa( pk = k+—
-a

(15)

l |k
l-« (1 a)’
The proof follows from (6).

Example 3.6 Let
k=71,/=10,x=7, =141 in (15)

a( 0) |

71 10 {141 10}

27“ (71+10r) = o £—7 6" 35)

= 19124487 =19124487
Theorem 3.7 If & #1,k €[¢,0) , then we have

[ ] 2 2 2
Za Tk+r0)? = k + 20K EZ 2 -
l1-aa (1-a) (1-«)

tf j° 20" 207
- + >+ 3
l1-a (1-a) (1-a)

Proof: From (2), we have

(16)
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Aa(*f)kz = (k _6)2 _akz
= (1-a)k? =20k + (* Aat- “kslj
=k?>=(1-a)k’ - ZKA;l(_z) (k) +€A;l(—¢) (1)

k®  3¢k*-30°k+¢* 6/°%k—-6/°
+ 2 + 3
-« (1-a) (1-a)

60°
2 1 2 1 i (1- a)4 |j
= 1-a)k?—20A% , (K) =k2—/A2, (1)
, , , The proof follows from (6).
ak_) K°  20k—1 20 K Theorem 3.10 If  #1,k €[¢,0) , then we have
=k [; + =+ el
l-a (l-a) (- &
The proof follows from (6). 1 B A e
Example 3.8 Let k =31,/ =7, =2, =59 Za (k) =K Z( ne, A,k
in (16) (18)

Proof: The proof follows by continuing the

4
D27 (31+7r)? =

+ —+ 5 Theorem 3.11 If o, a, #1,k €(0,0), then
p= 1-2 (1-2) (1-2)
we have
K k+rl£l
= 44158 = 44158 - ][ N
Z Z ot (k4 +r,0,)
rl =1 r2—1
= A" u(k)
ay (=1 ) ( (1)
Theorem 3.9 If a =1,k €[¢,0), then we have ) 2 A
-1
) —al‘lAfl(() a(/)u(k+[ 1))
71 3 2 qp2 3 4
Zarl(k+l’f)3=1k +3€k(1 3€)k2+£ [L] kH
ry -a -a (7) h . k+r/
L 80%k=60° 60’ ‘;‘”z A S (S TR 621 *14,)
-
(1-a) (1-a)f (19)

o o 3 Proof: Replacing ¢/ =/,,a =a, Lemma(3.1),
) +3€j 30 j+¢ +6f j-6! + 6/ we get
- (1-af (-0 (-

k
[] K
-1 _ looA-1
Aaz(*/,z)u(k) aZ Aaaz(_(z)u(k+[€2]£2)

Proof: From (2), AaH)k3 =(k—0)°—ak®
=u(k+24,)+ouk+20,)+---

= k3(1—a)—3k2£+3k£2 — 03 g
+a,? ulk+ 14
_(1 O{)A “ /) —3¢A” 1( [)kz +3/ Aal( /)k 2 ( [ 2] 2)

—! A;l(_z) (1) Replacing K by K + 7,
K+,
[—11

AL ulket)-a, " A)  u(ke! +[k+f1]g)

1 3 k3 3¢ ) 3£2 ~ “o-1,) 1 2 %y (-ty) 1 2

AL [)k =—1—a+_1—a (e e)k ke — T Aa( /)k
R =UK+0,+0,)+au(K+ 0, +20,)+-

a( 0) (1) [%] 1

+a, 2 u(k+0, +[k+£1

1¢,)

Replacing K by k+2/¢, and multlplylng a, on
both sides, we get
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k+2€

k+2€ [k][kﬂll][k”/l 242]
fa Al ) ‘3
Aa(/ Ak+20)-a, A u(k+2€ +[ 1] alrllazr lar31u(k+r£ FLL 400
2 n=l r,=1 r=l
=u(k+20,+0,)+au(k+20,+20,)+- JAt p 0
k+2(1 ~ Sa(- fl) a(- 62) 0(3( [3)
(= 1 k+2£ .

+a, 2 u(k+20,+[ 1]

Replacing K by k+3/, and multiplymg af on
both sides, we get

& AL A A )u(k+[ ]él)

k+3/‘ [/L] [k”l
! - k+3f L ‘ N
Aa (-t )UA(k+3£1) a, 2 Ai - [)U(k+3f1 [ ] _20!2 2 1 Aa( , )Aa -t )u(k_{_rg +[ 62 1]( )
2 17
=u(k+30,+20,)+ou(k+30,+20,)+--- ( ][kHM]

[k+r1il+r2/,2] [k+l'lfl

k+3¢ ¢ ] r-1
= i k+37, _z Z % C ot
+a, utk+2¢,+[ L] P
2
Proceeding like this which gives (18). anl( , )u(k +rl 41,0, +[M]g3)
Corollary 3.12 If a, =a, =a in Theorem ls
3.11, then we have (20)
TS Proof: Replacing I,,r, and ¢,,7, by I,,I; and
12 - l,,0,and a;,x, by a,,cx, in (19
r+r, -2 2143 1142 y 21 3m( )v
ﬁz; ,ZZ:; at ruk+rl +rl,)= Aa( 0 a( . )U(k) we get
s [%J[k;r2 2
7 -1 2 2 -1 -1 _ _
' A0!( £) 0!( t )U(k-l-[ ]él) Z Z azz aas u(k"'rzfz +I’3€3) A l( ’ ) a, ( ‘ )U(k)
r2:1 r3:1
[—]  k+re
0o 11]”17l k v
4 +r£ [—1
—Ya ? AL uk+nl +[ 1]( ) At i k
,lZ:; ( f2) 2 —Q, Aaz(—fz)Aas(—(’,S)u(k+[Z]£2)
k
Example 3.13 Putting [E] [k+r2/,2] c ,
—_ - / I. _ + r
k=7,¢,=2,(,=3,0,=a,=2 in corollary _Z% 3o Aal( , )u(k+r2€2 [ 2]g3)
3.12 ry=1
[7+2r1]
Z Z 21+M2 (7+2r,+3r,) = o - Replacing K by K+ ¢, and multiplying &, on
e (1- 2) (1—2) both sides, we get
K+0,  K+0,+1,0
. 13 . 5 621 1 2°2
— - 1
(1-2% (1-2)° > Z a2 et UK+ + 10, +1,0,)
rZ:l
7+2r, —_ 1 1
_23: Z[Tl]”l [7+2r] 3 Aas( ) az(—fz)u(k-’_gl)
2
= 3 (1-2)
=1738=1738
Theorem 3.14 If o, ¢ >0,k € (0,0), then we
have

ISSN: 2231-5373 http://www.ijmttjournal.org Page 11



http://www.ijmttjournal.org/

International Journal of Mathematics Trends and Technology- Volume25 Numberl — September 2015

k+€1

ly 1
-, Aaz( ')

K+7,

S

k+¢
[/ 1 [k+€l+r2€2

u(k+2,+r, +[%]£3)

3

x A a(/)

Replacing K by k + 2/, and multiplying af on

both sides
k+2(1][k+2/1+r2 2 !

Z Z 2 UK +20, 41,0, +10,)

:A‘l e cpuk+20)

a3( l
k+2/1

ly 1
—a, C AL A a(/

k+2€1

u(k+ 27, + -7,

7 — 2]
- E Q, s a2r2—1
k+20,+1.0

AUk +20, 41,0, + [#]Q)
3
Proceeding like this we get (20).

Theorem 3.15  (o,;- higher order summation
formula) If k €[0,) and ¢, >0 and

{L}{k*ﬁﬁ} {k_erf’l_rZZZ_"'_ri—l“i—l}
K] el i1

= Z “ee Z , then
(i /=0 =0 =0
we have

no[kl Zrt - i
DD | 7 u(k—l_tz_l:rtft) :A(_ol:(—l))[n]u(k)

i=1(r0)_; t=1

["]

1
-a A(a( o] 1(k)

k+(r?) k+(rr) »
[K] [ : [1—>m]] [ [:L.e(m l)]]
— z a n+1 a n
n+1 n
(rO1-m]
[k+(r€)
xa, T ol A 7 (k)

n-2=(a(- f))[n m]

Proof: The proof follows by Theorem 3.11
Theorem 3.14 and Lemma 3.1

4. FINITE ¢ SUMMATION FOR NEGATIVE
VARIABLE k

1

Lemma 4.1 (Finite (—) -summation formula for
a

k <0)For £>0, we have

AL ——— A k=1 +1)

[
-]

v 1o
Z o —u(k—re)

(21)

Proof: By taking A_tu(k) =v(k), we get
A_v(k) = u(k), which gives
v(k) = _—1u(k)+lv(k—€) (22)
a a
Replacing K by K—/ in (22), we get
v(k—£)=_—1u(k—£)+iv(k—2€) (23)
a o
Substituting (24) in (22), we get

v(k) = _—1u(k) —izu(k ) +i2v(k —20)
a a a
(24)
Replacing K by K—¢ in (24), we obtain
v(k=10)= _—1u(k—f)—%u(k—2€)+i2v(k—3£)
a a a

(25)
Substituting (25) in (22), we get

v(k) = %u(k)—%u(k—ﬁ)—%u(k—%)
+ 2 vk-30)
(04

Proceeding like this we get (21).
Theorem 4.2 If o, , #1,k € (0,0), then we
have

k+
[—1[ ( rl Sy

Z Z ( r+1 r+1)u(k rf r2€2)

=0 =0
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= AL A UK~ ()

Aai( t) al( /1)U(k ([_]+1)€1)
[7

1
+Z( r1+1 -/

k-,
(1
y

(26)

a,
kK—rt
LY D)

2
Proof: Replacing ¢ =/, and a = ¢, in (21), we
get

X AL Uk, - ([

At 00— AUk ([—]+1)f1)

€
a 1

‘( )U(k) (—) (k=t)-("5 )U(k 20,)-

— (g uk- [—]fl)

al 5

Replacing ¢/, by ¢, and a, by «, and
-1

multiplying (—) on both sides, we get

a,

_ 1
Aaz(—fz)u(k)_ [;k] az( zz)u(k ([_]+1)£ )
/

'y
a,

—( )(k) (—) (k=t;)-(= )U(k 205)

= (

k- s
az

-1
Replacing K by k—¢, and multiplying (—)
o
both sides, we get

A;i(fzz)u(k - gl)

1 —(k—-1)
_WAaz(fﬁz)u(k_gl_([ l] 1)€2)
[ * 2

2
a,

ISSN: 2231-5373

= (k-7
(k-
a;
= LI e
a, "2

)U(k t=1,)

0,=20,)

(k Kl)]gz)

-1
Replacing K by k —2/, and multiplying (—)

both sides
( , )u(k 20,)
1 4
- [_(k_Nl)]ﬂ Aaz(—é/z)u(k
a "2

= (—)u(k 20)=(—

(

a,

2

2

~(Eyuk—2e, - 20

a,

1

)

[—(k—2(’1)]+1

Ju(k=2£, [

2]

—%—([@]mm

)u(k 20,—1,)

-

(k- zzl)] 0

Proceeding like this we get (26).

1
Theorem 43 If —>0,k €(0,%), then we
a
have
oS (k;ﬁ(l)][ s r2[2)]
. -1, -1 -1
z z z ( r1+l)( r2+1)( r3+1)
=0 r,=0 oy 5 o,
x u(k —rs 11~ 2£2_r3£3)
— -1 -1
Aa3( /3) az( /Z)Aal( fl)u(k)
-1
H(—— K e lr) al( r)u(k ([_]"‘1)5 )
o, 1
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—k

+z r+l

I (kfrlél N
ty

oot
—(k-rt)
a ( 4 )u(k rﬁ _([ . ] 1)62)
2
k—r ¢
[_E][ 721211 [k—r—lé—l+r2€2 7[k—r—l/,—1] 7[ﬂ]

0 = =
3 2 1
DIPIL a 7

A;;(_é‘g)u(k e _[_(%)Ms) 27

3

Proof: Replacing I,r, by I,,r, and ¢,,/, by

l,,lyand a, o, by a,,a; in26

[;k][ (k”ziz)]
Z Z ( r2+1 I‘ +l)u(k r3£3)
=0 ;=0

— A-l
- A013(—Z3)A012(—(’ )u(k)

—( +) a(~L3) a2( zz)u(k ([_]+1)£2)

a2 "2
[*]
1

+Z k—rzlf2

et e 2

a;

~KBl)y gy

3

k—
<Ak, -

1
Replacing K by k — ¢, and multiplying — on

a,
both sides
[—(l;+ﬁl)][_(k—él+r2£2 1
3 -1 -1
z Z ( r+1)( r+1)u(k_£1_r2€2_r3£3)
r,=0 o a
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=A, CoAL cpuk=1,)
1 B 0
_( k1, )A ag (- ) ay ( ¢ )U(k 14 _([ ] 1)€ )
[

2
a,

k-2
—1
¢

2 1 1
+ Z ( r2+1)( k- él r2 Py
n=0 O, (2

‘3
a3

A k=1, S EATRE) gy

Proceeding like this we get 27.
Theorem 4.4 («;- higher order summation

formula) If kK € (0,00) and ¢, >0 and

{;k}{k‘ﬁ”l} {k‘ﬁ‘l‘rz‘z"“‘H‘H}
[—Zk:] 1 ‘i

_Z Z , then

(i 7=0 =0 ;=0
we have
n i
2 Z H( Ju(k - Z
i=1(ro) Z -
a[lﬁi]
— 1
= A My U(k) (a( o] 1( )
a 1
=3 1 1 1
- k+(r?) k+(rr) ~ k+(r¢)
(Dm  (—omy (2l 5D
a n+1 o n an—l n-
n+1 n
x (- ) (a( M- m]Em(k)
n 2

Proof: The proof follows by Lemma 4.1, Theorem
4.2 and Theorem 4.3.

Corollary 4.5 («a - higher order summation
formula) If kK €[0,00) and ¢, >0, then we have

no [kl i
Z Z H( Ju(k - Zwt) A(a( 0 n])u(k)
i=1(re)y_,; t=1 zrrl
1
Tk (i( Ornp) 1(k)
12

a‘l
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& 1 1 1
k() PR T )
Dprom] (7[MD (_[MD (—[7[ . D
o n+l o n (04 n-
1,

X (_ ar—l)AZa(—é)[n_m])gm(k)

Proof: The proof follows by Theorem 4.4 when
o =a.

Corollary 4.6 (Higher order summation formula)
If k €[0,00) and ¢, >0, then we have

[=k]

-1 -1 p -1 b
oK) = Ay (k) - 2 Ayt
("Dp1ym)
n [-k] i
=—> > uk->rr)
i=1(r0), t=1

Proof: The proof follows by corollary 4.5 when
a=1

5 CONCLUSION

We have obtained formulas for several finite
a — series on polynomial using inverse of
generalized alpha difference operator.
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