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1  INTRODUCTION 

  In 1984, Jerzy Popenda [5] introduced a particular 

type of difference operator   defined on ( )u k  as 

( ) = ( 1) ( )u k u k u k    . In 1989, Miller and 

Rose [9] introduced the discrete analogue of the 

Riemann-Liouville fractional derivative and proved 

some properties of the fractional difference operator. 

The general fractional h-difference Riemann-

Liouville operator and its inverse ( )h f t  were 

mentioned in [1, 2]. In 2011, M.Maria Susai Manuel, 

et.al, [8, 11] extended the definition of   to ( )   

defined on ( )u k  as 

( ) ( ) = ( ) ( )v k v k v k     , where 0  , 

> 0  are fixed and [0, )k   is variable. The 

results derived in [11] are coincide with the results in 

[7] when =1 . 

 An equation involving both   and   is called 

mixed difference equation. Oscillatory behaviour of 

solutions certain types of mixed difference equations 

have been dicussed in [3, 4, 6, 12]. An equation 

involving    and ( )   is called as generalized 

mixed difference equation. 

 The higher order generalized i   difference 

equation  

    
( ) ( ) ( )

1 1 2 2
( ( ( ( )) ))

= ( ), [0, ), > 0 0

n n

i i

v k

u k k

  



  

  

   


     (1) 

becomes generalized mixed difference equation if 

= 1i  for some i  and 2n  .              The equation (1) 

has three types of solutions which are closed, finite 

and infinite multi-series forms. Equation (1) becomes 

backward alpha difference equation when i  is 

replaced by i .  

2  PRELIMINARIES 

  In this section, we define the generalized backward 

alpha difference operator and we presents certain 

results on its inverse alpha difference operator with 

polynomial and polynomial factorials for positive and 

negative variable k .  

Definition 2.1 If ( )v k  is a real valued function on 

( , )  , then the generalized   difference 

operator for negative   denoted by ( )    is 

defined as  

( ) ( ) = ( ) ( ), (0, )v k v k v k         (2) 

 The inverse generalized backward   difference 

operator is defined as  
1

( ) ( )if ( ) = ( ), then ( ) = ( )v k u k v k u k 



     (3) 

Definition 2.2 The higher order generalized 

backward i  difference equation is defined as  

( ) ( ) ( )
1 1 2 2

( ( ( ))))

= ( ), [0, ), > 0

n n

i

v k

u k k

      

  

  


 (4) 

 Lemma 2.3 If 0
s

i
ia 


 


 for =1,2, ,i n , 

then we have 

      

1

( )

=1

=1

=

( )

skn
sk

ni i si i
i

i

a
a

a



















 (5) 

 is a closed form solution of the equation (4) when 

( ) = sku k a .  

 Proof: Since  
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( )

( ) = = ( )
s k ssk sk ski i

i i
i i

a a a a a  
 

  
 



,  

from (3) we get 
1

( ) =
sk

sk

si i i
i

a
a

a






 



 

 which 

yields (5).  

 
  

3  FINITE   SUMMATION FOR POSITIVE 

VARIABLE k  
  

Lemma 3.1  (Finite  -summation formula for 

> 0k ) For > 0 , we have  

[ ]
[ ]

1 1 1

( ) ( )

=1

( ) ( [ ] ) = ( )

k
k

r

r

k
u k u k u k r    

     



   

   

(6) 

 Proof: By taking 
1

( ) ( ) = ( )u k v k



  , we get 

( ) ( ) = ( )v k u k    and  

                     ( ) = ( ) ( )v k u k v k  (7) 

 Replacing k  by k   in (7), we get  

                 ( ) = ( ) ( )v k u k v k    (8) 

 Substituting (8) in (7), we get  

            
2( ) = ( ) ( ) ( )v k u k u k v k        (9) 

 Replacing k  by k   in (9), we obtain  

    
2( ) = ( ) ( 2 ) ( 2 )v k u k u k v k         (10) 

 Substituting (10) in (7), we get  

         

2 3

( ) = ( ) ( )

( 2 ) ( 2 )

v k u k u k

u k v k



 

  

   

 

 
(11) 

 Replacing k  by k   in (11), we get  

     2 3

( ) = ( ) ( 2 )

( 3 ) ( 3 )

v k u k u k

u k v k



 

  

   

 

 
(12) 

 Proceeding like this we get 

     

[ ] 1 [ ]

( ) = ( )

( [ ] ) ( [ ] ) ,
k k

v k u k

k k
u k v k 



 

    

 

 
 

 

which gives (6).  

 Theorem 3.2 If , > 0, > 0sa k   , then we 

have  

     

[ ]
[ ]

1 ( )

=1

=

k
ksk sj

r s k r

s s
r

a a
a

a a
 

 

 

 

 
  

  



 
 

(13) 

Proof: The proof follows by taking ( ) = sku k a  in 

(6) and putting =1n  in (5).  

Example 3.3 Let 

=1, = 2, = 7, = 3, = 2s a k   in (13)  

 

7 132
1 7 3 2

3 3
=1

2 2
2 2 = 2

2 2 2 2

r r

r

 

 

 
  

  
        

         17408 =17408   

 Theorem 3.4 If 1, > 0, > 0k   , then  

   

[ ]
1 0

=1

1 1
( ) =

(1 ) (1 )

k

k

r

r

k r 
 

 
 
 

  
   

  



  (14) 

Proof: Since 
1

( )

1
(1) =

1









 , the proof 

follows by taking 
0( ) =u k k  in (6).  

Theorem 3.5  If 1, [ ,0)k    , then we have  

[ ]

1

2
=1

[ ]

2

( ) =
1 (1 )

(1 ) (1 )

k

r

r

k

k
k r

j


 


 

  
 

 
  

  










 (15) 

Proof: From (2), we have  

       ( ) = ( )k k k      = (1 )k    

         

1

( ) ( )= (1 )k k  

        

          
1

( )(1 ) =
1

k k




  





    

              
1

( ) 2
| = |

1 (1 )

k k

j j

k
k

 



 
 




 

The proof follows from (6).  

Example 3.6 Let 

= 71, =10, = 7, =141k j  in (15)  

    
7

1 7

=1

71 10 141 10
7 (71 10 ) = 7

6 36 ( 6) (36)

r

r

r  
    

  


  

         19124487 =19124487   

Theorem 3.7  If 1, [ ,0)k    , then we have  

  

[ ]
2 2 2

1 2

2 3
=1

2 2 2
[ ]

2 3

2 2
( ) =

1 (1 ) (1 )

2 2

1 (1 ) (1 )

k

r

r

k

k k
k r

j j


  


  

 
  

  

 
   

   






  


  

 (16) 

Proof: From (2), we have  
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2 2 2

( ) = ( )k k k      

2 2= (1 ) 2k k   
 

2 2 1 1

( ) ( )= (1 ) 2 ( ) (1)k k k   

        

  
2 1 2 1

( ) ( )(1 ) 2 ( ) = (1)k k k   

        

 

  

2 2 2
2

2 3

2 2
| = |

1 (1 ) (1 )

k k

j j

k k
k

  

 
   

   

  
 

The proof follows from (6).  

Example 3.8 Let = 31, = 7, = 2, = 59k j  

in (16) 

 
2 2 24

1 2

2 3
=1

31 2.7.31 7 2.7
2 (31 7 ) =

1 2 (1 2) (1 2)

r

r

r 
  

  


    

             44158 = 44158   

 

 

 

 

Theorem 3.9  If 1, [ ,0)k    , then we have  

  

[ ]
3 2 2 3

1 3

2
=1

2 3 3

3 4

3 3
( ) =

1 (1 )

6 6 6

(1 ) (1 )

k

r

r

k k k
k r

k


 

 

  
 

 


 

 


   



  

(17) 

                            
3 2 2 3 2 3 3

[ ]

2 3 4

3 3 6 6 6

1 (1 ) (1 ) (1 )

k
j j j j


   

  
   

   

 
 
 


     

  

Proof: From (2), 
3 3 3

( ) = ( )k k k    
 

    

                          
3 2 2 3= (1 ) 3 3k k k       

3 1 3 1 2 2 1

( ) ( ) ( )

3 1

( )

= (1 ) 3 3

(1)

k k k k  



   

  





     

 

  



 



 

 
3 2

1 3 1 2 2 1

( ) ( ) ( )

3
1

( )

3 3
=

1 1 1

(1)
1

k
k k k k  



  



  

  





    
  

 


  



 



 

  
3 2 2 3 2 3

1 3

( ) 2 3

3

4

3 3 6 6
| =

1 (1 ) (1 )

6
|

(1 )

k

j

k

j

k k k k
k

  







  
  

  






    



 

The proof follows from (6).  

Theorem 3.10 If 1, [ ,0)k    , then we have  

 
[ ]

1 1

( )

=1 =1

1
( ) = ( 1)

1

k

n

r n n r r n r

r

r r

k r k nc k





  


   


 



 

 (18) 

 Proof: The proof follows by continuing the 

process of Theorem 3.5, 3.7 and 3.9.  

Theorem 3.11  If 1 2, 1, (0, )k     , then 

we have 

1 1[ ][ ]

1 2
1 1

1 2
1 2 1 1 2 2

=1 =1
1 2

1 1

( ) ( )
2 2 1 1

( )

= ( )

k rk

r r

r r

u k r r

u k 

 



 

 

 

 

 

 



 

 

 
 

[ ]

1 11

1 ( ) ( ) 1
2 2 1 1

1

[ ]
1 1[ ]1

1 1 1 12 1

2 1 ( ) 1 1 2
2 2

=1 21

( [ ] )

( [ ] )

k

k
k r

r

r

k
u k

k r
u k r

 





 

 

 



 



   


   



 












 



 (19) 

Proof: Replacing 2 2= , =    Lemma(3.1), 

we get 

[ ]
1 12

( ) 2 2
2 2 ( )

2 2 2

( ) ( [ ] )

k

k
u k u k 

 




   


 



 

2 2 2

[ ] 1

2
2 2

2

= ( ) ( 2 )

( [ ] )

k

u k u k

k
u k






   

 


  


  

Replacing k  by 1k    

1[ ]

1 1 12
1 2 1 2

2( ) ( )
2 2 2

2

( ) ( [ ] )

k

k
u k u k

 






 

 


     





 


  



 

1 2 2 1 2

1[ ] 1
12

2 1 2

2

= ( ) ( 2 )

( [ ] )

k

u k u k

k
u k








     


  





    


 



 

Replacing k  by 12k    and multiplying 1  on 

both sides, we get  
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2
1[ ]

1 1 12
( ) 1 2 ( ) 1

2 2 2 1
2

2
( 2 ) ( 2 [ ]

k

k
u k u k

 




 

 


      





 


 



 

1 2 2 1 2

2
1[ ] 1

12
2 1

2

= ( 2 ) ( 2 2 )

2
( 2 [ ]

k

u k u k

k
u k








     


  





    






 

Replacing k  by 13k    and multiplying 
2

1  on 

both sides, we get  
3

1[ ]

1 1 12
( ) 1 2 ( ) 1

2 2 2 1
2

3
( 3 ) ( 3 [ ]

k

k
u k u k

 




 

 


      





 


 



 

1 2 2 1 2

3
1[ ] 1

12
2 1

2

= ( 3 ) ( 3 2 )

3
( 2 [ ]

k

u k u k

k
u k








     


  





    






 

Proceeding like this which gives (18).  

Corollary 3.12  If 1 2= =    in Theorem 

3.11, then we have 

1 1[ ][ ]

1 2
2 1 11 2

1 1 2 2 ( ) ( )
1 2

=1 =1
1 2

( ) = ( )

k rk

r r

r r

u k r r u k
 





   

 
    



 

 
   

[ ]
1 11
( ) ( ) 1

1 2
1

[ ]
1 1[ ] 11 1

1 1 12
( ) 1 1 2

2
=1 21

( [ ] )

( [ ] )

k

k
k r

r

r

k
u k

k r
u k r

 







 

 


 





   


   



 












 



  

Example 3.13 Putting  

1 2 1 2= 7, = 2, = 3, = = 2k     in corollary 

3.12 
7 2

1[ ]
3 3

2
1 2

1 2 2 3
=1 =1

1 2

7 5
2 (7 2 3 ) =

(1 2) (1 2)

r

r r

r r

r r



 
  

 
 

   

                       
3

2 3

13 5
2

(1 2) (1 2)

 
  

  
  

              

7 23 1[ ] 1
1 13

2
=1

1

7 2 3
2 [ ]3

3 (1 2)

r
r

r

r


   
   

  
                      

                         1738 =1738   

Theorem 3.14  If , > 0, (0, )k   , then we 

have 

1 1 2 21 1 [ ][ ][ ]

31 2
11 1

31 1

1 2 3 1 1 2 2 3 3

=1 =1 =1
1 2 3

( )

k r rk rk

rr r

r r r

u k r r r  

 

 

    

 

 

  

 
1 1 1

( ) ( ) ( )
1 2 3 3

[ ]
1 1 11

1 ( ) ( ) ( ) 1
1 2 3 3

1

= ( )

( [ ] )

k

u k

k
u k

  

  

  

  

  

  

  

    

  



   


 

 

[ ]
1 1[ ]1

1 1 1 1 12 1
2 1 ( ) ( ) 1 1 2

2 3 3
=1 21

( [ ] )

k
k r

r

r

k r
u k r

 
 



  

 


    






 


 



  

1 1[ ][ ]
1 1 2 2 1 1[ ] [ ]1 2

13 2 1
3 2 1

=1 =1
1 2

1 1 1 2 2
( ) 1 1 2 2 3

3 3
3

( [ ] )

k rk
k r r k r

r

r r

k r r
u k r r

  


  









 
   

 


  

 
 



 
  


 (20) 

Proof: Replacing 1 2,r r  and 1 2,   by 2 3,r r  and 

2 3,   and 1 2,   by 2 3,   in (19), 

we get 

2 2[ ][ ]

2 2
11 1 132

2 3 2 2 3 3 ( ) ( )
3 3 2 2

=1 =1
2 3

( ) = ( )

k rk

rr

r r

u k r r u k
 

 



  

 
    



 

 
 

 

[ ]
1 12

2 ( ) ( ) 2
2 2 3 3

2

[ ]
2 2[ ]2

1 1 2 23 2
3 2 ( ) 2 2 3

3 3
=1 32

( [ ] )

( [ ] )

k

k
k r

r

r

k
u k

k r
u k r

 





 

 

 



 



   


   



 












 



 

Replacing k  by 1k    and multiplying 1  on 

both sides, we get  

 

1 1 2 2[ ][ ]

2 2
11 32

2 3 1 2 2 3 3

=1 =1
2 3

1 1

( ) ( ) 1
3 3 2 2

( )

= ( )

k k r

rr

r r

u k r r

u k 

 

  



 

 

  

  

 

  

 

 

  



           

http://www.ijmttjournal.org/


International Journal of Mathematics Trends and Technology- Volume25 Number1 – September 2015 

ISSN: 2231-5373                                  http://www.ijmttjournal.org                         Page 12 

1[ ]
1 1 12

2 ( ) ( ) 1 2
2 2 3 3

2

1[ ]
1 2 2[ ]2

1
3 2

3 2

=1
2

1 1 2 2
( ) 1 2 2 3

3 3
3

( [ ] )

( [ ] )

k

k
k r

r

r

k
u k

k r
u k r

 





 



 

 


 








    



 
    







 


 







 



 
  


 

Replacing k  by 12k    and multiplying 
2

1  on 

both sides  
2 2

1 1 2 2[ ][ ]

2 2
11 32

2 3 1 2 2 3 3

=1 =1
2 3

1 1

( ) ( ) 1
3 3 2 2

2
1[ ]

1 1 12
2 ( ) ( ) 1 2

2 2 3 3
2

2
1[ ] 2

1 2 2[ ]2
1

3 2
3 2

=1
2

1

( ) 1
3 3

( 2 )

= ( 2 )

2
( 2 [ ] )

( 2

k k r

rr

r r

k

k
k r

r

r

u k r r

u k

k
u k

u k

 

 



 



 

  



 

 



 

 


 







  

  


    



  

 



  

 

 





 


 






  




 



 1 2 2
2 2 3

3

2
[ ] )
k r

r
 


 

 


Proceeding like this we get (20).  

Theorem 3.15  ( i - higher order summation 

formula) If [0, )k   and > 0i  and  

 

1 1 2 2 1 11 1

[ ] 1 2 1

( ) =0 =0 =0
1 1 2

= ,

k r r rk rk i i

k

r r r r
i i

       
     

        



   

   

  



  then 

we have 

 

1
[ ]

1=1
[1 ] ( ( ))

[ ]
=1 ( ) =1=11

[ ]
11

( ( )) 1
[ ]

( ) = ( )

ˆ ( )

i

r
tk in i

t
i t t

n
i r tti

k

n

u k r u k

k













 







 

 


   











 

            
( )( )

[1 ( 1)][1 ]
[ ] [ ] [ ]

1
1

( )
[1 ]

( )
[ ]

1 11
1 2 ( ( ))

[ ]

ˆ ( )

k rk r mm
k

n n
n n

r
m

k r

rn
n n m

n m
k

 

 


 








 
  





 





 







 

  

Proof: The proof follows by Theorem 3.11 

Theorem 3.14 and Lemma 3.1  

4.  FINITE   SUMMATION FOR NEGATIVE 

VARIABLE k  

 Lemma 4.1  (Finite 
1

( )


-summation formula for 

< 0k ) For > 0 , we have  

1 1

( ) ( )
[ ] 1

[ ]

1
=0

1
( ) ( ([ ] 1) )

1
= ( )

k

k

r
r

k
u k u k

u k r

 





 

 
 





     




 










 (21) 

  Proof: By taking 
1 ( ) = ( )u k v k

  , we get 

( ) = ( )v k u k  , which gives  

                
1 1

( ) = ( ) ( )v k u k v k
 


    (22) 

 Replacing k  by k   in (22), we get  

         

1 1
( ) = ( ) ( 2 )v k u k v k

 


       (23) 

 Substituting (24) in (22), we get  

     

2 2

1 1 1
( ) = ( ) ( ) ( 2 )v k u k u k v k

  


    

 (24) 

 Replacing k  by k   in (24), we obtain  

2 2

1 1 1
( ) = ( ) ( 2 ) ( 3 )v k u k u k v k

  


        

 (25) 

 Substituting (25) in (22), we get 

2 3

3

1 1 1
( ) = ( ) ( ) ( 2 )

1
( 3 )

v k u k u k u k

v k

  




   

 

 



 

Proceeding like this we get (21).  

Theorem 4.2  If 1 2, 1, (0, )k     , then we 

have 

1 1[ ][ ( )]

1 2

1 1 2 21 1
1 2

=0 =0 1 21 2

1 1
( )( ) ( )

k rk

r r
r r

u k r r
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1 1

( ) ( )
2 2 1 1 [ ] 1

1
1

1 1

( ) ( ) 1
2 2 1 1

1

1
= ( ) ( )

( ([ ] 1) )

k
u k

k
u k

 

 



 

  


 

 


  


    

 



  


 

[ ]

1

1
1 1 1[ ( )] 1=0 11

2
2

1 1 1
( ) 1 1 2

2 2
2

1 1
( )( )

( )
( ([ ] 1) )

k

r k r
r

k r
u k r






 
 







 
    











 



(26) 

Proof: Replacing 1=   and 1=   in (21), we 

get 

1 1

( ) ( ) 1
1 1 1 1[ ] 1

1
1

1

1
( ) ( ([ ] 1) )

k

k
u k u k 



 

 



     






 

1 12 3

1 1 1

1
[ ] 1

1
1

1 1 1
= ( ) ( ) ( ) ( ) ( ) ( 2 )

1
( ) ( [ ] )

k

u k u k u k

k
u k

  






 
   


 



  




 

Replacing 1  by 2  and 1  by 2  and 

multiplying 

1

1
( )



 on both sides, we get  

1 1

( ) ( ) 2
2 2 2 2[ ] 1

2
2

2

1
( ) ( ([ ] 1) )

k

k
u k u k 



 

 



     






 

2 22 3

2 2 2

[ ] 1

2
2

1 1 1
= ( ) ( ) ( ) ( ) ( ) ( 2 )

1
( ) ( [ ]

k

u k u k u k

k
u k

  






 
   


 



  



 

Replacing k  by 1k    and multiplying 
2

1

1
( )



 

both sides, we get  
1

( ) 1
2 2

1 1
( ) 1 2( ) 2 21[ ] 1 2

2
2

( )

( )1
( ([ ] 1) )

k

u k

k
u k













 


 

 
    










 



 

          

1 1 22

2 2

1 23

2

1 1
= ( ) ( ) ( ) ( )

1
( ) ( 2 )

u k u k

u k

 




   

  

  

  

 

            

1
1 2( )

1[ ] 1

2
2

( )1
( ) ( [ ] )

k

k
u k



 


 
  






 


 

Replacing k  by 12k    and multiplying 
3

1

1
( )



 

both sides  
1

( ) 1
2 2

1 1

( ) 1 2( 2 ) 2 21[ ] 1
2

2
2

( 2 )

( 2 )1
( 2 ([ ] 1) )

k

u k

k
u k













 


 

 
    










 



 

        

1 1 22

2 2

1 23

2

1 1
= ( ) ( 2 ) ( ) ( 2 )

1
( ) ( 2 2 )...

u k u k

u k

 




   

  

  

 

 

      

1
1 2( 2 )

1[ ] 1

2
2

( 2 )1
( ) ( 2 [ ] )

k

k
u k



 


 
  






 


 

Proceeding like this we get (26).  

Theorem 4.3  If 
1

> 0, (0, )k


  , then we 

have 

1 1 2 21 1 [ ( )][ ][ ( )]

31 2

1 1 1
1 2 3

=0 =0 =0 1 2 31 2 3

1 1 2 2 3 3

1 1 1
( )( )( )

( )

k r rk rk

r r r
r r r

u k r r r

  

 


  

  

   

  

 

 

  

 

   
1 1 1

( ) ( ) ( )
3 3 2 2 1 1

1 1

( ) ( ) 1
2 2 1 1[ ] 1

1
1

1

= ( )

1
( ) ( ([ ] 1) )

k

u k

k
u k
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[ ]
1 1[ ( )] 11
2

21
1

=0 11

1 1 1
( ) 1 1 2

2 2
2

1

( )
( ([ ] 1) )

k
k r

r
r

k r
u k r







  









 
    











 


 

        

1 1[ ] 1 1[ ] 1 12 2[ ] [ ] [ ]2
3 2 1

3 2 1

=0 =0
1 2

k r
k k r r k r k r

r r

  


          

  
 


   
  

  

1 1 1 2 2
( ) 1 1 2 2 3

3 3
3

( [ ( )] )
k r r

u k r r





 
    

 
  


(27) 

Proof: Replacing 1 2,r r  by 2 3,r r  and 1 2,   by 

2 3,   and 1 2,   by 2 3,   in 26 

2 2[ ( )][ ]

32

2 2 3 31 1
2 3

=0 =0 2 32 3

1 1
( )( ) ( )

k rk

r r
r r

u k r r
 




 

 
  





   

1 1

( ) ( )
3 3 2 2

1 1

( ) ( ) 2
3 3 2 2[ ] 1

2
2

2

= ( )

1
( ) ( ([ ] 1) )

k

u k

k
u k

 

 



 

 

 

 


 

 
    

 

 






 

 

[ ]

2

1
2 2 2[ ( )] 1=0 22

3
3

1 2 2
( ) 2 2 3

3 3
3

1 1
( )( )

( )
( ([ ] 1) )

k

r k r
r

k r
u k r






 
 







 
    











 



 

Replacing k  by 1k    and multiplying 

1

1


 on 

both sides  
( )

1 2 21 [ ( )][ ]

32

1 2 2 3 31 1
2 3

=0 =0
2 32 3

1 1
( )( ) ( )

k rk

r r

r r

u k r r
 

  


 

 
   

 



  

 

1 1

( ) ( ) 1
3 3 2 2

1 1 1

( ) ( ) 1 2
3 3 2 21[ ] 1

2
2

2

= ( )

1
( ) ( ([ ] 1) )

k

u k

k
u k

 

 



 

 

 

  


  

 
     

 

 






 



1[ ]

2

1
2 1 2 2[ ( )] 1=0

22
3

3

1 1 2 2

( ) 1 2 2 3
3 3

3

1 1
( )( )

( )
( ([ ] 1) )

k

r k r

r

k r
u k r






 

  
 







  
     







 





 
  



 

Proceeding like this we get 27.  

Theorem 4.4  ( i - higher order summation 

formula) If (0, )k   and > 0i  and  

 

1 1 2 2 1 11 1

[ ] 1 2

( ) =0 =0 =0
1 1 2

= ,

k r r rk rk i i

k i

r r r r
i i

              
          



   

   

 



 then 

we have 

 
[ ]

=1 ( ) =1=11 1

=1
[1 ]

1 1

( ( )) ( ( )) 1
[ ] [ ]

1

1
( ) ( )

1 ˆ= ( ) ( )

k in i

t ti
i r tti r

t

t
i

kn n

u k r

u k k 







 



 

 




  

  


 







 
[ ]

( ) ( ) ( )
[1 ] [1 ( 1)] ( [ ])( [ ]) ( [ ])( )

[1 ] 11
11

1

( ( ))1 [ ]
2

1 1 1

1 ˆ( ) ( )

k

k r k r k r
m m

r
m nn n

nn n

mr n m
n

k

 





  
    

 




 




  

   
  

 

  

 Proof: The proof follows by Lemma 4.1,Theorem 

4.2 and Theorem 4.3.  

Corollary 4.5  ( - higher order summation 

formula) If [0, )k   and > 0i , then we have 

 
[ ]

1

( ( ) )
[ ]

=1 ( ) =1=11 1

=1

1

( ( ) ) 1
[ ]

1

1
( ) ( ) = ( )

1 ˆ ( )

k in i

t ti n
i r tti r

t

t

k n

u k r u k

k
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[ ]

( ) ( ) ( )
[1 ] [1 ( 1)] ( [ ])( [ ]) ( [ ])( )

[1 ] 11

1

( ( ) )1 [ ]

1 1 1

1 ˆ( ) ( )

k

k r k r k r
m m

r
m nn n

mr n m
k

 





  
    

 



 



  

   
  

 

  

Proof: The proof follows by Theorem 4.4 when 

=i  .  

Corollary 4.6  (Higher order summation formula) 

If [0, )k   and > 0i , then we have 

 
[ ]

1 1 1

(( ) ) (( ) ) 1 (( ) )
[ ] [ ] [ ]

( )
[1 ]

ˆ ˆ( ) ( ) ( )
k

m
n n n m

r
m

u k k k


  

  




     



 

      

                 

[ ]

=1 ( ) =1
1

= ( )
kn i

t t

i r t
i

u k r




   


   

Proof: The proof follows by corollary 4.5 when 

=1 .  

5  CONCLUSION 

  We have obtained formulas for several finite 

   series on polynomial using inverse of 

generalized alpha difference operator.   
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