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Abstract—The heat transport at microscale is vital 

important in the field of micro-technology. In this 

paper heat transport in a two-dimensional thin plate 

based on dual-phase-lagging (DPL) heat conduction 

model is investigated. The solution was obtained with 

the help of superposition techniques and solution 

structure theorem. . The whole analysis is presented in 

dimensionless form. A numerical example of 

particular interest has been studied and discussed in 

details. 
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I. INTRODUCTION 

Cattaneo [1] and Vernotte [2] removed the 

deficiency [3]-[6] occurs in the classical heat 

conduction equation based on Fourier's law and 

independently proposed a modified version of heat 

conduction equation by adding a relaxation term to 

represent the lagging behavior of energy transport 

within the solid, which takes the form 

q
k T

t
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
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

q
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 1  

where k  is the thermal conductivity of medium and 

q
 is a material property called the relaxation time. 

This model characterizes the combined diffusion and 

wave like behavior of heat conduction and predicts a 

finite speed 
1
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for heat propagation [7], where   is the density and 

bc  is the specific heat capacity. This model addresses 

short time scale effects over a spatial macroscale. 

Detailed reviews of thermal relaxation in wave theory 

of heat propagation were performed by Joseph and 

Preziosi [8] and Ozisik and Tzou [9]. The natural 

extension of CV model is 

( , ) ( , )qt k T t   q r r
       

 3  

which is called the single-phase-lagging (SPL) heat 

conduction model [10]-[14]. According to SPL heat 

conduction model, there is a finite built-up time q for 

onset of heat flux at r , after a temperature gradient is 

imposed there i.e. q represents the time lag needed to 

establish the heat flux (the result) when a temperature 

gradient (the cause) is suddenly imposed. 

Many new simulation models such as phonon-

electron interaction in metal films [15]-[16], phonon 

scattering in dielectric crystals [17], insulators and 

semi conductors [18]-[20], have recently been 

developed in order to study the mechanisms of heat 

conduction in microscale and or nanoscale that cannot 

be described by Fourier's law. To describe micro-

structural interactions a further modification of SPL 

model gives the dual-phase-lagging (DPL) model [21],  

( , ) ( , )
q T

t k T t     q r r
          

 4  

where 
T

  is the phase lag of temperature gradient and 

q  is the phase lag of the heat flux vector. It allows 

either the temperature gradient (cause) to precede the 

heat flux vector (effect) or vice-versa. 

    Due to the complexity of the DPL heat 

conduction model, temperature solutions can be 

obtained analytically for limited engineering 

applications [22]. The most popular solution 

methodology has resorted to either finite-difference or 

finite-element methods. Only a few simple cases can 

be solved analytically. Some of the most popular 

analytical solutions are the method of Laplace 

transformation method [23]-[25], separation of 

variable method [26], [27], the Green function method 

[28], the integral equation method [29], and 

variational iteration method [30]. 

     Recently Lam and Fong [31] and Lam [32] 

conducted studies by employing the superposition 

technique along with solution structure theorems for 

the analysis of the CV hyperbolic heat conduction 

equation and one dimensional DPL heat conduction 

model. The temperature profile inside a one-

dimensional region was obtained in the form of a 

series solution. The method is relatively simple and 

requires only a basic background in applied 

mathematics. However, it was noted that solution 

structure theorems concentrated only on physical 

problems subjected to homogeneous boundary 

conditions. It was pointed out that there is a way to 

solve problems with non-homogeneous boundary 

conditions by performing appropriate functional 

transformations, namely by using auxiliary functions. 

     The purpose of this study is to apply solution 

structure theorems to study two dimensional DPL heat 

conduction in a finite plate subjected to homogeneous 
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boundary conditions. The DPL heat conduction 

equation is solved using the superposition principle in 

conjunction with solution structure theorems. The 

outline of the paper is as follows. DPL heat 

conduction model is given in section 2. Section 3 

deals solution of dual-phase-lagging heat conduction 

model. Section 4 contains result and discussion. 

Conclusion is given in section 6. 

II. 2D DPL HEAT CONDUCTION MODEL 

Tzou [21] overcome the deficiency by including the 

cause-and-effect of the temperature gradient and heat 

flux relationship and proposed the dual-phase-lag 

model, (4). Using Taylor series expansion, the first 

order approximation of (4) gives 

  q T
k T T

t t
 

 
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 
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 Equation (5) is called the dual-phase-lagging 

constitutive equation which corresponds to the 

particular cases where 0
q

   and 0
T
   i.e. CV 

model. If 
q T
   (not necessarily equal to zero), 

response between temperature gradient and heat flux 

is instantaneous and in this case (5) is identical with 

the classical Fourier law [33]. It may be also noted 

that while the classical Fourier law is macroscopic in 

both space and time and (5) is microscopic in both 

space and time. Taking divergence on both sides of (5), 

we get 
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Introducing the energy conservation equation [33] 

to the (6), we get 

 
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 The two dimensional form of the above is as follows

 2 2 2

2 2 2

1 1

1 qT T T T

t t x y



 

   
  

   


 
3 3 *

*

2 2

1 1

1
T q

g
g

t

T T

x t y t k







 


   

   
   

  
 

By introducing dimensionless 
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2

0

1 1 4 *
, , , ,

2 2 2
,

r r

cx cykcT g c
x y g F t

f cf




   
    

 
 
 

 

above can be expressed in dimensionless form as 
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where Fourier number 
0

F  represent dimensionless 

time and  / 2
T q

B   . In present study, an 

isotropic thin plate, 0 , 1,x y  with uniform 

thickness and constant thermophysical properties is 

assumed and initial and boundary conditions for heat 

conduction in thin film are 

  2, , 0x y  , 
 
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III. SOLUTION 

A. Method of Superposition 

The superposition technique can be applied to solve 

linear heat transfer problem with non-homogeneous 

term [7], [34], [35]. With the application of 

superposition principle, the original problem (7) can 

be divided into three sub-problems by setting initial 

conditions and internal heat source  0( , , )G x y F  as 

(1) 2 0,G    (2) 3 0,G   and 

(3) 2 3 0   . Solution to these sub-problems are 

designated as 1 2,S S and 3S . Therefore, the general 

solution of the original hyperbolic DPL heat 

conduction model is 1 2 3S S S S   .  

B. Solution Structure Theorem 

With the help of solution structure theorem [7], 

once the solution of sub-problem (1) is known, 

solution of sub-problems (2) and (3) can be obtained 

as follows 

   2 0 2 0 , 2

0

2 , , , , , ,
m n

S x y F B x y F
F

  


  


 
 
 

F F

   

 
0

3 0

0

, , ( , , ),

F

S x y F G x y d    F where 

 0 3
, , ,x y F F be the solution of sub-problem (1). 

C. Solution of 2D-DPL Heat Conduction Model 

This section only devoted to the solution of the sub-

problem (1) of DPL heat conduction model. For the 

given initial and boundary conditions, one can write 

solution to the governing equation by using Fourier 

series as 
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By substituting above (8) into (7) and after some 

manipulation we get following 

,
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, ,
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The Solution of above takes the form 

 , 0

, 0 , , 0 , , 0
( ) ( ) ( )m n

F

m n m n m n m n m n
F e a Sin F b Cos F


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where ,m n and ,m n  are defined as follows 

   
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By substituting above (10) into (8) solution of the 

problem can be expressed as follows 
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Now to find the coefficients ,m na and ,m nb  we 

consider initial conditions 2 0  and
3

( )Sin xy  . 

Then , 0m nb  and ,m na may be obtained as  

1
1

,
0

, 0

( ) ( )
2

( )
m nm n

m n

a Cos x Cos y dxdySin xy  


   . 

Hence the solution of the problem is complete 

for , 0m n  . Since the solution contains Cosine terms 

at the end of (11), therefore for , 0m n  there is also a 

solution of the problem. For , 0m n  , (9) becomes 

2
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2
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F F

  
 
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With the application of initial conditions, solution 

of above is  

0

0 0
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F
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
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   Thus the final solution of the two dimensional 

DPL heat conduction model is 

0 , 0 0 0( , , ) ( , , ) ( , , )m nx y F x y F x y F     

0
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(1 ) ( , ) 2
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IV. RESULTS AND DISCUSSION 

This section presents complete analysis of thermal 

wave propagation and observes the effect of 

 / 2
T q

B    and Fourier number  0
F . The figures 

presented in this study, only the parameters whose 

values different from the reference value are indicated. 

The selected reference values 

include
2 3

0, ( ), 0Sin xy G    . 

Figs. 1-3 present the spatial temperature profile for 

various B at fixed Fourier number
0

1.0F  . The 

dimensionless temperature firstly increases with 

B and when B greater than 0.5 then further increase 

of temperature is ceases as shown in Fig. 3.  

Figs. 4-7 show the spatial temperature profile for 

various
0

F  at fixed 0.1B  . As Fourier number 

increases the dimensionless temperature increases as 

Fourier number is a measure of rate of heat conduction 

with the heat storage in a given volume element. 

Larger the Fourier number, deeper is the penetration 

of heat into the body over a given period of time.     

 

 
 

Fig. 1  Spatial temperature profile at
0

1.0, 0.1F B  . 
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Fig. 2 Spatial temperature profile at 
0

1.0, 0.7F B  . 

 
Fig. 3 Spatial temperature profile at

0
1.0, 1.0F B  . 

 

 
 

Fig. 4 Spatial temperature profile at 
0

0.5, 0.5F B  . 

 

 
 

Fig. 5 Spatial temperature profile at 
0

1.0, 0.5F B  . 

 

 
 

Fig. 6 Spatial temperature profile at
0

1.5, 0.5F B  . 

 

 
 

Fig. 7 Spatial temperature profile at
0

1.0, 0.1F B  . 
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V. CONCLUSIONS 

The mathematical model describing heat transfer in 

a thin plate based on dual-phase-lagging heat 

conduction is solved by superposition technique. The 

solution was obtained by utilizing superposition 

technique, structure theorem and Fourier series 

expansion. The effect of Fourier number and B on 

temperature profile has been observed. The 

temperature increases with increase of  B  and
0

F but 

when B   is greater than 0.5 then further increase of 

temperature ceases.   

 This technique is very applicable for solving non-

homogeneous partial differential equation under most 

generalized boundary conditions and may be 

applicable for solving the higher dimensional DPL 

heat conduction model of general body.  

VI.  NOMENCLATURE 

c  Thermal wave propagation speed  /m s  

b
c  Specific heat capacity  / .J kg K  

r
f  Reference heat flux  / *q q  

0
F  Fourier number  2

/ 2c t   

*
g  Internal heat source  3

/W m  

g  Dimensionless internal heat 

source  4 * /
r

g cf  

k  Thermal conductivity  / .W m K  

*q  Dimensionless heat flux  /
r

fq  

r  Position vector 

t  Time  s  

T  Temperature  K  

T  Temperature gradient  /K m  

x  Dimensionless spatial coordinate  1 / 2cx 
 

y  Dimensionless spatial coordinate  1 / 2cy 
 

1 1,x y  Spatial coordinate  m  

  Thermal diffusivity  2
/m s

 

  Dimensionless Temperature  /
r

kcT f
 

  Density  3
/kg m

 

q  Phase-lag of heat flux  s  

T  Phase-lag of temperature gradient  s
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