1 -Near Mean Cordial Labeling of $D_{2}\left(P_{n}\right), P_{n}(+) N_{m}($ when \mathbf{n} is even), Jelly Fish ${ }_{(m, n)}$ graphs

S.SRIRAM ${ }^{\# 1}$, DR.R.GOVINDARAJAN *2,
\#1 D.G.VAISHNAV COLLEGE, ARUMBAKKAM, CHENNAI-106
Assistant Professor, Patrician College of Arts and Science, Adyar, Chennai-20,INDIA
\#2 DR.R.GOVINDARAJAN, ASSOCIATE PROFESSOR AND HEAD, P.G AND U.G DEPARTMENT OF MATHEMATICS, D.G.VAISHNAV COLLEGE, ARUMBAKKAM, CHENNAI-106,INDIA

Abstract- Let $G=(V, E)$ be a simple graph. A surjective function $f: V \rightarrow\{0,1,2\}$ is said to be a 1 -Near Mean Cordial labeling iffor each edge $u v$, the induced map

$$
\left.\begin{array}{rl}
f(u v) & =0 \text { if } \frac{f(u)+f(v)}{2} \quad \text { is an integer } \\
& =1 \text { Otherwise }
\end{array}\right\}
$$

Satisfies the condition $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$ where $e_{f}(0)$ is the number of edges with 0 label and $e_{f}(1)$ is the number of edges with 1 label. G is said to be 1-Near Mean Cordial Graph if it has a 1-Near Mean Cordial Labeling. In this paper we proved that $D_{2}\left(P_{n}\right), P_{n}(+) N_{m}$ (When n is even), Jelly Fish J (m, n) graphs are 1-Near Mean Cordial Graphs.

Keywords- 1-Near Mean Cordial Labeling, 1-Near Mean Cordial Graph
 2000 Mathematics Subject Classification :05C78

1. Introduction

Let us consider the graphs to be finite, undirected and simple. The vertex set and edge set of a graph G are denoted by $V(G)$ and $E(G)$ respectively. The cardinality of $V(G)$ and $E(G)$ are respectively called order and size of G. Labeling of graphs has enormous application in many practical problems involved in circuit designing, communication network, astronomy etc. [1]. The concept of mean cordial labeling was introduced by Raja Ponraj, Muthirulan Sivakumar and Murugesan Sundaram in the year 2012 in [5]. Some results on Mean Cordial Labeling was discussed in [3,4,5,6]. Let f be a function $\mathrm{V}(\mathrm{G})$ to $\{0,1,2\}$. For each edge uv of G assign the label $\frac{f(u)+f(v)}{2}$. f is called a mean cordial labeling of $\quad \mathrm{G} \quad$ if $\quad\left|v_{f}(i)-v_{f}(j)\right| \leq 1 \quad$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1, \quad i, j \in\{0,1,2\}$ where $v_{f}(x)$ and
$e_{f}(x)$ denote the number of vertices and edges labeled with $x(x=0,1,2)$ respectively. A graph with a mean cordial labeling is called mean cordial graph. K.Palani, J.Rejila Jeya Surya [2] introduced a new concept called 1Near Mean Cordial labeling and investigated the 1-Near Mean Cordial Labeling behavior of Paths, Combs, Fans and Crowns. Terms defined here are used as in F. Harary [7].

2. PRELIMINARIES

K.Palani,J.Rejila Jeya Surya [2] define the concept of 1Near Mean Cordial labeling as follows
Let $G=(V, E)$ be a simple graph. A surjective function $f: V \rightarrow\{0,1,2\}$ is said to be 1 -Near Mean Cordial Labeling if for each edge uv, the induced map

$$
\left.\begin{array}{rl}
f^{*}(u v) & =0 \text { if } \frac{f(u)+f(v)}{2} \text { is an integer } \\
& =1 \text { otherwise }
\end{array}\right\}
$$

Satisfies the condition $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$ where $e_{f}(0)$ is the number of edges with zero label and $e_{f}(1)$ is the number of edges with one label. G is said to be a 1-Near Mean Cordial Graph if it has a 1-Near Mean cordial labeling. In this paper we proved that $D_{2}\left(P_{n}\right), P_{n}(+) N_{m}$ (When n is even), Jelly Fish $J(m, n)$ graphs are 1-near mean cordial graphs

Definition :2.1.: $D_{2}\left(P_{n}\right)$ is the graph of two copies of path graph P_{n} consisting of vertices u_{i} and v_{i} for $1 \leq i \leq n$.Hence $D_{2}\left(P_{n}\right)$ consists of $V(G)=2 n$ and $E(G)=4(n-1)$.

Definition :2.2.: $P_{n}(+) N_{m}$ is the graph with order of vertices $\mathrm{m}+\mathrm{n}$ and size of edges $2 \mathrm{~m}+\mathrm{n}-1$.
Definition :2.3: Jelly Fish $J(m, n)$ is a graph with order of vertices $m+n+4$ and sizes of edges is $\mathrm{m}+\mathrm{n}+5$.

3. Main Results

Theorem.3.1: Graph $D_{2}\left(P_{n}\right)$ is 1-Near Mean Cordial graph
Proof: Let $G=(V, E)$ be a simple graph and let G be
$D_{2}\left(P_{n}\right)$
Let $V(G)=\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$,
$E(G)=\left\{\left(u_{i} u_{i+1}\right): 1 \leq i \leq n-1\right\} \cup\left\{\left(v_{i} v_{i+1}\right): 1 \leq i \leq n-1\right\} \cup$
$\left\{\left(v_{i} u_{i+1}\right): 1 \leq i \leq n-1\right\} \cup\left\{\left(u_{i} v_{i+1}\right): 1 \leq i \leq n-1\right\}$
Define $f: V \rightarrow\{0,1,2\}$ by

$$
\begin{aligned}
f\left(u_{i}\right) & =0 \text { if } i \equiv 1 \bmod 2 \\
& =2 \text { if } i \equiv 0 \bmod 2 \\
f\left(v_{i}\right) & =1 \text { if } i \equiv 1 \bmod 2 \\
& =2 \text { if } i \equiv 0 \bmod 2
\end{aligned}
$$

The induced edge labeling are

$$
\left.\left.\begin{array}{rl}
f *\left(u_{i}, v_{i+1}\right) & =0 \text { for } \mathrm{i} \text { is odd } \\
& =1 \text { for } \mathrm{i} \text { is even }
\end{array}\right\} \begin{array}{rl}
1 \leq i \leq n-1 \\
f *\left(v_{i}, u_{i+1}\right) & =1 \text { for } \mathrm{i} \text { is odd } \\
& =0 \text { for is even }
\end{array}\right\} \begin{aligned}
& 1 \leq i \leq n-1 \\
& f *\left(u_{i}, u_{i+1}\right)
\end{aligned}=0 \text { for } 1 \leq i \leq n-1
$$

Hence, the graph satisfies the $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$
Therefore, the graph $D_{2}\left(P_{n}\right)$ is a 1 -Near Mean Cordial Graph.

Illustration :

Fig.3.1.1: $D_{2}\left(P_{4}\right)$

Fig.3.1.1: $D_{2}\left(P_{5}\right)$

Theorem.3.2: The Graph $P_{n}(+) N_{m}$ for all $n, m \geq 1$ is a 1Near Mean Cordial Graph for n is even
Proof : Let $G=(V, E)$ be a simple graph and let G be $P_{n}(+) N_{m}$.
Let $V(G)=\left\{\left\{u_{i}: 1 \leq i \leq n\right\},\left\{v_{i}: 1 \leq i \leq m\right\}\right\}$
and let

$$
\begin{aligned}
E(G)= & \left\{\left(u_{1} v_{i}\right): 1 \leq i \leq m\right\} \cup\left\{\left(u_{n} v_{i}\right): 1 \leq i \leq m\right\} \\
& \cup\left\{\left(u_{i} u_{i+1}\right): 1 \leq i \leq n-1\right\}
\end{aligned}
$$

Define $f: V \rightarrow\{0,1,2\}$ by
$f\left(u_{i}\right)=2$ for i is even
$f\left(u_{i}\right)=1$ or 0 for i is odd
We assign alternatively for odd vertices with 1 and 0 ; for $1 \leq i \leq n$
$f\left(v_{i}\right)=1$ when $i \equiv 1 \bmod 2$

$$
=2 \text { when } i \equiv 0 \bmod 2
$$

Hence the induced edge labeling are
$f *\left(v_{i} u_{1}\right)=0$ when i is odd $=1$ when i is even
$f^{*}\left(v_{i} u_{n}\right)=1$ when i is odd
$=0$ when i is even
For $f *\left(u_{i}, u_{i+1}\right)$ is a sequence of 0 's and 1 's
For $P_{4}(+) N_{m}, ; e_{f}(0)$ is one more than $e_{f}(1)$
Other wise for all n even $P_{n}(+) N_{m}$ either $e_{f}(1)$ is one more than $e_{f}(0)$ or $e_{f}(0)$ is one more than $e_{f}(1)$.

Hence it satisfies the condition $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$
Therefore the graph $P_{n}(+) N_{m}$ is a 1-Near Mean Cordial graph when n is even and for all $n, m \geq 1$

Illustration :

Fig.3.2.1: $P_{4}(+) N_{2}$

Illustration :

Fig.3.2.2: $\quad P_{6}(+) N_{3}$

Theorem .3.3: Jelly Fish $J(m, n)$ graph is 1-Near Mean Cordial Graph
Proof: Let $G=(V, E)$ is a simple graph and let $G=J(m, n)$ be a Jelly Fish graph. Let the vertices of G be defined as $V(G)=V_{1} \cup V_{2}$ where $V_{1}=\{x, u, y, v\}$ and $V_{2}=\left\{u_{i}, v_{j} ; 1 \leq i \leq m, 1 \leq j \leq n\right\}$
and the edges $E=E_{1} \cup E_{2} \quad$ where
$E_{1}=\{x u, u y, y v, x y, v x\}$
$E_{2}=\left\{u u_{i}, v v_{j} ; 1 \leq i \leq m, 1 \leq j \leq n\right\}$
For labeling the vertices let us assign $f(x)=0 ; f(u)=1 ; f(y)=1 ; f(v)=1$

$$
\begin{gathered}
\left.\begin{array}{c}
f\left(u_{i}\right)=1 \text { if } i \equiv 1 \bmod 2 \\
=2 \text { if } i \equiv 0 \bmod 2
\end{array}\right\} \text { for } 1 \leq i \leq m \\
\left.\begin{array}{rl}
f\left(v_{j}\right) & =1 \text { if } j \equiv 1 \bmod 2 \\
=2 & \text { if } j \equiv 0 \bmod 2
\end{array}\right\} \text { for } 1 \leq j \leq n
\end{gathered}
$$

Then the induced labeling for edges
$\left.\begin{array}{rl}f *\left(u u_{i}\right)= & 0 \text { if } i \equiv 1 \bmod 2 \\ =1 & \text { if } i \equiv 0 \bmod 2\end{array}\right\}$ for $1 \leq i \leq m$
$\left.\begin{array}{rl}f *\left(v v_{j}\right) & =0 \text { if } j \equiv 1 \bmod 2 \\ = & 1 \text { if } j \equiv 0 \bmod 2\end{array}\right\}$ for $1 \leq j \leq n$

Also we have $f(x u)=1 ; f(u y)=0$;
$f(y v)=0 ; f(x v)=1 ; f(x y)=1$
We can have the following cases
Case. 1 When both m, n are equal and odd
We find that $e_{f}(0)$ is one more than $e_{f}(1)$
Case. 2 When both m, n are odd, $m \succ n$
We find that $e_{f}(0)$ is one more than $e_{f}(1)$
Case. 3 When both m.n are odd, $m \prec n$
We find that $e_{f}(0)$ is one more than $e_{f}(1)$
Case. 4 When both m,n are equal and even We find that $e_{f}(1)$ is one more than $e_{f}(0)$

Case. 5 When both m.n are even , $m \succ n$
We find that $e_{f}(1)$ is one more than $e_{f}(0)$

Case. 6 When both m.n are even, $m \prec n$
We find that $e_{f}(1)$ is one more than $e_{f}(0)$
Case. 7 When m is even, n is odd
We find that $e_{f}(0)=e_{f}(1)$
Case. 8 When m is odd, n is even
We find that $e_{f}(0)=e_{f}(1)$
Clearly in all the cases mentioned above it satisfies the condition $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$ where $e_{f}(0)$ is the number of edges with label 0 and $e_{f}(1)$ is the number of edges with label 1.
Hence the Jelly Fish $J(m, n)$ graph is 1 - Near Mean Cordial graph.

Illustration :

Fig.3.3.1: $J(2,3)$-Jelly Fish

Fig:3.3.1 $J(2,4)$-Jelly Fish

REFERENCES

[1]. Gallian J.A, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics 6(2001)\#DS6
[2]. K.Palani,J.Rejila Jeya Surya, 1-Near Mean Cordial Labeling of Graphs,IJMA-6(7),July 2015 PP15-20
[3]. K.Manimekalai, K.Thirusangu, Pair Sum Labeling of Some Special Graphs ,International Journal of Computing Algorithm, Vol.02, October 2013, Page:251-256
[4]. A.Nellai Murugan and G.Esther, Some Results on Mean Cordial Graphs, International Journal of Mathematics Trends and Technology, ISSN: 2231-5373, Volume 11, No.2, July 2014
[5]. Raja Ponraj, Muthirulan Sivakumar and Murugesan Sundaram, Mean Cordial Labeling of Graphs, Open Journal of Discrete Mathematics 2012,2,145-148.
[6]. Albert William I, Indra Rajasingh and S.Roy, Mean Cordial Labeling of Certain Graphs, Journal of Computer and Mathematical Sciences, Vol. 4, Issue 4,31 August, 2013 Pages(202-321)
[7]. F.Harary, Graph Theory,Addison-Wesley Publishing Company Inc, USA, 1969

