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Abstract – This article introduces a new standard 
formula for finding prime numbers and shows the 
various methods of determining its solution set. The 
formula is standard in three ways. Firstly, it reveals 
the natural location of prime numbers on the 
sequence of natural numbers. Secondly, there is no 
prime other than 2 and 3 on the endless sequence of 
natural numbers that it can skip or fail to locate. 
Thirdly, it provides a basis upon which other 
formulas for locating primes can be discovered. 
  The formula is P = 3nso ± 2, where nso is any  
special odd number equal to or greater than 1 , 
which numbers belong to  appropriate solution sets 
for the formula. The plus and minus operations have 
each a unique solution set of endless elements. 
  The variable nso represents specific odd numbers 
that satisfies the formula..  If appropriate solution 
sets are identified and their elements used to replace 
the variable, each and every value to be obtained will 
be a prime.  If elements of these solution sets are 
systematically substituted for the variable, one after 
another in their endless chain of succession, the 
formula will yield each and every succeeding prime 
beginning with prime 5 and going on without end.  
  In order to be used effectively, the formula is split it 
into two complementary ones. These separate but 
complementary formulas are as follows; 
 
(1) P1 = 3nso + 2 where nso is any specific odd 

number equal to or greater than 1, which 
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numbers belong to an endless appropriate set of 
solutions for this particular formula, 
 

(2) P2 = 3nso – 2 where nso is any specific odd 
number equal to or greater than 3, which 
numbers belong to an appropriate endless set of 
solutions for this particular formula, 

  The two formulas complement each other, or take 
turns in locating each and every prime on the 
sequences of natural numbers. Each   of the two 
formulas finds its own unique set of primes, and 
thereby revealing an unknown fact that there are two 
different sets of primes. The first set is the set of First 
Half Pair Primes (FHPPs) which the first formula 
finds. Such primes extend from 5 and continue 
endlessly in a hidden perfect regularity. This set of 
primes is as follows; SFHPP = {5, 11, 17, 23, 29, 41, 
47, 53, 59, 71, 83, 89, 101,... }.The second  set is the 
set of Second  Half Pair Primes (SHPPs) which the 
second formula finds.  Such primes begin  from prime 
7 and continue endlessly in a hidden perfect 
regularity. This set of primes is as follows; SSHPP = 
{7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103, 109,...}.  
  Each formula has its own unique solution set of 
endless elements on the sequence of odd numbers. In 
either case, solution set elements are those odd 
numbers on the sequence that are  not ‘related’ to 
any prime on the sequence of natural numbers. If any 
odd number other than such numbers is substituted 
for the variable in the new primes’ formula, the result 
will be a composite odd number whose initial divisor 
is a prime or primes to which that odd number 
‘relates’. 
  For example, with regard to the first half pair 
primes formula,  if any odd number whose last digit 
is 1 other than 1 itself, is substituted for the variable, 
the value of the expression will be  a composite odd 
number whose initial divisor is prime 5. If any odd 
number of the form (14N + 11) – 14 where N is any 
natural number, is substituted for the variable,  the 
value of the expression will be a composite odd 
number divisible by prime 7. If any odd number of the 
form (22N + 25) – 22, where N is any natural 
number, is substituted for the variable in the formula, 
the value of the expression will be a composite odd 

number divisible by prime 11. If any number of the 
form (26N + 21) – 26, where N is any natural 
number is used, the value of the expression will be a 
composite odd number divisible by  prime 13. 
  With regard to the second half pair primes formula,  
if any odd number whose last digit is 9 including 9 
itself is substituted for the variable,  the value of the 
expression will be a composite odd number whose 
initial divisor is prime 5.  If any number of the form 
(14N + 17) – 14 where N is any natural number, 
replaces the variable, the value of the expression will 
be a composite odd number divisible by prime 7.  If 
any number of the form (22N + 41) – 22 where N is 
any natural number, replaces the variable, the value 
of the expression will be a composite odd number 
divisible by prime 11. .If any number of the form 
(26N + 57) – 26 where N is any natural number  is 
used, the value of the expression will be a composite 
odd number divisible by prime 13.  
  On the other hand, if appropriate odd numbers not 
‘related’ to any prime are used for either case the 
values of the expressions will be definite primes.  
  The means of isolating elements of the solution sets 
from none elements on the sequence of odd numbers 
include the use of both formulas and tables of 
systematic structures. The article identified two types  
of such tables. These are those that show the 
distribution of none substitute elements on the 
sequence of odd numbers and those that indicate 
such numbers’ numerical positions on it.   
 
Summary – This article introduces a new standard 
formula for finding prime numbers and provides the 
various methods of determining its solution set. The 
formula is standard in three ways. Firstly, it reveals 
the natural location of prime numbers on the 
sequence of natural numbers. Secondly, there is no 
prime other than 2 and 3 on the endless sequence of 
natural numbers that it can skip or fail to locate. 
Thirdly, it provides a basis upon which other 
formulas for locating primes can be discovered. 
  The formula is P = 3nso ± 2, where nso is any special 
odd number equal to or greater than 1, which 
numbers belong to  appropriate solution sets for the 
formula.   
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  The variable nso represent specific odd numbers that 
satisfies the formula. The depressed ‘so’ at the 
baseline of the variable  emphasizes  the fact that  it 
is not any natural number that can be used as a 
substitute for the variable, but only specific odd 
numbers that are elements of appropriate solution sets 
for the formula. If appropriate solution sets are 
identified and their elements used to replace the 
variable, each and every value to be obtained will be 
a prime.  If elements of these solution sets are 
systematically substituted for the variable, one after 
another in their endless chain of succession, the 
formula will yield each and every succeeding prime 
beginning with prime 5 and going on without end.  
  The formula is effectively used by splitting   it into 
two complementary ones. These separate but 
complementary formulas are as follows; 

P1 = 3nso + 2 where nso is any specific odd number 
equal to or greater than 1, which numbers belong to 
an endless appropriate set of solutions for this 
particular formula, 
P2 = 3nso – 2 where nso is any specific odd number 
equal to or greater than 3, which numbers belong to 
an appropriate endless set of solutions for this 
particular formula, 
  The two are complementary in the sense that they 
complement each other, or take turns in locating each 
and every prime on the sequences of natural numbers. 
In actual fact, each of the two formulas finds its own 
unique set of primes, and thereby revealing an 
unknown fact that there are two different sets of 
primes. These are; the set of first half pair primes 
(SFHPP) and the set second half pair primes 

(SSHPP).  
  The first formula is for finding First Half Pair 
Primes (FHPPs). Such primes extend from 5 and 
continue endlessly in a hidden perfect regularity. This 
set of primes is as follows ; SFHPP = {5, 11, 17, 23, 
29, 41, 47, 53, 59, 71, 83, 89, 101,... }.The second  
formula is for finding Second Half Pair Primes 
(SHPPs).  Such primes begin from prime 7 and 
continue endlessly in a hidden perfect regularity. This 
set of primes is as follows; SSHPP = {7, 13, 19, 31, 
37, 43, 61, 67, 73, 79, 97, 103, 109,...}.  
  Each of the two complementary formulas has its 
own unique solution set of endless elements. The 
elements of the solution sets for the two formulas can 
be identified by using any appropriate method. In this 
text, the method used is that of identifying and 
eliminating non-substitute elements from the 
sequence of odd numbers to leave only elements of 
the solution sets up to any given extent/ any selected 
section of the sequence. In this regard the text 
displays various tables that show the distribution of 
non-substitute elements on the sequence, and 
formulas that may be used to locate such elements on 
any section of the sequence. Two types of tables have 
been identified, these are, those that reveal the 
distribution of actual non-substitutes on the sequence 
and those that do so indirectly by revealing only their 
numerical positions on it. 
  With regards to the FHPPs formula, the table that 
shows the distribution of its variable’s non-
substitutes is table 4 below (It is table 4 because it is 
the forth table in the main text of this article)

  

TABLE 4: TABLE OF NATURAL DISTRIBUTION OF ODD NUMBERS THAT MUST NOT BE SUBSTITUTED FOR nso IN THE  
FORMULA FOR FINDING FIRST HALF PAIR PRIMES (P1 = 3nso + 2). 
 

G.12 G.10 G.22 G.34 G.46 G.58 G.70 G.82 G.94 G.106 G.118 G.130 … 
G.14 11 25 39 53 67 81 95 109 123 137 151 … 
G.26 21 47 73 99 125 151 177 203 229 255 281 … 
G.38 31 69 107 145 183 221 259 297 335 373 411 … 
G.50 41 91 141 191 241 291 341 391 441 491 541 … 
G.62 51 113 175 237 299 361 423 485 547 609 671 … 
G.74 61 135 209 283 357 431 505 579 653 727 801 … 
G.86 71 157 243 329 415 501 587 673 759 845 931 … 
G.98 81 179 277 375 473 571 669 767 865 963 1061 … 
G.110 91 201 311 421 531 641 751 861 971 1081 1191 … 
G.122 101 223 345 467 589 711 833 955 1077 1199 1321 … 
G.134 111 245 379 513 647 781 915 1049 1183 1317 1451 … 
G.146 121 267 413 559 705 851 997 1143 1289 1435 1581 … 
… … … … … … … … … … … … … 
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  The table above is a display of an easy to appreciate 
pattern of endless rows and columns of  odd numbers, 
inclusive of primes and composites, none of which 
must be substituted for variable nso  in the formula for 
finding FHPPs. It continues endlessly in an ascending 
order of perfect regularity, as shown by  headers in the 
first row and column. 
  We are able to use table 4 above to determine 
elements of the solution set for the FHPPs formula 
because it indicates for us which numbers on the 
sequence of odd numbers are not elements of the 
solution set. In other words,  the solution set for the 
first complementary formula comprises of each and 
every odd number, from unit endlessly, that is not an 
element of the  endless structure of odd numbers 
displayed in on table 4 above. Consequently, we can, 
with the above table, determine the solution set for the 
FHPPs’ formula as being as follows; SSFHPPF = {1, 
3, 5, 7, 9, 13, 15, 17, 19, 23, 27, 29, 33, 35, 37, 43, 45, 
49, 55, 57, 59, 63, 65,…} 

  Note that elements of this set are so systematically 
laid out that when each and every element is 
substituted for the variable in the formula, one after 
another, from the first to each and every one of them 
in their endless chain of succession, there is not a 
single FHPP on the entire sequence of natural numbers 
that will not be found. 
  It is also self evident from the above table that any 
odd number whose last digit is 1 (unit), other than 1 
itself, cannot be substituted for the variable in this 
particular formula, because all values to be obtained 
are composites, all of whose initial divisor is prime 5. 
  The solution set for the FHPPs formula can also be 
determined by knowledge  of the distribution, on the 
sequence of odd numbers,  of numerical positions of 
non-substitutes, for the variable in the formula. Table 
8 below reveals this distribution.  

 

TABLE 8. THE DISTRIBUTION OF NUMERICAL POSITIONS, ON THE SEQUENCE OF ODD NUMBERS, OF NON-SUBSTITUTES 

FOR THE VARIABLE IN THE FIRST HALF PAIR PRIMES FORMULA.  
 

 7 13 19 25 31 37 43 49 55 61 67 73 79 85 … 
5 6 11 16 21 26 31 36 41 46 51 56 61 66 71 … 
11 13 24 35 46 57 68 79 90 101 112 123 134 145 156 … 
17 20 37 54 71 88 105 122 139 156 173 190 207 224 241 … 
23 27 50 73 96 119 142 165 188 211 234 257 280 303 326 … 
29 34 63 92 121 150 179 208 237 266 295 324 353 382 411 … 
35 41 76 111 146 181 216 251 286 321 356 391 426 461 496 … 
41 48 89 130 171 212 253 294 335 376 417 458 499 540 581 … 
47 55 102 149 196 243 290 337 384 431 478 525 572 619 666 … 
53 62 115 168 221 274 327 380 433 486 539 592 645 698 751 … 
59 69 128 187 246 305 364 423 482 541 600 659 718 777 836 … 
65 76 141 206 271 336 401 466 531 596 661 726 791 856 921 … 
71 83 154 225 296 367 438 509 580 651 722 793 864 935 1006 … 
77 90 167 244 321 398 475 552 629 706 783 860 937 1014 1091 … 
83 97 180 263 346 429 512 595 678 761 844 927 1010 1093 1176 … 
89 104 193 282 371 460 549 638 727 816 905 994 1083 1172 1261 … 
… … … … … … … … … … … … … … … … 

 

 

 
  The endless structure of numbers displayed in table 
8 above are counting numbers indicating the 
distribution of numerical positions of non-substitute 
elements, on the sequence of odd numbers. Note that 
since odd numbers are those numbers of the form (2N 
+ 1) – 2, where N is any natural number, variable N 
in the expression X = (2N + 1) – 2, indicate the 
position of odd number ‘X’ on the sequence of odd 
numbers. For example, if we pick any odd number 
say 59, this numbers’ numerical position on the 
sequence of odd numbers can be worked out by 
replacing X with 59 and solving the equation for 
variable N as follows; (2N + 1) – 2 = 59; 2N = (59 – 

1) + 2; N = [(59 – 1) + 2] ÷ 2; N = 30. The value of 
the expression is 30, meaning that 59 is the 30th 
number on the sequence of odd numbers. In short, the 
numerical position of any odd number on the 
sequence of odd numbers is N = [(X+ 2) – 1]÷ 2, 
where X is that odd number. 
  With regard to table 8 above, elements of the 
solution set are those odd numbers whose numerical 
positions on the sequence, are not part of the endless 
structure of numbers displayed on the table. In other 
words, elements of the solution set for the FHPPs  
formula are those numbers of the form (2N + 1) – 2 , 
where variable N is any natural number and which 
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numbers are not elements of the above endless  table 
of  natural distribution  of numerical positions for the 
variable’s  non-substitutes, on the sequence of odd 
numbers.  
  If any number, other than the headers in the first 
row and column,  is picked from the  table,  and 
substituted for  variable N in the  expression (2N + 1) 
– 2, the  value of the expression will be a non-
substitute element, which when substituted for 
variable no in the FHPPs formula will result in a 
composite odd number divisible by its two odd 
number factors indicated as headers of the column 
and row under which that number falls on the table. 
On the other hand, if any numerical position, in terms 
of ordinary counting numbers from 1 endlessly,  is 
not part of the structure of  the endless numbers 
indicated by the table , it can  substitute  variable N in 
the expression (2N + 1) – 2, and the value of the 
expression will be an element of a solution set for the 
FHPPs formula. 

  From table 8 above, it can be seen that   counting 
numbers that are not part of the structure of the table, 
and which, can therefore,  be used to pick elements of 
the solution set from the sequence of odd numbers, 
include numbers less than 6, and each and every 
number  greater than 6  not falling within the 
structure of the table. Part of the set of such numbers, 
as shown by the table is as follows; 
 
{1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 14, 15, 17, 19, 22, 23, 
25, 28, 29,30, 32, ..} 
 
  If any of the above counting numbers is substituted 
for N in the expression (2N + 1) – 2, the value of the 
expression will be an element of a solution set for the 
FHPPs formula.  
  The Second half pair primes (SHPPs) formula has 
two complementary tables that show the distribution 
of its variable’s non-substitutes on the sequence of 
odd numbers. These tables are as follows;  

 
TABLE 9 (a) : THE FIRST TABLE OF NATURAL DISTRIBUTION OF ODD NUMBERS THAT MUST NOT BE SUBSTITUTED FOR 

VARIABLE nso IN THE  FORMULA FOR FINDING SECOND HALF PAIR PRIMES (P2 = 3nso – 2). 
 

G.12 G.14 G.26 G.38 G.50 G.62 G.74 G.86  G.98 G.110 G.122 G.134 … 
G.14 17 45 59 73 87 101 115 129 143 157 171 … 
G.26 31 57 83 109 135 161 187 213 239 265 291 … 
G.38 45 83 121 159 197 235 273 311 349 387 425 … 
G.50 59 109 159 209 259 309 359 409 459 509 559 … 
G.62 73 135 197 259 321 383 445 507 569 631 693 … 
G.74 87 161 235 309 383 457 531 605 679 753 827 … 
G.86 101 187 273 359 445 531 617 703 789 875 961 … 
G.98 115 213 311 409 507 605 703 801 899 997 1095 … 
G.110 129 239 349 459 569 679 789 899 1009 1119 1229 … 
G.122 143 265 387 509 631 753 875 997 1119 1241 1363 … 
G.134 157 291 425 559 693 827 961 1095 1229 1363 1497 … 
… … … … … … … … … … … … … 

 
TABLE 9(b): THE SECOND TABLE OF NATURAL DISTRIBUTION OF ODD NUMBERS THAT MUST NOT BE SUBSTITUTED FOR 
VARIABLE nso IN THE  FORMULA FOR FINDING SECOND HALF PAIR PRIMES (P2 = 3nso – 2). 
 

G.12 G.10 G.22 G.34 G.46 G.58 G.70 G.82 G.94 G.106 G.118 G.130 … 
G.10 9 19 29 39 49 59 69 79 89 99 109 … 
G.22 19 41 63 85 107 129 151 173 195 217 239 … 
G.34 29 63 97 131 165 199 233 267 301 335 369 … 
G.46 39 85 131 177 223 269 315 361 407 453 499 … 
G.58 49 107 165 223 281 339 397 455 513 571 629 … 
G.70 59 129 199 269 339 409 479 549 619 689 759 … 
G.82 69 151 233 315 397 479 561 643 725 807 889 … 
G.94 79 173 267 361 455 549 643 737 831 925 1019 … 
G.106 89 195 301 407 513 619 725 831 937 1043 1149 … 
G.118 99 217 335 453 571 689 807 925 1043 1161 1279 … 
G.130 109 239 369 499 629 759 889 1019 1149 1279 1409 … 
… … … … … … … … … … … … … 
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  Tables 9(a) and 9(b) above, can help us determine 
the solution set for the SHPPs  formula because, they 
in combination, show which numbers on the 
sequence of odd numbers, are not elements of the 
solution set for the formula. In other words, the 
solution set for the formula comprises of each and 
every odd number, from 3 endlessly, which is not an 
element of, or is missing from a combination of the 
above two endless structures of odd numbers. With 
the help of the two tables,  we can determine the 
missing odd numbers or the solution set for the 
formula as being  as follows; 
 SSSHPPF = { 3, 5, 7, 11, 13, 15,  21, 23, 25,  27,  
33, 35, 37, 43, 47, 51, 53, 55, 61, 65,…}  
Elements of this set begin from 3 and continue 
endlessly at an  ascending order of hidden perfect 
regularity. Here too, These elements are so 

systematically laid out that when each and every one 
of them is substituted for the variable, one after 
another, from the first element to each and every one 
of them in their endless chain of succession, there is 
not a single SHPP on the entire sequence of natural 
numbers that will not be found. 
  It is also evident from the complementary tables  
above that any odd number whose last digit is 9, 
including 9 itself, cannot be substituted for the 
variable in this particular formula because all values 
to be obtained are composites, all of whose initial 
divisor is prime 5. 
The solution set for the SHPPs formula can equally  
be determined by knowledge  of the distribution, on 
the sequence of odd numbers,  of numerical positions 
of non-substitutes, for the variable in the formula. 
Tables 12 (a) and 12 (b) below show this distribution.  

 
TABLE 12 (a). THE FIRST TABLE OF THE DISTRIBUTION OF NUMERICAL POSITIONS OF NON-SUBSTITUTES, ON THE 

SEQUENCE OF ODD NUMBERS, FOR THE VARIABLE IN THE SECOND HALF PAIR PRIMES FORMULA.  
 

 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 … 

7 9 16 23 30 37 44 51 58 65 72 79 86 93 100 107 … 

13 16 29 42 55 68 81 94 107 120 133 146 159 172 185 198 … 

19 23 42 61 80 99 118 137 156 175 194 213 232 251 270 289 … 

25 30 55 80 105 130 155 180 205 230 255 280 305 330 355 380 … 

31 37 68 99 130 161 192 223 254 285 316 347 378 409 440 471 … 

37 44 81 118 155 192 229 266 303 340 377 414 451 488 525 562 … 

43 51 94 137 180 223 266 309 352 395 438 481 524 567 610 653 … 

49 58 107 156 205 254 303 352 401 450 499 548 597 646 695 744 … 

55 65 120 175 230 285 340 395 450 505 560 615 670 725 780 835 … 

61 72 133 194 255 316 377 438 499 560 621 682 743 804 865 926 … 

67 79 146 213 280 347 414 481 548 615 682 749 816 883 950 1017 … 

73 86 159 232 305 378 451 524 597 670 743 816 889 962 1035 1108 … 

79 93 172 251 330 409 488 567 646 725 804 883 962 1041 1120 1199 … 

85 100 185 270 355 440 525 610 695 780 865 950 1035 1120 1205 1290 … 

91 107 198 289 380 471 562 653 744 835 926 1017 1108 1199 1290 1381 … 

… … … … … … … … … … … … … … … … … 
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TABLE 12 (b). THE SECOND TABLE OF THE DISTRIBUTION OF NUMERICAL POSITIONS, ON THE SEQUENCE OF ODD 

NUMBERS, OF NON-SUBSTITUTES, FOR THE VARIABLE IN THE SECOND HALF PAIR PRIMES FORMULA.  
 

 5 11 17 23 29 35 41 47 53 59 65 71 77 83 89 … 
5 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 … 
11 10 21 32 43 54 65 76 87 98 109 120 131 142 153 164 … 
17 15 32 49 66 83 100 117 134 151 168 185 202 219 236 253 … 
23 20 43 66 89 112 135 158 181 204 227 250 273 296 319 342 … 
29 25 54 83 112 141 170 199 228 257 286 315 344 373 402 431 … 
35 30 65 100 135 170 205 240 275 310 345 380 415 450 485 520 … 
41 35 76 117 158 199 240 281 322 363 404 445 486 527 568 609 … 
47 40 87 134 181 228 275 322 369 416 463 510 557 604 651 698 … 
53 45 98 151 204 257 310 363 416 469 522 575 628 681 734 787 … 
59 50 109 168 227 286 345 404 463 522 581 640 699 758 817 876 … 
65 55 120 185 250 315 380 445 510 575 640 705 770 835 900 965 … 
71 60 131 202 273 344 415 486 557 628 699 770 841 912 983 1054 … 
77 65 142 219 296 373 450 527 604 681 758 835 912 989 1066 1143 … 
83 70 153 236 319 402 485 568 651 734 817 900 983 1066 1149 1232 … 
89 75 164 253 342 431 520 609 698 787 876 965 1054 1143 1232 1321 … 
… … … … … … … … … … … … … … … … … 

 

 

 
 Tables 12 (a) and 12(b) above, in combination, show 
the distribution of numerical positions, on the 
sequence of odd numbers, of non-substitutes, for the 
variable in the SHPPs formula. Table 12 (a) indicates 
the numerical positions of non-substitutes relating to 
multiples of visible divisors of second half pair odd 
numbers, while table 12 (b) shows the numerical 
positions of non substitutes relating to multiples of 
their invisible divisors.  
  The two tables can help us determine the solution 
set for the SHPPs formula because they indicate 
numerical positions of non-substitute elements on the 
sequence of odd numbers. In essence, they help us to 
separate, on the sequence of odd numbers, non-
substitute elements from elements of the solution set.    
In short, any odd number on the sequence, whose 
numerical position is not part of the structure of 
numbers on either table is an element of the solution 
set. This means that if any number, other than the 
headers in the first row and column of either  table  is 
picked  and substituted for  variable N in the  
expression (2N + 1) – 2, the  value of the expression 
will be a non-substitute element, which when 
substituted for variable no in the SHPPs formula,  will 
result in a composite odd number divisible by its two 
odd number factors indicated as headers of the 
column and row under which that number falls.  
  On the other hand, if any numerical position, in 
terms of counting numbers,  is not part of the 
structure of  the endless numbers indicated by both 
tables , it can  substitute  variable N in the expression 
(2N + 1) – 2, and the value of the expression will be 
an element of a solution set for the second  half  pair 
primes formula. 

  
 From the twin tables above, it can be seen that 
counting numbers that are not part of the structure of 
either table and which, can therefore, be used to pick 
elements of the solution set from the sequence of odd 
numbers, include numbers less than 5 and 9, other 
than unit  and each and every number  greater than 5 
and 9  not falling within the structure of either  table. 
Part of the set of such numbers, as evidenced by both 
tables, is as follows; 
{2,3,4,6,7,8,11,12,13,14,17,18,19,22,24,26,27,28,31, 
33,34, 36,38,39,41,46,..} 
  Note that if any of the above counting numbers is 
substituted for N in the expression (2N + 1) – 2, the 
value of the expression will be an element of a 
solution set for the SHPPs formula.  

 
I. INTRODUCTION 

  This article, introduces a new standard formula 
which can find prime numbers without having to 
stumble upon composite numbers. The article gives 
background information on the formula and presents 
tables and formulas for determining its solution set. 
The formula is standard because it reveals the natural 
location of prime numbers on the sequence of natural 
numbers. It is standard because there is no prime 
other than 2 and 3 on the endless sequence of natural 
numbers that it can skip or fail to locate. It is also 
standard because it provides a basis upon which other 
formulas for locating primes can be found.  
  Wikipedia, the Free Encyclopedia has noted that 
there is no known useful formula that yields only 
primes and no composites 
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(http://en.wikipedia.org/wiki/Prime_number 
29.9.2010) (7/18/2012 11: 07). True indeed, the 
hitherto prime search history has been of frustrations, 
disappointments and uncertainties with regard to how  
far identified formulae will keep on yielding primes 
without having to stumble upon composites and 
crashing to a halt.  
  There are specific example of Pierre de Fermat who 
conjectured that all numbers of the form 2 raised to 
the power of (2n) + 1, were n is an integer equal to or 
greater than 1, are primes. Fermat is said to have 
been able to verify his claim only up to 2 raised to the 
power (24) + 1,  the shortened version of which is  216 
+ 1. This claim is said to have been invalidated by 
Euler who proved that the very next Fermat number 
(232 + 1 = 4294967297) was a composite with 641 as 
one of its factors (divisors). The same fate befalls 
other primes such as the Sophie Germaine Primes of 
the form 2P +1 = P and the Primorial or Primorial  
Factorial Primes of the form     P=n*+ 1 or P=n*– 1 . 
Last but not least, there is  uncertainty with regard to 
the extent of the spread of  Mersenne Primes whose 
form is P=2q – 1 , where q is a prime number. Just 
like many others,  even this  most popular formula 
does not always yield primes. For instance,  when 
prime 11 is substituted for q in the Mersenne formula 
the difference  is 2047 which is a composite number 
whose initial divisor is 23.   
 
A.  The Mersenne Formula and its Limitations. 
  The first major limitation of the Mersenne formula 
is that it relies on primes to find other primes. The 
weakness with this approach is that primes to be 
substituted for the variable in the formula may not be 
readily available and more especially that the 
substitution of any known prime for the variable  in 
the formula does not necessarily yield another prime 
in order for it to have its own reservoir of primes to 
use in finding further primes. The second major 
weakness is that the formula only yields selective 
primes and cannot be used to find all primes on the 
sequence of natural numbers. Furthermore,  no one 
knows for sure if these  primes are endless. So far, 
there are only 46 known  Mersenne Primes 
(http://www.mersenne.org/default.php 25/08/2011).  

B.  The Sieve of Eratosthenes and its Limitation 
  The Sieve of Eratosthenes (ca 240) is undoubtedly 
impeccable and precise in establishing any prime 
number on the sequence of natural numbers. In my 
view, its major contribution to the theory of prime 
numbers is its underlining assumption that composite 
numbers are but multiples of primes. However, apart 
from the known limitation that it is only suitable for 
identifying smaller primes 
(http://primes.utm.edu/prove2_1.html 25.08/2011), 
there is another  limitation. This other  limitation  is 
that in order  to use it to find primes we first have to 
have knowledge of some initial finite set of primes. 
To identify primes falling within any given range of 
numbers on the number line, we first have to generate 
multiples of all primes up to the square root of the 
maximum number up to which we want to establish 
primes and thereafter, strike off all these multiples 
from a complete list of natural numbers up to our set 
maximum number. If we wish to limit ourselves to 
multiples of odd primes only, we first generate all 
odd numbers up to a certain limit and then strike off 
all multiples of odd primes up to that limit (Chris 
Caldwell, http://primes.utm.edu/prove2_1.html 
25.08/2011). 
 

  The weakness with this method is that it 
presupposes that we already have a method other 
than this method that will establish for us the initial 
prime/ set of primes that we will use to generate the 
multiples we will require to find further primes. 
Granted, as Caldwell demonstrates,  the sieve 
identifies 3 as the initial odd prime, which will then 
lead us to the next prime and thereafter, another 
prime and then to another in that order going on 
without end. However, in the absence of such a 
systematic lead  to other primes without any breaks in 
continuity, it would not be that easy to determine a 
set of primes that we may use to find further primes 
from ranges of odd numbers commencing with odd 
numbers other than 3 itself. For instance if we wish to 
establish primes from say 2,221 to 3, 2221. We have 
to have a prior knowledge of odd primes whose 
multiples fall within this specific range of numbers so 
that we may strike those multiples off that range of 
odd numbers to leave only primes.  
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  In my opinion,   the most successful method of 
generating primes must not involve primes to find 
other primes, because we are then starting with an 
assumption that initial primes are readily available 
for use. A better approach is to find primes regardless 
of themselves.  I submit further that any successful 
formula for finding primes must be able to locate 
each and every prime on the sequence of natural 
numbers and that such a formula must never stumble 
upon any composite. 
  The rest of this article provides  background 
information on the new formula and  presents tables 
and formulas for determining its solution set. Such 
tables include tables of natural distribution of the 
formula’s non-substitute elements on the sequence of 
odd numbers and those that reveal their numerical 
positions on the sequence. The significance of such 
tables is that they enable the isolation of elements of 
the formula’s solution set from non-solution set 
elements on the sequence of odd numbers. 
   
II. BACKGROUND TO THE NEW FORMULA 

  There are certain facts about primes upon which the 
new formula for locating them is based. These 
include; the existence of specific sets of odd numbers 
within which primes are found, the determination of 
actual divisors of multiples falling within those 
specific prime bearing odd numbers and the perfect 
regularity in the distribution of those multiples on the 
sequence of those prime bearing odd numbers.  
A.  Paired Odd Numbers  
  All primes other than 2 and 3, do not occur anyhow 
on the sequence of natural numbers. The overall 
structure of their   spread is such that they only occur 
within a set of paired odd numbers (SPON) with a 
difference of 2 between them. This is a fact whose 
main proof is the presence of twin primes on the 
sequence. Paired odd numbers (PON) are located in 
between each and every pair of odd multiples of 3 on 
the sequence. In this text the expression for these odd 
multiples of 3  is 3no where the variable no represents 
any odd number on the sequence. The depressed no 
below the  baseline  of the variable in the expression, 
even though not  conventional,  is meant to identify 
this particular variable with odd numbers as its only 
values.    
  In between each and every pair of odd multiples of  

3, there is a total of five other numbers. Three of 
these in between numbers are even and only two are 
odd , and therefore the only candidates for primes. 
The spread of these in between numbers is such that 
the first number after the first odd multiple of 3, is 
always an even number. The even number is then 
followed by the first in between odd number, which 
is followed by another even number, which 
apparently is also divisible by 3,  after that there is 
another  odd number, followed by an even number 
after which comes the second odd  multiple of 3 to 
close that particular section and open another section 
ahead with an even number. The following pattern 
shows how the numbers are  spread out;  
3no, even, odd, even, odd, even, 3no, even, odd, even, 
odd, even, 3no...  
  In the above illustration, positions of odd numbers 
other than odd multiples of 3 have been underlined. 
These are the numbers that are being referred to as  
PONs because  they are not only odd but exist in 
pairs as well. They are the only candidates for primes 
because all primes other than 2 and 3, be it Mersenne, 
Fermant,  Sophie Germain,  Premorial  or Prime 
Factorial, are all elements of either of the two sets of 
numbers. which numbers are located in between  
pairs of  odd multiples of  3.  Prime 5 is a sum of 3 + 
2, Prime 7, is the difference of 9 – 2. Prime  11 is the 
sum of 9 + 2. Prime 13, is the difference of 15 – 2  , it 
is like that for each and every prime endlessly.  In 
this text, the set of these paired odd numbers is 
presented as follows;  
SPON = {5,7,  11,13,  17,19,  23,25,  35,37,  41,43,  
47,49,  ...}  
Elements of this set begin with pair 5,7 and proceed 
endlessly in ascending order  at a uniform gap of 4.  
Isolating  the set of paired odd numbers from the 
sequence of natural numbers  implies eliminating 
from the number line all numbers positioned in 
places not underlined in the above illustration. These 
places appear in bold in the following illustration; 
3no, even, odd, even, odd, even, 3no, even, odd, 
even, odd, even, 3no...  
  Excluded from the number line, are essentially two 
sets of numbers. These are 2 and its endless multiples 
(the set of even numbers) and 3 and its endless 
multiples 
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The Six Column Table of Natural Numbers 
  To illustrate further the natural spread of paired odd 
numbers on the sequence of natural numbers,  all 
natural numbers other than  1, 2 and 3, can be 
arranged  into six columns as follows; 
 
TABLE 1: THE SIX COLUMN TABLE SHOWING THE 
DISTRIBUTION OF PAIRED ODD NUMBERS, ON THE 
SEQUENCE OF NATURAL NUMBERS GREATER THAN 3 
(This table must be read horizontally).  
 
 4 5 6 7 8 
9 10 11 12 13 14 
15 16 17 18 19 20 
21 22 23 24 25 26 
27 28 29 30 31 32 
33 34 35 36 37 38 
39 40 41 42 43 44 
45 46 47 48 49 50 
51 52 53 54 55 56 
57 58 59 60 61 62 
63 64 65 66 67 68 
69 70 71 72 73 74 
75 76 77 78 79 80 
81 82 83 84 85 86 
… … … … … … 

  
  In table 1, above, paired odd numbers are in 
columns 3 and 5, both of which are in bold font. As 
indicated already these are the only two columns on 
the endless sequence of natural numbers where prime 
numbers of either set can be located. Numbers in 
columns 2, 4, and 6 are ultimately elements of the  set 
of even numbers which set is of the form (2N + 4) – 2 
where N is any natural number. Numbers  in column 
1 are ultimately odd multiples of 3,  all of whose 
ultimate form is  (6N + 9) – 6  where N is any natural 
number.   
  Note that  table 1 above exclude natural numbers 
less than 4 because of their distortion effect on it. For 
instance, it has been indicated that primes 2 and 3 are 
the only primes on the entire sequence of natural 
numbers which do not belong to either set of paired 
odd numbers. Instead, 3 belongs to column 1 where it 
is the only prime in that endless sequence of 
numbers, and 2 belong to column 6 where it is the 
only prime on that endless sequence of numbers 
 
B.   Splitting the Set of Paired Odd Numbers into 
Two 
  The set of paired odd numbers is  split into two 
different sets, these are; the set of first half pair odd 
numbers (SFHPON) and the set of second half pair 
odd numbers (SSHPON).  
  In table 1 above, the  first set is  indicated by 
column 3. Its elements are as follows;  SFHPON = 

{5, 11, 17, 23, 29, 35, ...}. These elements  are of the 
form (6N + 5) – 6 were N is any natural number. The 
second set is indicated by column 5, Its elements are 
as follows; SSHPON = {7, 13, 19, 25, 31, 37, 43, 49, 
...}. Elements of this second set are of the form 6N + 
7 – 6 were N is any natural number.  
 
  There are a three main reasons for splitting the set 
of paired odd numbers into two. Firstly, it  enables 
the systematic location of primes. Secondly, elements 
of the two sets are positioned differently from each 
other on the sequence of natural numbers. Table 1 
above partly confirms this fact. Last but not least, 
multiples within the two sets  do not share common  
sets of divisors in exactly the same way. Putting it 
differently, even though essentially the two sets have 
the same sets of divisors, their respective multiples 
are not the same. For example, whereas multiples of 
5 in the set of first half pair odd numbers are of the 
form (30N + 35) – 30 where N is any natural number 
, multiples of 5 in the set of second half pair odd 
numbers are of the form (30N + 25) – 30, where N is 
any natural number. These different sets of multiples 
are as follows;  
30N + 35 – 30 = {35, 65, 95, 125, 155, 185, 215, 245, 
275 …} 
30N + 25 – 30 = {25, 55, 85, 115, 145, 175, 205, 235, 
265…} 
 
C.   Splitting the Set of Primes into Two 
  Just as it is necessary to split the set of paired odd 
numbers into two, it is equally necessary to split the 
set of primes into two; the set  of  first half pair 
primes  (FHPP)] and  the set  of second half pair 
primes (SHPP)]. The split is owed to the fact that  the 
unified set of primes is a subset of the unified set of 
paired odd numbers.  FHPPs  are a  subset of the set 
of   FHPONs and SHPPs  a subset of SHPONs. 
 
  Elements of the two sets of primes are different 
from each other in terms of their  location on the 
sequence of natural numbers. The Position of FHPPs 
on the sequence is indicated by the form 3no + 2 
where the variable is an element of the solution set 
for the first formula. The position of SHPPs is of the 
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form 3no – 2 where the variable  is an element of the 
solution set for this second formula. With regard to 
their locations on the sequence of paired odd 
numbers, FHPPs primes are entirely located on the 
sequence of first half pair odd numbers (FHPONs)  
which numbers are of the form (6N + 5) – 6, where N 
is any natural number. The position of such primes 
on this particular sequence is of the form N = [(P1 + 
6) – 5 ] ÷ 3, where P1 is a confirmed prime. N in this 
regard is the numerical position of that confirmed 
prime on the sequence of FHPONs.  
 
  On the other hand, SHPPs are entirely located on 
the sequence of second half pair odd numbers 
(SHPONs) which numbers are of the form (6N + 7) – 
6, where N is any natural number. The position of 
such primes on that sequence is of the form  N = [(P2 
+ 6) – 7 ] ÷ 3, where P2 is a confirmed prime. 
Variable N in this respect is the numerical position of 
that confirmed prime on the sequence of SHPONs.  
 
  In short, Table 1 above illustrates this point further. 
FHPPs are only located in column 3 of the  table, 
while SHPPs will  only be found in column 5 of the 
table. 
Proof 
  We can determine both the location of any prime on 
the sequence of natural numbers and on the sequence 
of paired odd numbers by picking any known primes 
at random, say 83267, 76697,   and proceeding as 
follows; 
 
  To determine  the form to which each of the above 
primes belong, and to be able to determine their  
exact position on the sequence of natural numbers,  
we can test for the first form by using the expression  
no =  (P1 – 2) ÷ 3     and for the second form by the 
expression   no = (P2 + 2) ÷ 3.   In other words,  for 
the first form, we subtract  2 from a known prime and 
divide the difference by 3 to determine if the 
difference is an odd multiple of  3. For the second 
form, we add 2 to a known prime and divide the sum 
by 3 to determine if the difference is  an odd multiple 
of 3. We should also take note of the fact that if one 
form fails, then the prime in question belong to the 

other form.  
 
Example 1:  Set membership of Prime 83267 
  no =  (P1 – 2) ÷ 3; no =  (83267 – 2) ÷ 3;  no = 27755.  
Since the value of the expression is a whole number, 
it means that the difference of 83267 – 2  is an odd 
multiple of 3. Therefore, It is confirmed that prime 
83267, is a  FHPP ( P1 = 3no + 2 ). It also means that 
the exact location of prime 83267 on the number line 
is two  scale marks  ahead of, or to the right of  83265 
which we have established to be  an odd composite 
number divisible by 3. 
 
We can also  locate the actual positions of the above 
randomly picked prime on the sequence of FHPONs 
(column 3 of table 1), as follows;  N = [(P1 + 6) – 5] 
÷ 6 where P1 is a confirmed prime; N = [(83267 + 6) 
– 5] ÷ 6; N  = 13878  
  The value of the expression is 13878, which is a 
whole number. This confirms that prime 83267 is 
indeed an element of column 3 of the six column 
table and that its numerical position on the sequence 
of first half pair old numbers (column 3 of table 1) is 
13878. Note that if the value of the expression turns 
out to be a mixed number, then the prime in question 
has no numerical position among elements in column 
3, meaning that it is not an element of the set of  first 
half pair odd numbers. 
 
Example 2: Set Membership for Prime 76697,    
  We test the prime’s membership by using either of 
the two following forms; 
 no  =  (P1 – 2) ÷ 3 ; no = (P2 + 2) ÷ 3     
no =  (P1 – 2) ÷ 3; no =  (76697 – 2) ÷ 3; no =  25565; 
therefore prime 76697 is also a  FHPP. Its specific 
location on the number line is  two  scale marks 
ahead of  76695 which is an odd composite number 
divisible by 3. 
  The location of this prime on column 3 of the six 
column table can be confirmed as follows; 
N = {|(P1 + 6)| – 5}÷ 6 ; N = {|(76697 + 6)| – 5}÷ 6; 
N = 12,783 
  This confirms that this prime is element number 
12783 of the set of first half pair odd numbers and 
that its actual location on the six column table is 
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column 3 of row number 12783. Note that if any 
confirmed prime fails the test for membership of the 
first set,  it will definitely pass the test for 
membership of the second  set, and vice versa.  
Set Membership  for  Mersenne Primes. 
  As already stated, any prime other than 2 and 3, 
must be an element of either of the two sets.  To 
prove this  point, we can  identify the set membership 
for the second, third and fourth Mersenne  primes 
corresponding to  P = (3,5,7} in the Mersenne 
formula. This set of primes is as follows; {7,31,127}. 
Set membership for each of these primes can be 
established  as follows;  
  Test for either of the following 2 forms; 
no  =  (P1 – 2) ÷ 3 ; no = (P2 + 2) ÷ 3     
Set Membership for Primes 7, 31 and 127 
  We pick the second form because it is evident from 
the text above that all the above three primes are 
elements of the set of second half pair primes. We 
can confirm this as follows; Prime 7; no = (P2 + 2) ÷ 
3; no = (7 + 2) ÷ 3;  no = 3. Note that the  specific 
location of prime 7 on the sequence of natural 
numbers is  two  scale marks on the left of 9,  (7 + 2 
above ) which is an odd multiple of 3 as the above 
expression confirms 
Prime 31; no = (P2 + 2) ÷ 3; no = (31 + 2) ÷ 3;  no = 
11. 
  Note that the  specific location of prime 31 on the 
sequence of natural numbers is  two  scale marks on 
the left of 33,  (31 + 2 above ) which is also an odd 
multiple of 3 as the above expression confirms. 
Prime 127;  no = (P2 + 2) ÷ 3; no = (127 + 2) ÷ 3;  no = 
43. 
   Note that the  specific location of prime 127 on the 
sequence of natural numbers is  two  scale marks on 
the left of 129,  (127 + 2 above ) which is yet another  
odd multiple of 3 as the above expression confirms. 
  Since the values of all the three expressions are 
whole numbers it is confirmed that all the three 
Mersenne primes are elements of the set of SHPPs. 
Furthermore,  Note that if any of these examples of 
the Mersenne primes were tested for membership of 
FHPPs  the values of all the three  expressions will be 
mixed numbers.  
  The location of Mersenne Primes 7, 31 and 127 on 

the sequence of second half pair odd numbers 
(column 5 of the six column table) can also be 
confirmed as follows;  
N = {[(P1 + 6)] – 7}÷ 6; N = {[(7 + 6)] – 7}÷ 6;  ; N 
= 1 
N = {[(P1 + 6)] – 7}÷ 6;  N = {[(31 + 6)] – 7}÷ 6;   N 
= 5 
N = {[(P1 + 6)] – 7}÷ 6;  N = {[(127 + 6)] – 7}÷ 6;  N 
= 21 
  The above expressions confirm that all the three 
Mersenne primes indicated above are elements of the 
set of second half pair odd numbers (SHPONs) which 
set is represented by column 5 of the six column 
table. The above expressions show that prime 7 is the 
first element of this set. Its actual position on the six 
column table is column 5,  row number 1. Prime 31 is 
the 5th element of this set. Its location is column 5  
row number 5.  Prime 127 is element number 21 in 
this set. Its actual position on the six column table is  
column 5,  row number 21.   
  It is  likely,  (subject to further investigation ) that 
all Mersenne primes are SHPPs. It is also probable 
that  Mersenne composites are elements of the set of 
SHPONs. One example is Mersenne composite 2047 
generated by the form P = 2q – 1 where q is prime 11.  
   In the expression 2047 = 3no – 2,  variable no is 683 
which is a whole number.  On the other hand, in the 
expression 2047 =  3no + 2,  variable no is a mixed 
number meaning that composite number 2047 is not 
an element of the set of first half pair odd numbers 
(FHPONs)  but of the second set. We can also 
confirm the location of this Mersenne composite on 
the six column table as follows; 
N = {[(P1 + 6)] – 7}÷ 6; N = {[(2047 + 6)] – 7}÷ 6; N 
= 341 
  This confirms that Mersenne composite number 
2047 is  element  number 341 in the set of SHPONs . 
Its actual location on the six column table is  column 
5, row number 341.   
Set Membership for Pierre de Fermat Prime and 
Composite 
  The Pierre de Fermat prime of the form 216 + 1 can 
be tested for membership of the first set of primes as 
follows; no =  (P1 – 2) ÷ 3; no =  (65536 – 2) ÷ 3; no =  
21844.67; and for membership of the second set  as 
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follows; no =  (P2 + 2) ÷ 3; no =  (65536 + 2) ÷ 3; = 
21846.  
  Equally, the Fermat composite of the form 232 + 1 
can be tested for membership of the set of first half 
pair odd numbers as follows; N = [(X + 6) – 5] ÷ 6; N 
= [(4294967297 + 6) – 5] ÷ 6  N = 715827883 and 
for the second set as follows;  N = [(X + 6) – 7] ÷ 6; 
N = [(4294967297 + 6) – 7] ÷ 6; N = 715827882.667.  
  The  above expressions has established that the 
Fermat prime is a first half pair prime (FHPP), while 
the Fermat composite is an element of the set of first 
half pair odd numbers (FHPONs). With regard to the 
location of these two numbers on the six column 
table, it has been established that both the prime and 
the composite are located in column 3 but on 
different rows. The location of the former is row 
21846 while that of the latter is row 715827883  
D.   Divisors of Natural Numbers 
  Each and every number on the sequence of natural 
numbers is an even divisor of numbers ahead of it 
and which numbers are located at intervals equal to 
its absolute value. The first natural number, which is 
1, divides each and every number ahead of it. 2 
divides every second number ahead of it. 3 divides 
every third number.  It is like this for each and every 
succeeding number endlessly. However, whereas 
each and every number on the sequence is an even 
divisor of succeeding numbers located at intervals 
equal to its absolute value, there are some numbers 
whose location on the sequence is not equivalent to 
any of its preceding numbers’ absolute values or 
division intervals. Such are the prime numbers which 
only 1 divides evenly because it is the only number 
on the sequence whose division interval being 1, 
skips no number on the sequence.  
Most Appropriate Divisors 
  There are some divisors that are themselves 
divisible by divisors that precede them. These are 
divisors that are located at intervals equal to the 
absolute values of preceding divisors. Multiples of 
such divisors are merely subsets of sets of multiples 
of their initial divisors which are themselves 
indivisible. In essence therefore, only primes 
numbers are the ultimate or most appropriate divisors 
of each and every divisible number on the sequence 

of natural numbers. The implication of this is that the 
most appropriate set of divisors to use in testing the 
prime status of any odd number is not just a set of 
any odd numbers less than the square root of that 
number but only prime numbers up to the square root 
of that number.  
E.   Divisors of Paired Odd Numbers 
  In this text , the attention is not on each and every 
divisor on the sequence of natural numbers but only 
on divisors of paired odd numbers (PONs) because as 
has been indicated already this is the only set of 
numbers in which all primes other than 2 and 3, are 
located. As mentioned earlier, there are two sets of 
PONs; These are; the set of first half pair odd 
numbers (FHPONs) within which first half pair 
primes (FHPPs) are found, and the set of second half 
pair odd numbers (SHPONs) which is the location for 
second half pair primes (SHPPs). The two sets have 
each, two sets of divisors unique to itself.   
  The set of FHPONs has two sets of divisors unique 
to itself. These are the set of visible divisors  and the 
set of invisible divisors. 
  The set of visible divisors, is a set of elements of the 
form (6N + 5) – 6  where N is any natural number. 
This set is as follows; {5, 11, 17, 23, 29, 35, 41….} 
Elements of this set begin with 5 and proceed 
endlessly in ascending order at a uniform gap of 6. In 
this text, this set has been called ‘the set of visible 
divisors of first half pair odd numbers’ because being 
the same numbers on the sequence of first half pair 
odd numbers they are self evident divisors of 
multiples among those numbers.  This is so because 
each and every number appearing on the sequence 
has an endless chain of multiples ahead of it, which 
multiples are situated at intervals equal to its absolute 
value. The first divisor 5, divides every fifth number 
on the sequence. The second divisor 11, divides 
every eleventh number, the third number which is 13 
divides, every thirteenth number, and so on in that 
order endlessly. However, unlike divisors on the 
sequence of natural numbers whose absolute values 
not only equal their division intervals but also the 
actual difference between each and every one of their 
endless multiples, the absolute value of visible 
divisors of first half pair odd numbers do not equal 
the actual differences between each and every one of 
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their endless multiples on that particular sequence. 
Instead, actual differences between each and every 
multiple (actual division interval)  of any given first 
half pair odd number divisor  is of the form   7N – N  
where N is any such divisor and where 7N is that 
divisor’s first multiple on the sequence of first half 
pair odd numbers.  
Example 
  Pick any divisor of the form 6N +5 – 6 where N is 
any natural number, let us say 641, and establish its 
first multiple on the sequence of first half pair odd 
numbers and the difference between each and every 
one of its multiples on the sequence. To establish this 
number’s first multiple on the sequence, we 
substitute 641 for N in the formula X = 7N and 
evaluate the expression as follows; X = 7 x 641: X = 
4,487.  The value of the expression 4,4387 is divisor 
641’ s first multiple on the sequence. To establish   
the difference between each and every one of divisor 
641’s  multiples on the sequence, we substitute 641 
for N in the formula X = 7N – N ; and evaluate the 
expression as follows; X = (7 x 641) – 641 ; X = 
3846. The value of the expression is 3846. This 
means that even if  divisor 641 evenly divides every 
641st number on the sequence of first half pair odd 
numbers,  the  actual difference between each and 
every one of its endless multiples is not its absolute 
value but 3846 which figure is six times its absolute 
value.  
  The second set of divisors of first half pair odd 
numbers which has been called ‘the set of invisible 
divisors of first half pair odd numbers’  is a set of 
elements of the form (6N + 7) – 6  where N is any 
natural number. This set is as follows {7, 13, 19, 25, 
31, 37, 43, 49 …} Elements of this set begin with 7 
and proceed endlessly in ascending order at a 
uniform gap of 6. This set has been named ‘the set of 
invisible divisors  of first half pair odd numbers’ 
because none of its elements are elements of the set 
of first half pair odd numbers and yet each and every 
element of this set of divisors has endless multiples 
within the set of first half pair odd numbers. In short, 
the invisibility is owed to the fact that despite having 

multiples within the set of first half pair odd 
numbers, actual elements of this second set divisors 
are not part of the set of first half pair odd numbers. 
Invisible divisors’ first multiples on the sequence of 
first half pair odd numbers are of the form 5N where 
N is any such divisor. The differences between each 
and every multiple of any of these divisors is of the 
form 5N + N where N is any such divisor.    
Example 
  Pick any invisible divisor of the form (6N +7) – 6 
where N is any natural number, let us say 113, and 
establish its first multiple on the sequence of first half 
pair odd numbers and the difference between each 
and every one of its multiples on the sequence. To 
establish this number’s first multiple on the sequence, 
we substitute 113 for N in the formula X = 5N and 
evaluate the expression as follows; X = 5 x 113: X = 
565.  The  value of the expression 565 is invisible 
divisor 113’ s first multiple on the sequence. To 
establish   the difference between each and every one 
of invisible divisor 113’s  multiples on the sequence, 
we substitute 113 for N in the formula X = 5N + N ; 
and evaluate the expression as follows; X = (5 x 113) 
+ 113 ; X = 678. The value of the expression is 678. 
This means that invisible divisor 113’s multiples on 
the sequence of first half pair odd numbers have a 
difference of 678 in between each other. It also 
follows that the divisor’s second multiple is its first 
multiple plus 678, which is 565 + 678 = 1243. The 
third multiple which is 1243 + 678 = 1921. The rest 
of its multiples continue endlessly in the order.   
  Knowledge of these two separate sets of divisors is 
key to the identification of FHPPs on the sequence of 
FHPONs because primes on this particular sequence 
are those numbers that are not multiples of any 
element of either of the two sets of divisors. In other 
words, it is only the multiples of elements of the two 
sets of divisors above that constitute the only 
composite numbers on the sequence of FHPONs.  
  The table below shows the actual distribution of 
FHPPs on the sequence of FHPONs; 
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TABLE 2 (a): THE DISTRIBUTION OF FIRST HALF PAIR PRIMES ON THE SEQUENCE OF FIRST HALF PAIR ODD NUMBERS 
 

36  30 66 102 138 174 210 246 282 318 354 390 426 462 ... 

                

 6 5 11 17 23 29 35 41 47 53 59 65 71 77 … 

42 7 35 77 119 161 203 245 287 329 371 413 455 497 539 … 

78 13 65 143 221 299 377 455 533 611 689 767 845 923 1001 … 

114 19 95 209 323 437 551 665 779 893 1007 1121 1235 1349 1463 … 

150 25 125 275 425 575 725 875 1025 1175 1325 1475 1625 1775 1925 … 

186 31 155 341 527 713 899 1085 1271 1457 1643 1829 2015 2201 2387 … 

222 37 185 407 629 851 1073 1295 1517 1739 1961 2183 2405 2627 2849 … 

258 43 215 473 731 989 1247 1505 1763 2021 2279 2537 2795 3053 3311 … 

294 49 245 539 833 1127 1421 1715 2009 2303 2597 2891 3185 3479 3773 … 

330 55 275 605 935 1265 1595 1925 2255 2585 2915 3245 3575 3905 4235 … 

366 61 305 671 1037 1403 1769 2135 2501 2867 3233 3599 3965 4331 4697 … 

402 67 335 737 1139 1541 1943 2345 2747 3149 3551 3953 4355 4757 5159 … 

438 73 365 803 1241 1679 2117 2555 2993 3431 3869 4307 4745 5183 5621 … 

474 79 395 869 1343 1817 2291 2765 3239 3713 4187 4661 5135 5609 6083 … 

510 85 425 935 1445 1955 2465 2975 3485 3995 4505 5015 5525 6035 6545 … 

546 91 455 1001 1547 2093 2639 3185 3731 4277 4823 5369 5915 6461 7007 … 

582 97 485 1067 1649 2231 2813 3395 3977 4559 5141 5723 6305 6887 7469 … 

618 103 515 1133 1751 2369 2987 3605 4223 4841 5459 6077 6695 7313 7931 … 

654 109 545 1199 1853 2507 3161 3815 4469 5123 5777 6431 7085 7739 8393 … 

690 115 575 1265 1955 2645 3335 4025 4715 5405 6095 6785 7475 8165 8855 … 

726 121 605 1331 3057 2783 3509 4235 4961 5687 6413 7139 7865 8591 9317 … 

… … … … … … … … … … … … … … … … 

 
 
  
On table 2 (a) above, the first row is the sequence of 
FHPONs which comprises of both FHPPs and first 
half pair composite odd numbers. The rest of the 
rows are entirely first half pair composite odd 
numbers extracted from the first row to leave only 
FHPPs on that row. This extraction is such that the 
table indicates  each and every divisor’s endless 
multiples stretching ahead of it on the sequence of 
FHPONs. Multiples of  visible divisors are indicated 
by columns while those of invisible divisors are 
indicated by rows.  In order to identify primes from 
the first row, we simply extend it to any desirable 
stretch and eliminate from it any numbers appearing 
in the rest of the rows, making sure that each and 
every such row or column is also extended up to the 
limit chosen for the first row.  On table 2 (a) above, 
the first row has been extended to 77 and the 
numbers in black font are the only numbers indicated 

as composites by the rows and columns up to that 
limit. On table 2 (b) below, the first row has been 
extended to 2591 and elements of rows and columns 
up to that limit eliminated to leave only first half pair 
primes. 
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TABLE 2 (b): THE DISTRIBUTION OF FIRST HALF PAIR PRIMES ON THE SEQUENCE OF FIRST HALF PAIR ODD NUMBERS UP 
TO THE LIMIT OF 2,591 (This table must be read horizontally). 
 

5 11 17 23 29  41 47 53 59  71 
 83 89  101 107 113   131 137  
149   167 173 179  191 197    
 227 233 239  251 257 263 269  281  
293   311 317     347 353 359 
   383 389  401   419  431 
 443 449  461 467    491 497 503 
509  521      557 563 569  
 587 593 599   617    641 647 
653 659   677 683   701   719 
   743   761  773    
797  809  821 827  839   857 863 
  881 887    911   929  
941 947 953   971 977 983     
1013 1019  1031   1049  1061    
 1091 1097 1103 1109       1151 
 1163   1181 1187 1193    1217 1223 
1229     1259   1277 1283 1289  
1301 1307  1319       1361 1367 
1373      1409   1427 1433 1439 
 1451     1481 1487 1493 1499  1511 
 1523     1553 1559  1571  1583 
  1601 1607 1613 1619   1637    
 1667     1697  1709  1721  
1733         1787   
 1811  1823    1847    1871 
1877  1889  1901 1907 1913   1931   
1949    1973 1979   1997 2003   
 2027  2039    2063 2069  2081 2087 
 2099  2111   2129  2141  2153  
       2207 2213    
2237 2243    2267 2273    2297  
2309    2333 2339  2351 2357    
2381  2393 2399  2411 2417 2423   2441 2447 
 2459   2477        
 2531  2545 2549     2579  2591 

 

F.   Most Appropriate Divisors of First Half Pair 
Odd Numbers 
  The two sets of divisors of first half pair odd 
numbers comprises of divisors that are indivisible by 
any of the preceding divisors and those that are 
divisible by some divisors preceding them. Since 
multiples of divisible divisors are complete subsets of 
sets of multiples of the divisible divisors’ initial 
divisors, the most appropriate set of divisors for first 
half pair odd numbers is a combined set of first and 
second half pair primes. This implies  that the prime 
status of any first half pair odd number, is more 
efficiently determined by the sort of trial division that 
involves only primes other than 2 and 3, less than the 
square root of that number. On table 2(b) above the 
eliminated composite numbers are first half pair odd 

number  multiples of primes other than 2 and 3, less 
than the square root of 2,591, all of which multiples 
are less than the 2591 limit. This set of primes is as 
follows; { 5,7, 11, 13,17,19,23,29,31,37,41, 43} 
 
G.   Divisors of Second Half Pair Odd Numbers 
  The set of second half pair odd numbers within 
which second half pair primes are located have two 
sets of divisors also. These are the set of visible 
divisors and the set of invisible divisors. The first set 
has elements of the form  (6N + 7) – 6 where N is 
any natural number. The set is as follows; {7, 13, 19, 
25, 31, 37, 43 …}. Its elements begin with 7 and 
proceed endlessly in ascending order at a uniform 
gap of 6. The set has been called a set of visible 
divisors of SHPONs because its elements are 
identical to elements of the set of SHPONs and are 
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therefore their self evident divisors. First multiples of 
each and every one of these divisors on the sequence 
of second half pair odd numbers are of the form 7N 
where N is any such divisor. The differences between 
each and every multiple of any of these divisors is of 
the form 7N – N, where N is any such divisor.    
Example 
  Pick any divisor of the form 6N +7 – 6 where N is 
any natural number, let us say 113 yet again and  
establish its first multiple on the sequence of second  
half pair odd numbers and the difference between 
each and every one of its multiples on the sequence.  
  To establish this divisor’s first multiple on the 
sequence, we substitute 113 for N in the formula X = 
7N and evaluate the expression as follows; X = 7 x 
113: X = 791. The value of the expression 791 is 
visible divisor 113’ s first multiple on the sequence. 
To establish   the difference between each and every 
one of visible divisor 113’s  multiples on the 
sequence, we substitute 113 for N in the formula X = 
7N – N ; and evaluate the expression as follows; X = 
(7 x 113) – 113  ; X = 678. The value of the 
expression is 678. This means that invisible divisor’s 
multiples on the sequence of second  half pair odd 
numbers have a difference of 678 in between each 
other. It also follows that the divisor’s second 
multiple is its first multiple plus 678, which is 791 + 
678 = 1469. The third multiple  is 1469 + 678 = 
2147. The rest of its multiples continue in that order 
endlessly.   
  The second set, the set of invisible of divisors of 
second half pair odd numbers have elements of the 
form (6N + 5) – 6 where N is any natural number. 
The set is as follows {5, 11, 17, 23, 29, 35, 41, 47 
…}. Its elements begin with 5 and  proceed endlessly 
in ascending order at a uniform gap of 6. This set has 
been called a set of invisible divisors of second half 
pair odd numbers because even if none of its 
elements are elements of the set of first half pair odd 
numbers, each and every one of its elements have 
endless multiples on that sequence of numbers. Such 
divisors’ first multiples on the sequence of second 
half pair odd numbers are of the form 5N where N is 
any such divisor. The difference between each and 
every one of their multiples are of the form 5N + N 
where N is any such divisor 

Example 
  Pick any divisor of the form (6N +5) – 6 where N is 
any natural number, let us say 641 even this time, and 
establish its first multiple on the sequence of second  
half pair odd numbers and the difference between 
each and every one of its multiples on the sequence.  
  To establish this invisible divisor’s first multiple on 
the sequence, we substitute the divisor for N in the 
formula X = 5N and evaluate the expression as 
follows; X = 5 x 641; X = 3205. The value of the 
expression, 3205, is invisible divisor 641’s first 
multiple on the sequence of second half pair odd 
numbers. To establish the difference between each 
and every one of its multiples on the sequence, We 
substitute this same divisor for N in the formula X = 
5N + N and evaluate it as follows; X = (5 x 641) + 
641; X = 3846. The value of the expression, 3846, is 
the difference between each and every multiple of  
this particular invisible divisor  on the sequence of 
second half pair odd number. This also implies that 
the divisor’s second multiple on this particular 
sequence is 3205 + 3846 = 7051. Its third multiple is 
7051 + 3846 = 10897, and so on in that order 
endlessly. Knowledge of the two separate sets of 
divisors is key to the identification of Second half 
pair primes on the sequence of second half pair odd 
numbers because primes on this particular sequence 
are those numbers that are not multiples of any 
element of either of the two sets of divisors. In other 
words, it is only the multiples of elements of the two 
sets of divisors above that constitute the only 
composite numbers on the sequence of second half 
pair odd numbers.  
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TABLE 3(a): THE DISTRIBUTION OF SECOND  HALF PAIR PRIMES ON THE SEQUENCE OF SECOND HALF  PAIR ODD 

NUMBERS  
 

36 30  66  102  138  174  210  246  282 … 
36  42  78  114  150  186  222  258  … 
6 5  11  17  23  29  35  41  47 … 
                 
6  7  13  19  25  31  37  43  … 
 25 49 55 91 85 133 115 175 145 217 175 259 205 301 235 … 
 55 91 121 169 187 247 253 325 319 403 385 481 451 559 517 … 
 85 133 187 247 289 361 391 575 493 589 595 703 697 817 799 … 
 115 175 253 325 391 475 529 625 667 775 805 925 943 1075 1081 … 
 145 217 319 403 493 589 667 775 841 961 1015 1147 1189 1333 1363 … 
 175 259 385 481 595 703 805 925 1015 1147 1225 1369 1435 1591 1645 … 
 205 301 451 559 697 817 943 1075 1189 1333 1435 1591 1681 1849 1927 … 
 235 343 517 637 799 931 1081 1225 1363 1519 1645 1813 1927 2107 2209 … 
 265 385 583 715 901 1045 1219 1375 1537 1705 1855 2035 2173 2365 2491 … 
 295 427 649 793 1003 1159 1357 1525 1711 1891 2065 2257 2419 2623 2773 … 
 325 469 715 871 1105 1273 1495 1675 1885 2077 2275 2479 2665 2881 3055 … 
 355 511 781 949 1207 1387 1633 1825 2059 2263 2485 2701 2911 3139 3337 … 
 385 553 847 1027 1309 1501 1771 1975 2233 2449 2695 2923 3157 3397 3619 … 
 … … … … … … … … … … … … … … … … 

 
  On table 3 (a) above,  the first three rows  comprises 
of headers. The third row comprises of invisible 
divisors of second half pair odd numbers. The first 
amongst them indicates gaps between multiples of 
each and every visible divisor. The second row 
indicates gaps in between multiples of invisible 
divisors. The third row indicates the set of invisible 
divisors. 
 
  On the main text of the table, the first row indicates 
the sequence of second half pair odd numbers which 
comprises of both second half pair primes and second 
half pair composite odd numbers. The rest of the 
rows are entirely second  half pair composite odd 
numbers extracted from the first row to leave only 
second half pair primes on that row. This extraction 
is such that the table indicates  each and every 
divisor’s endless multiples stretching ahead of it on 

the sequence of second half pair odd numbers. 
Columns in black font indicate multiples of invisible 
divisors. Those in bold font indicate multiples of 
visible divisors.      
 
  In order to identify second half pair primes from the 
first row, we simply extend it to any desirable stretch 
and eliminate from it any numbers appearing in the  
rest of the rows, making sure that each and every 
such row is also extended up to the limit chosen for 
the first row.  On table 3 (a) above, the first row has 
been extended to 43 and the only number in black 
font (25) is the  only number indicated as composite 
by the columns up to that limit. On table 3 (b) below, 
the first row has been extended to 2593 and elements 
of columns up to that limit eliminated to leave only 
second half pair primes.  

 
TABLE 3 (b): THE DISTRIBUTION OF SECOND HALF PAIR PRIMES ON THE SEQUENCE OF SECOND HALF PAIR ODD NUMBERS UP TO THE LIMIT OF 

2,593. (This table must be read horizontally) 
 

7 13 19  31 37 43   61 67 73 
79   97 103 109   127  139  
151 157 163   181  193 199  211  
223 229  241     271 277 283  
  307 313   331 337  349   
367 373 379   397  409  421  433 
439   457 463    487  499  
  523   541 547    571 577 
   601 607 613 619  631  643  
 661  673   691   709   
727 733 739  751 757  769   787  
  811  823 829    853 859  
 877 883    907  919   937 
    967    991 997  1009 
 1021  1033 1039  1051  1063 1069   
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1087 1093    1117 1123 1129    1153 
  1171     1201  1213   
1231 1237  1249     1279  1291 1297 
1303   1321 1327        
 1381   1399    1423 1429   
1447 1453 1459  1471  1483 1489     
  1531  1543 1549   1567  1579  
 1597  1609  1621      1657 
1663 1669    1693 1699    1723  
 1741 1747 1753 1759   1777 1783 1789  1801 
    1831     1861 1867 1873 
1879         1933   
1951      1987 1993 1999  2011 2017 
 2029    2053     2083 2089 
   2113   2131 2137 2143   2161 
  2179    2203   2221   
2239  2251   2269  2281 2287 2293   
2311     2341 2347    2371 2377 
2383 2389        2437   
  2467 2473     2503   2521 
  2539  2551 2557      2593 

 
H.   Most Appropriate Divisors of Second Half Pair 
Odd Numbers 
  The two sets of divisors of second half pair odd 
numbers comprises of divisors that are indivisible by 
any of the preceding divisors and those that are 
divisible by some divisors preceding them. Since 
multiples of divisible divisors are complete subsets of 
sets of multiples of the divisible divisors’ initial 
divisors, the most appropriate set of divisors for 
second half pair odd numbers is a combined set of 
first and second half pair primes. Therefore, the 
prime status of any second half pair odd number, is 
more efficiently determined by the sort of trial 
division that involves only primes other than 2 and 3, 
less than the square root of that number. On table 
3(b) above the eliminated composite numbers are 
second half pair odd number  multiples of primes 
other than 2 and 3, less than the square root of 2,593, 
all of which multiples are less than the 2593 limit. 
This set of primes is as follows; {5, 7, 11, 13, 17, 19, 
23, 29, 31, 37, 41, 43} 
 
Conclusion 
  In concluding this section, it is worth noting that the 
fact that the sequence of natural numbers  comprises 
of only primes and their multiples, which multiples 
are systematically distributed on the sequence, 
implies that  primes are not randomly distributed on 
that sequence. Rather their perfect regularity on that 
sequence is a function of the self evident perfect 

regularity in the distribution of their multiples. 
Similarly, the fact that the sequence of paired odd 
numbers comprises of  only primes and their 
multiples, and which multiples are also 
systematically located on that sequence, implies that 
primes are not randomly distributed on that sequence 
either.  The systematic distribution of primes on 
either sequence, is such that each and every divisor 
indicates its own endless multiples stretched out 
ahead of it and in the process, revealing those 
numbers, which no single divisor, among  a totality 
of divisors for any given limit of numbers on the 
sequence, is  able to indicate or divide. This is 
precisely the reason why valid formulas for locating 
primes can be found. 
 

III. THE NEW STANDARD FORMULA 

  Having given background information this section 
now presents the new standard formula   as follows; 
P = 3nso ± 2, where nso is any special odd number 
equal to or greater than 1, which numbers belong to  
appropriate solution sets for the formula.  
  In the formula, the variable nso represent specific 
odd numbers that must replace the variable if the 
formula has to yield only prime numbers. The 
depressed ‘so’ at the baseline of the variable is meant 
to indicate the fact that it is not any natural number 
that can be used as a substitute for the variable,  but 
only specific odd numbers that are elements of the 
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formula’s appropriate solution sets. For example, 
even numbers cannot replace the variable. At the 
same time, it is not each and every odd number that 
can replace it. If appropriate solution sets are 
identified and their elements used to replace the 
variable , each and every value to be obtained will be 
a prime.  If elements of these solution sets are 
systematically substituted for the variable one after 
another, the formula will yield each and every 
succeeding prime beginning with prime 5 and going 
on without end.  
A.   Splitting the Formula into Two  
  To use this formula effectively, it is necessary to 
split it into two complementary ones. These  two 
separate but complementary formulas are as follows; 

P1 = 3nso + 2 where nso is any specific  odd 
number equal to or greater than 1, which 
numbers belong to a set of appropriate solutions 
for this particular formula, 
 
P2 = 3nso- 2 where nso is any specific odd 
number equal to or greater than 3, which 
numbers belong to a set of appropriate solutions 
for this particular formula, 

  The two formulas above  are complementary 
because they complement each other, or take turns in 
locating each and every prime on the sequences of 
natural numbers. The reason for having these two 
formulas  is that even though the current practice is 
to treat all primes as belonging to one single set, 
primes  belong to two different sets.  These are the   
set of FHPPs and the set of SHPPs.  

 
B.   The First Complementary Formula 
  The first complementary formula; P1 = 3nso + 2, is 
the standard formula for finding all FHPPs. Such 
primes extend from 5 and continue endlessly with a 
hidden perfect regularity. This hidden  perfect 
regularity is  implied by a perfect  regularity  in the 
even divisibility of natural numbers created by a  
systematic spread  of natural numbers other than unit, 
as even divisors of their endless multiples ahead of 
them, which multiples are  located at intervals equal 
to their  absolute values,  on the sequence of natural 
numbers. This set of primes is as follows;    

SFHPP = {5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 
89, 101,... }.  
  The solution set for the formula for finding first half 
pair primes is as follows; 
 SSFHPPF = {1, 3, 5, 7, 9, 13, 15, 17, 19, 23, 27, 29, 
33, 35, 37, 43, 45, 49, 55, 57, 59, 63 …} 
Elements of this set of solutions begin from unit and 
continue endlessly in hidden perfect regularity, This 
hidden perfect regularity is indicated  by the perfect 
regularity in the distribution of non-substitutes on the 
sequence of odd numbers. Elements of this set are 
specific odd numbers each of which, when 
substituted for the variable in the standard formula 
for finding FHPPs, will make the formula yield such 
a prime. In addition, elements of this set are so 
systematically laid out that when each and every 
element is substituted for the variable,  one after 
another,  from the first element to each and every one 
of them in their endless chain of succession,  there is 
not a single FHPP on the entire sequence of natural 
numbers that will not be found 
C.   The Second Complementary Formula  
  The second complementary formula; P2 = 3nso – 2, is 
a standard   formula for SHPPs.  Such primes extend 
from 7 and continue endlessly with a hidden perfect 
regularity. This  regularity is  confirmed by a perfect 
regularity  in the even divisibility of natural numbers 
determined  by a  systematic spread  of natural 
numbers other than unit  as even divisors of their 
endless multiples ahead of them, which multiples are  
located at intervals equal to their  absolute values,  on 
the sequence of natural numbers. This set of primes is 
as follows;    
SSHPP= {7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 
103, 109,...}.  
  The solution set for the formula for finding SHPPs  
is as follows; 
 SSSHPPF = { 3, 5, 7, 11, 13, 15,  21, 23, 25,  27,  
33, 35, 37, 43, 47, 51, 53, 55, 61, 65,…}  
Elements of this set begin from 3 and continue 
endlessly at an ascending order of hidden perfect 
regularity. The regularity is established by the 
systematic distribution of the formula’s non-
substitutes on the sequence of odd numbers. 
Elements of this solution set are specific odd 
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numbers,  each one of which,  when substituted for 
the variable in the standard formula for SHPPs will 
yield such a prime. These elements are also so 
systematically spread out that when each and every 
one of them replaces the variable  in their endless 
chain of succession, there is not a single prime of this 
type on the entire sequence of natural numbers that 
will be missed.  
The Infinitude of Primes of Either Set 
  Each of the two solution sets has endless elements 
because as has been long established, primes are 
endless on the sequence of natural numbers. The 
oldest prove is said to be Euclid’s Theorem who 
around 300 BC submitted that the primes are endless 
on the sequence, even though their density within 
natural numbers is ZERO. To prove the infinitude of 
primes, Euclid had argued that if elements of any 
finite set of primes were multiplied together, and unit 
is added to the product, the sum obtained will be 
indivisible by any of the elements of the finite set of 
primes. His   argument was  that the sum obtained 
will either be another prime not in the initial finite 
set, or a composite whose prime factors are not in the 
original set as well.  He  reasoned that whether the 
resulting sum is a prime or not, there is at least one 
more prime that was not in the initial finite set of 
primes. He thus had concluded that there are more  
primes than any given finite number (Euclid, 
Elements; Book IX, Prospects 20). Even though 
Euclid was right about primes being endless, and his 
proof valid, his statement that their intensity among 
natural numbers is ZERO contradicted his correct 
position on their infinitude on the sequence. 
  Do primes completely fed away on the sequence of 
natural numbers? It is very easy to believe that they 
do. Consider the fact that each and every natural 
number on the sequence is an even divider of each 
and every number located ahead of it at intervals 
equal to its absolute value. 2 divides every second 
number ahead of it on the sequence, meaning that 50 
percent of numbers on the entire endless sequence are 
composites divisible by 2. In short, 2  subtracts 50 
percent of the numbers from the entire sequence to 
leave only 50 percent. The  number 3, divides every 
third number ahead of it on the sequence, 4, divides 
every forth number. Five divide every fifth number 

and so on in that order endlessly. This gives the 
impression that as more and more divisors join the 
queue, a definite stage will be reached when all 
indivisible numbers fed away completely. However, 
the actual situation is far from this assumption. Other 
than 2 which picks out 50 percent of divisible 
numbers from the sequence, no other number takes as 
much as its  absolute value suggests. For example 
even if 3 divides every third number on the sequence, 
it will not subtract a third from the 50 percent of 
numbers on the sequence that 2 cannot divide, 
because 50 percent of its multiples are also multiples 
of 2. In addition, divisible divisors do not lessen the 
intensity of primes on natural numbers ahead of them 
because their multiples are entire subsets of sets of 
multiples of their initial divisors. 
  In short, it is only primes that lessen the intensity of 
indivisible numbers among natural numbers ahead of 
them on the sequence. But would the pile up of 
primes as even divisors of their multiples located 
ahead of them result in a total elimination of 
indivisible numbers at some definite point? Again the 
answer is no, because the bigger the prime, the more 
multiple it shares with preceding divisors, and the 
lesser the numbers it is able to divide amongst 
numbers that are indivisible by all numbers that 
precede it. To be specific, when for instance  a prime 
number enters a queue of divisors on the sequence of 
first or second half pair odd numbers, its first set of 
multiples are also multiples of primes that precede it 
on that sequence. Thereafter, its subsequent multiples 
are such that each and every multiple located at 
intervals equal to the absolute value of each and 
every preceding prime are already multiples of such 
preceding primes. It is precisely this factor that 
makes it impossible for indivisible numbers to fed 
away completely on the sequence. In short, the  
‘subtraction’ of ‘remaining’ indivisible numbers by 
succeeding indivisible divisors joining the endless 
queue of divisors will not result in ZERO because 
there is in actual fact no subtraction taking place. 
Instead there is the materialization  of more and more 
indivisibles at larger and larger distances on the 
sequence  
  In order to relate the nature and character of natural 
numbers to the endless spread of primes at wider and 
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wider distances on the sequence,  we can also 
consider natural numbers as varying from each other 
in terms of their variations in length. The varying 
length can be determined by a number of units each 
and every number contains. In this regard, the 
number 1 could be said to be one unit long. 2 is two 
units long, 3 is three units long, 4 is four units long, 
and so on in that order for each and every succeeding 
number  endlessly. With this conception, the process 
of determining which number is a prime and which 
one is a composite,  becomes a question of trying to 
achieve the exact length of a larger number by first 
arranging smaller numbers of equal lengths into even 
groups reflecting any of the preceding numbers and 
then joining them together and matching their sum 
with the actual length of the bigger number being 
tested. If the actual length of the number being tested 
cannot be achieved by a total length of any such even 
groups, then that number is a prime.  In other words,  
the divisibility of any natural number depends on 
how many units that number has. If the totality of 
such units cannot be arranged in even groups of any 
natural number or numbers greater than unit, 
preceding it, without having to leave out any unit or 
units out of such groupings, then such a number is 
indivisible by any of its preceding numbers and 
therefore, a prime.  For example, 4 is divisible by 2 
(its preceding number, because it has four units 
which can be arranged in two groups of 2 units each. 
On the other hand, 5 is not divisible by any of its 
preceding numbers  (2,3, or 4) because its five units 
cannot be arranged in groups of  any of these three 
numbers without having to leave a unit or units out of 
such groupings.  
  Primes do not diminish but merely space out more 
and more on the sequence, as the constant pile up of 
units progresses to infinity. In short primes are never 
counted down but materialize, one after another, at 
definite stages in the constant accumulation of units 
when such a definite totality of units cannot be 
arranged in even groups of any of the preceding 
totalities of units without having to leave any unit or 
units out of such even groupings. . In short, the 
lessening intensity of primes on the sequence of 
natural numbers merely implies increases in  
permutations of units required to  reach more and 

more numbers indivisible by any of their preceding 
numbers greater than unit.  
 

IV. DETERMINING THE SOLUTION SETS 

  The most important aspect of the new standard 
formula is the determination of elements of the two 
solution sets that satisfy it. The solution sets and their 
elements are determined by using tables and 
formulas. The tables in particular are such that they 
enable the isolation of elements of the formula’s 
solution sets from the sequence of odd numbers. 
There are two main types of such tables,  those that 
show the actual distribution of non-substitute 
elements on the sequence of odd numbers and those 
that show their numerical positions on the  sequence. 
Since the formula has been split into two 
complementary ones, each of the two formulas has its 
own tables and formulas for determining its own 
solution set 
A.   Solution Set for the First Half Pair Primes 
Formula (P1 = 3nso + 2).  
  The solution for the  FHPPs formula (P1 = 3nso + 2),  
is determined by two types of tables. The first type  
show the distribution of non substitute elements on 
the sequence of odd numbers while the second type 
indicate the numerical positions on it. 
  This article has identified three tables of the first 
type and one table of the second type. The three 
comprises of the table that show an endless structure 
of odd numbers, none of which are elements of the 
solution set, the one that show the linear progression 
of such elements on the sequence of odd numbers and 
the one that shows the actual spread of solution set 
elements on any complete section of the endless 
sequence of odd numbers. The single table of the 
second type is an endless structure of natural 
numbers indicating numerical positions of non-
substitute elements on the sequence of odd numbers. 
The following are the tables;  
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TABLE 4: THE TABLE OF NATURAL DISTRIBUTION OF ODD NUMBERS THAT MUST NOT BE SUBSTITUTED FOR nso IN THE 
STANDARD FORMULA FOR FINDING FIRST HALF PAIR PRIMES (P1 = 3nso + 2). 
 

G.12 G.10 G.22 G.34 G.46 G.58 G.70 G.82 G.94 G.106 G.118 G.130 … 
G.14 11 25 39 53 67 81 95 109 123 137 151 … 
G.26 21 47 73 99 125 151 177 203 229 255 281 … 
G.38 31 69 107 145 183 221 259 297 335 373 411 … 
G.50 41 91 141 191 241 291 341 391 441 491 541 … 
G.62 51 113 175 237 299 361 423 485 547 609 671 … 
G.74 61 135 209 283 357 431 505 579 653 727 801 … 
G.86 71 157 243 329 415 501 587 673 759 845 931 … 
G.98 81 179 277 375 473 571 669 767 865 963 1061 … 
G.110 91 201 311 421 531 641 751 861 971 1081 1191 … 
G.122 101 223 345 467 589 711 833 955 1077 1199 1321 … 
G.134 111 245 379 513 647 781 915 1049 1183 1317 1451 … 
G.146 121 267 413 559 705 851 997 1143 1289 1435 1581 … 
… … … … … … … … … … … … … 

 
  Table 4, above is a display of an easy to appreciate 
pattern of endless rows and columns of odd numbers, 
inclusive of primes and composites, none of which 
must be substituted for variable nso  in the standard 
formula for finding FHPPs. The table is   ‘natural’ 
distribution of odd numbers., because as indicated by 
headers, the numbers in all columns and rows are not 
randomly compiled, but proceed endlessly in  an 
ascending order of perfect regularity.  
  The table can be used to determine the solution set 
for the formula because its elements are those odd 
numbers that are not part of the systematic structure 
of the table above. Such missing odd numbers can 
easily be indentified and listed. The more the table is 
extended, the more the elements of the solution set 
will show up. 
 
Columns and Rows as Sets of Non-Substitutes 
  The table comprises of two groups of sets of non-
substitutes. The first group is represented by columns 
while the second is represented by rows. The two 
groups have each a set of divisors to which it relates. 
Columns relate to visible divisors of FHPONs, while 
rows relate to their  invisible divisors.  
Columns as First Sets of Non-Substitutes 
  Columns relate to visible divisors in the sense that if 
any of their respective elements  replaces valuable no 
in the FHPPs formula, the result will be a composite 
odd number divisible by a visible divisor to which 
that particular element’s set relate. These particular 
sets are known by their first elements. For example, 

the first set is set 11, because the first element in this 
set is 11. The second set is set is 25 because the first 
element in this set is 25. Therefore, these sets, as 
indicated by their first elements, are sets of the form 
(14N + 11) – 14 , where N is any natural number, 
meaning that they start with set 11 and continues 
endlessly, in ascending order, at a uniform gap of 14. 
A visible divisor to which any given set relate can be 
established by first substituting the first element of 
that set for X in the in the equation;  N =  [(X +14) – 
11] ÷ 14 and evaluating it. To find such a divisor, the 
value of this first expression can then be substituted 
for variable N in the equation; X = 6N + 5 – 6, and 
solve it for X. Gaps in between elements in each and 
every set are of the form X = 2N where N is a visible 
divisor to which that set relate.  
Rows as Second Sets of  Non-Substitutes 
  Rows relate to invisible divisors in the sense if any 
of their respective elements  is substituted for  
valuable no in the FHPPs formula, the result will be a 
composite odd number divisible by an invisible 
divisor to which that particular element’s set relate. 
The  sets are known by their first elements. For 
example, the first set is also 11, because the first 
element in this set is 11. The second set is set is 21 
because the first element in this set is 21. Therefore, 
these sets, as indicated by their first elements, are sets 
of the form 10N + 11 – 10 , where N is any natural 
number, meaning that they start with set 11 and 
continues endlessly, in ascending order, at a uniform 
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gap of 10. An invisible divisor to which any given set 
relate can be established by first substituting the first 
element of that set for X in the in the equation;  N =  
[(X +10) – 11 ] ÷ 10 and evaluating it. To find such a 
divisor, the value of this first expression can then be 
substituted for variable N in the equation; X = 6N + 7 
– 6, and solve it for X. Gaps in between elements in 
each and every set also of the form  X = 2N where N 
is a visible divisor to which that set relate.  
Dual Membership for Elements of Sets of Non-
Substitutes 
  While  as we have seen above, there are two 
different sets of non-substitute elements, each and 
every individual element of either set has dual 
membership in the sense that any such element can 

be considered  to belong to  either a row or a column. 
Consequently,  each and every composite odd 
number to be obtained by substituting any such 
number for the variable   in the FHPPs formula, will 
be divisible by both a visible  divisor related to its 
row and an invisible divisor related to its column. In 
either case the resulting quotient is the odd 
composite’s corresponding divisor of the other set. 
Linear Progression  of Non-Substitutes 
  We can also move away from the systematic cluster 
of non-substitutes above by establishing the linear 
progression of such non-substitutes on the sequence 
of odd numbers. Table 5 below establishes this single 
line progression of non-substitutes;  

 

TABLE 5: THE LINEAR PROGRESSION OF NON SUBSTITUTES ON THE SEQUENCE OF ODD NUMBERS, FOR THE FIRST HALF 

PAIR PRIMES’ FORMULA (P1 = 3nso + 2).  
 22 34 46 58 70 82 94 106 118 130 142 154 166 178 190 202 214 226 … 
11                   11 
21                   21 
 25                  25 
31                   31 
  39                 39 
41                   41 
 47                  47 
51                   51 
   53                53 
61                   61 
    67               67 
 69                  69 
71                   71 
  73                 73 
81     81              81 
91 91                  91 
      95             95 
   99                99 
101                   101 
  107                 107 
       109            109 
111                   111 
 113                  113 
121                   121 
        123           123 
    125               125 
131                   131 
 135                  135 
         137          137 
141  141                 141 
   145                145 
151     151     151         151 
 157                  157 
161                   161 
           165        165 
171                   171 
  175                 175 
      177             177 
 179           179       179 
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181                   181 
    183               183 
191   191                191 
             193      193 
201 201                  201 
       203            203 
              207     207 
  209                 209 
211                   211 
221     221          221    221 
 223                  223 
        229           229 
231                   231 
                235   235 
   237                237 
241    241               241 
  243                 243 
 245                  245 
                 249  249 
251                   251 
         255          255 
      259             259 
261                   261 
                  263 263 
… … … … … … … … … … … … … … … … … … … … 

  
Table 5, above shows how elements of the first group 
of sets, identified as columns  in table 4, combine 
into a union set of non-substitutes (the progression of 
non-substitute elements in a single line). This union 
set is imposed on the seemingly last column of the 
table. 
  The manner in which all sets  combine into a union 
set of non-substitutes is such that there is an initial set 
into which each and every succeeding set  feeds. This 
initial set is column  1 of table 4, which is now 
column 1 in table 5. This initial set has numbers of 
the form 10N + 11 – 10 where N is any natural 
number, meaning that its elements begin from 11 and 
proceed endlessly in ascending order, at a uniform 
gap of 10. This uniform gap  implies that there is a 
total of four odd numbers missing in between each 
and every element of this set. The feeding into this 
set by each and every other succeeding set implies 
elements of such sets either occupying their 
appropriate locations in any of the four odd number 
gaps in the initial set, or intersecting  with identical 
elements in that set.  
  The first set to feed into the initial set is the second 
column of table 4, which is now the second column 
of table 5. This set has numbers of the form 22N + 25 
– 22 where N is any natural number. It extends from 
25 and continues endlessly in ascending order at a 

uniform gap of 22. One after another, elements of this 
set either fill up  gaps of their natural location or 
intersect with their identical elements in the initial 
set. The second set to feed into the initial set is 
column 3 of table 4 which is now column 3 of table 
5. This set begin with 39 and continues endlessly in 
ascending order at a uniform gap of 34. Elements of 
this set either fill up gaps of their natural location 
within the initial set or intersect with their identical 
elements in either of the two preceding sets. In short 
elements of each and every succeeding set feed into 
the initial set by filling up the gaps of their 
designated locations or intersecting with identical 
elements in sets that precede them. In table 5 above, 
intersecting elements are presented in red font. 
  A union set of non substitutes for any given range of 
odd numbers is complete at a point where the first 
element of a succeeding set is the last odd number in 
that given range. In table 5 above, the union set of 
non-substitutes is complete only up to 263 because it 
is the first element of the very last set within this 
range. 
The Actual Solution Set 
  In the range of odd numbers covered by table 5 
above (1 to 263), the actual solution set for the 
FHPPs’ formula comprises of all odd numbers within 
this range which are missing from the indicated union 
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set of non- substitutes.  
 
The Seven Column Odd Numbers Table  
  The last of the three first tables is the seven column 
odd numbers table constructed on the combined logic 
of tables 4 and 5 above. It has been noted above that 
there is an initial set which has regular gaps, some of 
which are taken up by elements of each and every 
succeeding set in a union set of non substitutes. This 
initial set has been identified as being column 
number 1 of table 4, and subsequent sets as being 
each and every succeeding columns of the same 
table. It has also been stated that the uniform gaps 
between elements of this initial set represent  a total 
of four missing odd numbers/gaps in between  each 
and every element. Since elements of the actual 
solution set are those odd numbers that are 
represented by  gaps that cannot be taken up by any  
elements of any of the endless number of sets of non 
substitutes, such elements can be located on the 
sequence of odd numbers by  identifying and 
eliminating all non-substitutes amongst them.  
  It has also been mentioned that rows on table 4 
represent the second group of sets of non-substitutes 
related to invisible divisors of first half pair odd 
numbers. In this particular case, the initial set 
amongst them is the first row.  The set has numbers 
of the form (14N + 11) – 14 where N is any natural 
number, meaning that its elements begin with 11 and 
proceed endlessly in an ascending order at a uniform 
gap of 14. This uniform gap implies that there is a 
total of six odd numbers missing in between each and 
every element of this set. Into this initial set feeds 
elements of all other succeeding sets presented as 
columns. One after another, elements of the 
succeeding sets either occupy their appropriate 
locations in any of the six odd number gaps in the 
initial set or intersect with identical elements in that 
set. Since elements of the actual solution set are those 

odd numbers that are represented by gaps that cannot 
be taken up by any elements of any of the endless 
number of sets of non-substitutes, such elements can 
be located on the sequence of odd numbers by 
indentifying and eliminating all non-substitutes 
among them.  
  Table 6(a) below, shows how the entire sequence of 
odd numbers can be arranged in seven columns, for 
easy identification of elements of the solution set 
among odd numbers falling in between elements of 
the set of the form 14N + 11 – 14 where N is any 
natural numbers.  
 
TABLE 6(a): THE SEVEN COLUMN ODD NUMBER TABLE 

FOR LOCATING SUBSTITUTES AND NON-SUBSTITUTES 

IN THE  FORMULA FOR FIRST HALF PAIR PRIMES. (This 
table must be read horizontally).  
 
 1 3 5 7 9 11 
13 15 17 19 21 23 25 
27 29 31 33 35 37 39 
41 43 45 47 49 51 53 
55 57 59 61 63 65 67 
69 71 73 75 77 79 81 
83 85 87 89 91 93 95 
97 99 101 103 105 107 109 
111 113 115 117 119 121 123 
125 127 129 131 133 135 137 
139 141 143 145 147 149 151 
153 155 157 159 161 163 165 
167 169 171 173 175 177 179 
… … … … … … … 

 

Table 6(a) above, is an arrangement of the  entire 
sequence of odd numbers  in seven columns only. For 
the purpose of demonstrating the location solution set 
elements on the seven column table, the table  has 
been reproduce below and extended  to  100 rows 
comprising of the first 669 odd numbers. In this 
range, the first odd number is 1 in the second column 
of row 1, while the last number is 1397 in the seventh 
column of row 100;   
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TABLE 6 (b):  THE SEVEN COLUMN ODD NUMBERS’ TABLE EXTENDED TO 100TH ROW. 
 

S.N C1 C2 C3 C4 C5 C6 C7  S.N C1 C2 C3 C4 C5 C6 C7 
1  1 3 5 7 9 11  51 699 701 703 705 707 709 711 
2 13 15 17 19 21 23 25  52 713 715 717 719 721 723 725 
3 27 29 31 33 35 37 39  53 727 729 731 733 735 737 739 
4 41 43 45 47 49 51 53  54 741 743 745 747 749 751 753 
5 55 57 59 61 63 65 67  55 755 757 759 761 763 765 767 
6 69 71 73 75 77 79 81  56 769 771 773 775 777 779 781 
7 83 85 87 89 91 93 95  57 783 785 787 789 791 793 795 
8 97 99 101 103 105 107 109  58 797 799 801 803 805 807 809 
9 111 113 115 117 119 121 123  59 811 813 815 817 819 821 823 
10 125 127 129 131 133 135 137  60 825 827 829 831 833 835 837 
11 139 141 143 145 147 149 151  61 839 841 843 845 847 849 851 
12 153 155 157 159 161 163 165  62 853 855 857 859 861 863 865 
13 167 169 171 173 175 177 179  63 867 869 871 873 875 877 879 
14 181 183 185 187 189 191 193  64 881 883 885 887 889 891 893 
15 195 197 199 201 203 205 207  65 895 897 899 901 903 905 907 
16 209 211 213 215 217 219 221  66 909 911 913 915 917 919 921 
17 223 225 227 229 231 233 235  67 923 925 927 929 931 933 935 
18 237 239 241 243 245 247 249  68 937 939 941 943 945 947 949 
19 251 253 255 257 259 261 263  69 951 953 955 957 959 961 963 
20 265 267 269 271 273 275 277  70 965 967 969 971 973 975 977 
21 275 281 283 285 287 289 291  71 979 981 983 985 987 989 991 
22 293 295 297 299 301 303 305  72 993 995 997 999 1001 1003 1005 
23 307 309 311 313 315 317 319  73 1007 1009 1011 1013 1015 1017 1019 
24 321 323 325 327 329 331 333  74 1021 1023 1025 1027 1029 1031 1033 
25 335 337 339 341 343 345 347  75 1035 1037 1039 1041 1043 1045 1047 
26 349 351 353 355 357 359 361  76 1049 1051 1053 1055 1057 1059 1061 
27 363 365 367 369 371 373 375  77 1063 1065 1067 1069 1071 1073 1075 
28 377 379 381 383 385 387 389  78 1077 1079 1081 1083 1085 1087 1089 
29 391 393 395 397 399 401 403  79 1091 1093 1095 1097 1099 1101 1103 
30 405 407 409 411 413 415 417  80 1105 1107 1109 1111 1113 1115 1117 
31 419 421 423 425 427 429 431  81 1119 1121 1123 1125 1127 1129 1131 
32 433 435 437 439 441 443 445  82 1133 1135 1137 1139 1141 1143 1145 
33 447 449 451 453 455 457 459  83 1147 1149 1151 1153 1155 1157 1159 
34 461 463 465 467 469 471 473  84 1161 1163 1165 1167 1169 1171 1173 
35 475 477 479 481 483 485 487  85 1175 1177 1179 1181 1183 1185 1187 
36 489 491 493 495 497 499 501  86 1189 1191 1193 1195 1197 1199 1201 
37 503 505 507 509 511 513 515  87 1203 1205 1207 1209 1211 1213 1215 
38 517 519 521 523 525 527 529  88 1217 1219 1221 1223 1225 1227 1229 
39 531 533 535 537 539 541 543  89 1231 1233 1235 1237 1239 1241 1243 
40 545 547 549 551 553 555 557  90 1245 1247 1249 1251 1253 1255 1257 
41 559 561 563 565 567 569 571  91 1259 1261 1263 1265 1267 1269 1271 
42 573 575 577 579 581 583 585  92 1273 1275 1277 1279 1281 1283 1285 
43 587 589 591 593 595 597 599  93 1287 1289 1291 1293 1295 1297 1299 
44 601 603 605 607 609 611 613  94 1301 1303 1305 1307 1309 1311 1313 
45 615 617 619 621 623 625 627  95 1315 1317 1319 1321 1323 1325 1327 
46 629 631 633 635 637 639 641  96 1329 1331 1333 1335 1337 1339 1341 
47 643 645 647 649 651 653 655  97 1343 1345 1347 1349 1351 1353 1355 
48 657 659 661 663 665 667 669  98 1357 1359 1361 1363 1365 1367 1369 
49 671 673 675 677 679 681 683  99 1371 1373 1375 1377 1379 1381 1383 
50 685 687 689 691 693 695 697  100 1385 1387 1389 1391 1393 1395 1397 
         … … … ... … … … … 

  
 
On table 6(b) above, column 7 represents the initial 
set  of non-substitutes relating to invisible divisors of 
first half pair odd numbers. There is, therefore,  no 
single element of the solution set in this particular set 
of endless elements. Columns 1 to 6 represent odd 
numbers in between elements of the initial set of non-

substitutes.  Therefore, it is only from these columns 
that   elements of the solution set for FHPPs’ formula 
can be located.  
  In the process of locating elements of the solution 
set from the seven column table, a choice can be 
made between using the first group or second group 
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of sets of non-substitutes. What is important is that it 
does not matter what group of sets  is used because 
the results are the same for either group, for it is self 
evident that  the table can be read in terms of either 
rows or columns without having to miss any 
numbers. 
  It is evident from row 1 of table 4 that column 7 of 
the seven column table, constitute first elements of 
each and every one of the endless sets  in the second 
group of non-substitutes. Therefore, generating 
elements of these sets and striking them off from the 
seven column table will leave only substitutes on the 
table. 
  Each and every range of odd numbers has a definite 
number of sets whose elements have to be identified 
and struck off from the table. It has been started 
above that a union set of non substitutes for any 
given range of odd numbers is complete at a point 
where the first element of a succeeding set is the last 
number in that given range. From this statement we 
can deduce that the number of sets whose elements 
should be produced, each up to that range, is the rank 
or number of the set whose first element is equal to or 
just less than the upper limit of the range of odd 
numbers within which we want to establish elements 
of the solution set. In table 6.(b) above, our upper 
limit number, 1397 is indicated as the first element of 
set number 100. 
  Where the table is not available, we can still 
determine the number of appropriate sets by a 
formula method. Since according to table 2, all  first 
elements of this second group of sets are of the form    
(14N + 11) – 14,  we can use the guess and check 
method to substitute valuable N in the following 
inequality, for a number that will satisfy it. If we use 
100 which is reflecting on the table, this inequality 
will be satisfied as follows; (14N + 11) – 14≤ 1397 ; 
[(14 x 100) + 11] – 14≤ 1397 ;  1397≤ 1397. We have 
thus determined that there is a total of 100 sets , each 
of whose elements we have to identify up to the limit 
of 1397, and eliminate from table 6(b) above.  
 
 
 
 

Discarding Unnecessary Sets From the List of 
Appropriate Sets  
 
  It is not each and every one of those 100 sets that 
need to be generated. We can discard those sets that 
are unnecessary to reproduce. Such sets include the 
first set 11 (the first set), and all those that are subsets 
of sets that precede them. Elements of the first set are 
unnecessary to produce because being numbers 
whose last digit is 1, they are self evident and can be 
eliminated on sight from the seven column table. 
Discarding the first set also means discarding all 
those sets whose second  element is  less than any 
selected upper limit (1397 in our case)  because only 
their first elements which are already removable on 
sight, will fall  within any  such selected range of 
numbers. Sets that are subsets of sets that precede 
them are also unnecessary to produce because all 
their elements intersect with some elements of sets 
that precede them, meaning that they are already 
elements of sets in which they have an original 
location.   
  Since all second elements are of the form (26N + 
21) – 26, where N is any number, we can discard all 
those sets whose second element is less than our 
upper limit of 1397,  by using  the guess and check 
method to substitute valuable N in the following 
inequality, for a number that will satisfy it; 26N + 21 
– 26 ≤ 1397; If we try 54, the value of the expression 
will be as follows; (26 x 54 ) + 21 – 26 ≤ 1397; 1399 
≤ 1397; If we try 53 the value of the expression will 
be as follows; 26 x 53 + 21 – 21 ≤ 1397; 1373 ≤ 
1397. This means that the number that will satisfy the 
expression is 53, This further implies that the number 
we have obtained which is 1373 is the second 
element of the last appropriate set to cover our 
specified range of odd numbers 
  Next is to look for the first element of the set to 
which 1373 is the second element. Since  according 
to table 2, all first elements are numbers of the form, 
(14N + 11) – 14, we can establish the first element of 
this set by substituting N with the same number 53, in 
the following equation and solving the equation for 
X, that is;  X = (14N + 11) – 14 ; X = (14 x 53) + 11 
– 14 ; X = 739. The value of the expression is 739, 
meaning that the first element of the set in which 
1373 is the second element is 739. This also means 
that the sets of non-substitutes whose elements we 
are supposed to produce up to our set limit of 1397 
are  (53 – 1 )  in total.  They begin from the second 
set whose first element is 25(column 2, table 4) and 
end with the set whose first element is 739. These 
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sets as indicated by their first elements are as follows; 
25, 39, 53, 67, 81, 95, 109, 123, 137, 151, 165, 179, 
193, 207, 221, 235, 249, 263, 277, 291, 305, 319, 
333, 347, 361, 375, 389, 403, 417, 431, 445, 459, 
473, 487, 501, 515, 529, 543, 557, 571, 585, 599, 
613, 627, 641, 655, 669, 683, 697, 711, 725, 739, 
  From the above sets, we can now remove  those  
that are subsets of sets that precede them, for the 

simple reason that their elements are a repetition of 
some elements of sets  of that precede them. These 
subsets are such that each and every set on the 
sequence has an endless number of subsets stretched 
out ahead of it at uniform gaps specific to itself. 
Table 7 below shows the distribution of  subsets of 
preceding sets of non-substitutes on the sequence. 
 

TABLE 7: THE DISTRIBUTION OF SUBSETS OF PRECEDING SETS OF NON-SUBSTITUTES ON THE SEQUENCE OF  SETS OF 

NON-SUBSTITUTES  

 
SN 1 2 3 4 5 6 7 8 9 10 11 … 
SET 11 25 39 53 67 81 95 109 123 137 151 … 
G84 G70 G154 G238 G322 G406 G490 G574 G658 G742 G826 G910 … 
G98 81 179 277 375 473 571 669 767 865 963 1061 … 
G182 151 333 515 697 879 1061 1243 1425 1607 1789 1971 … 
G266 221 487 753 1019 1285 1551 1817 2083 2349 2615 2881 … 
G350 291 641 991 1341 1691 2041 2391 2741 3091 3441 3791 … 
G434 361 795 1229 1663 2097 2531 2965 3399 8333 4267 4701 … 
G518 431 949 1467 1985 2503 3021 3539 4057 4575 5093 5611 … 
G602 501 1103 1705 2307 2909 3511 4113 4715 5317 5919 6521 … 
 … … … …  … … … … … … … … 

 
  Table7 above indicates the endless subsets each and 
every  set of non-substitutes has on the sequence of  
sets of  non-substitutes. The first  three rows are 
headers. The first amongst them indicate serial 
numbers for the sets. The second row shows the 
actual sets as represented by their first elements. The 
third row indicate uniform gaps between each and 
every subset stretched ahead of each and every set on 
the sequence. Columns on table ( fourth row 
downwards) indicate subsets  that are stretched in 
front of each and every indicated  set of non 
substitutes on the sequence. For example, non-
substitute sets that are subsets of set 11 and which 
subsets are stretched out ahead of it on the sequence, 
are those that comprise of column one of the main 
text of the table and which subsets  have a uniform 
gap of 70 in between them. Similarly, sets that are 
subsets of 25 are those that comprises of column two 
of the table (table 7) and which subsets have a 
uniform gap of 154 in between them.  
  We can use  table 7 above to identify and remove all 
sets that are subsets of their preceding sets within our 
selected range by extending the second row to  739 
and deleting from that row any set that is an element 
of any column or columns from the fourth row 
downwards.  
  Alternatively, we can identify and remove such 
subsets by using a formula that establishes gaps 
between subsets of each and every set on the 
sequence. This formula is X = (7N – N) + 4, where N 
is any such element. The subset elements up to our 
chosen limit of 739 can be identified and removed  

by firstly establishing  gaps between subsets  of each 
set and using such gaps to work out actual subsets for 
each set. For example if we want to establish sets that 
are subsets of set 11, we should first determine the 
uniform gap between its subsets  stretched out ahead 
of it on the sequence as follows;  
X= (7N – N) + 4; X = (7x11 – 11) + 4; X = 70;  
  With this uniform gap between subset elements of 
11 established, we can now to work out its subsets as 
follows;  
70N + 11 – 70 ={81, 151, 221, 291, 361, 431, 501, 
571, 641, 711 781, …} 
  Note that these are the same subsets indicated for set 
11 in the first column of the above table. 
  Using the formula, we can thus identify and remove 
such subsets from our selected range as follows; Set 
11, Gap between subset elements : X= (7N – N) + 4; 
X = (7x11 – 11) + 4; X = 70; Subsets up to 739 ; 70N 
+ 11 – N; 70N + 11 – 70 ≤ 739 ={81, 151, 221, 291, 
361, 431, 501, 571, 641, 711.} 
  We can then workout the rest of the subsets within 
our given range as follows; 
  Set 25, These are sets whose  elements are of the 
form (154N + 179) – 154 where N is any natural 
number. Within our selected range, these sets are as 
follows; (1543N + 179) – 154 < 739 = {179, 333, 
487, 641, } 
  Set 39, These are sets whose  elements are of the 
form (238N + 277) – 238 where N is any natural 
number. Within our selected range, there are two 
such sets  which are as follows; (238N + 277) – 238 
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< 739 = {277, 515}  
  Set  53: (322N + 375) – 322< 739 = {375, 697}; 
Subset of 67: (406N + 473) – 406< 739 = {473,};  
  Set  81set: (490N + 571) – 490< 739 = {571}; 
Set 95;  set which is the last within our chosen range. 
This set is as follows; (574N + 669) – 574 < 739 = 
{669};  
When all such subsets are discarded, the remaining 
most appropriate sets within our chosen upper limit 
will be only 33 out of a total of 100. These sets  are 
as follows;  

{25,  39, 53, 67,  95, 109, 123, 137,  165, 193, 207,  
235, 249, 263, 305, 319,  347, 389, 403, 417, 445, 
459,  529,  543, 557,   585, 599,  613,  627, 655,   
683, 725, 739} 
 
  The next stage is to establish uniform gaps between 
elements of each and every one of the above sets.  
The formula for working out  such gaps is X = [(7N – 
N ) + 4 ]  ÷ 7 where N is any such set (or where N is 
the first element of any such set)

 
  When this formula is applied,   the uniform gaps between each and every one of these elements will be established 
as follows; 
 
25,  39, 53, 67,  95, 109, 123, 137,  165, 193, 207,  235, 249, 263, 305, 319,  347, 389, 403, 417,  
22,  34, 46, 58,  82,   94, 106, 118,  142, 166, 178,  202, 214, 226, 262,  274, 298, 334, 346, 358, 
 
 
445, 459,  529,  543, 557,   585, 599,  613,  627, 655,   683, 725, 739 
382, 394,  454,  466,  478,  502, 514,  526,  538,  562,  586, 622, 634 
 
Elements of the above remaining sets can then be generated, for each and every set, up to our upper limit of 1397. 
The totality of such elements will be as follows; 
25, 47, 69, 91, 113, 135, 157, 179, 201, 223, 245, 267, 289, 311, 333, 355, 377, 399, 421, 443, 465, 487, 509, 531, 
553. 575, 597, 619, 641, 663, 685, 707, 729, 751, 773, 795, 817, 839, 861, 883, 905, 927, 949, 971, 993, 1015, 1037, 
1059, 1081, 1103, 1125, 1147, 1169, 1191, 1213, 1235, 1257, 1279, 1301, 1323, 1345, 1367, 1389,  39, 73, 107, 
141, 175, 209, 243, 277, 311, 345, 379, 413, 447, 481, 515, 549, 583, 617, 651, 685, 719, 753, 787, 821, 855, 889, 
923, 957, 991, 1025, 1059, 1093, 1127, 1161, 1195, 1229, 1263, 1297, 1331, 1365,53, 99, 145, 191, 237, 283, 329, 
375, 421, 467, 513, 559, 605, 651, 697, 743, 789, 835, 881, 927, 973, 1019, 1065, 1111, 1157, 1203, 1249, 1295, 
1341, 1387, 67, 125, 183, 241, 299, 357, 415, 473, 531, 589, 647, 705, 763, 821, 879, 937, 995, 1053, 1111, 1169, 
1227, 1285, 1343,  95, 177, 259, 341, 423, 505, 587, 669, 751, 833, 915, 997, 1079, 1161, 1243, 1325, 109, 203, 
297, 391, 485, 579, 673, 767, 861, 955, 1049, 1143, 1237, 1331, 123, 229, 335, 441, 547, 653, 759, 865, 971, 1077, 
1183, 1289, 1395, 137, 255, 373, 491, 609, 727, 845, 963, 1081, 1199, 1317,165, 307, 449, 591, 733, 875, 
1017,1159, 1301,193, 359, 525, 691, 857, 1023, 1189, 1355,207, 385, 563, 741, 919, 1097, 1275,235, 437, 639, 841, 
1043, 1245,249, 463, 677, 891, 1105, 1319,263, 489, 715, 941, 1167, 1393,305, 577, 829, 1091, 1353,319, 593, 867, 
1141,347, 645, 943, 1241,389, 723, 1057, 1391,403, 749, 1095,417, 775, 1133,445, 827, 1209,459, 853, 1247, 529, 
983, 543, 1009, 557, 1035, 585, 1087, 599. 1113, 613, 1139, 627, 1165, 655, 1217, 683, 1269, 725, 1347, 739, 1373, 
753, 
  Each and every one of these elements can then be  
deleted  from the seven column table, in addition to 
the deletion of the entire column seven and  each and 
every number in columns 1 to 6 whose last digit is 1. 

When this is done the seven column table will remain 
only with the following elements of the solution set, 
each on its specific position on the seven column 
table.   
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TABLE 6 (C) : ELEMENTS OF THE SOLUTION SET FOR THE FIRST HALF PAIR PRIMES FORMULA UP TO THE 100TH ROW OF 
THE SEVEN COLUMN TABLE.  (This table must be read horizontally). 
 

S.N C1 C2 C3 C4 C5 C6 C7  S.N C1 C2 C3 C4 C5 C6 C7 
1  1 3 5 7 9   51 699  703   709  
2 13 15 17 19  23   52 713  717     
3 27 29  33 35 37   53     735 737  
4  43 45  49    54   745 747    
5 55 57 59  63 65   55 755 757    765  
6    75 77 79   56 769    777 779  
7 83 85 87 89  93   57 783 785    793  
8 97   103 105    58 797 799  803 805 807  
9   115 117 119    59  813 815  819   
10  127 129  133    60 825       
11 139  143  147 149   61   843  847 849  
12 153 155  159  163   62    859  863  
13 167 169  173     63  869  873  877  
14   185 187 189    64   885 887    
15 195 197 199   205   65 895 897 899  903   
16   213 215 217 219   66 909  913  917   
17 223 225 227      67  925  929  933  
18  239    247   68  939   945 947  
19  253  257     69  953   959   
20 265  269  273 275   70 965 967 969   975  
21 275   285 287    71 979   985 987 989  
22 293 295    303   72    999  1003  
23  309  313 315 317   73 1007   1013    
24  323 325 327     74    1027 1029   
25  337 339  343    75   1039   1045  
26 349  353      76    1055    
27 363 365 367 369     77 1063  1067 1069  1073  
28    383  387   78    1083 1085   
29  393 395 397     79     1099   
30 405 407 409      80  1107 1109   1115  
31 419   425 427 429   81 1119  1123   1129  
32 433 435  439     82  1135 1137     
33    453 455 457   83  1149  1153 1155   
34     469    84  1163      
35 475 477 479  483    85 1175 1177 1179   1185  
36   493 495 497 499   86   1193  1197   
37 503  507      87  1205 1207     
38 517 519  523  527   88  1219  1223 1225   
39  533 535 537 539    89  1233   1239   
40 545     555   90     1253 1255  
41   563 565 567 569   91 1259   1265 1267   
42 573        92 1273  1277   1283  
43     595    93 1287   1293    
44  603  607     94  1303 1305 1307 1309   
45 615    623 625   95 1315       
46 629  633 635 637    96 1329  1333 1335 1337 1339  
47 643   649     97    1349    
48 657 659   665 667   98 1357 1359  1363    
49   675  679    99   1375 1377 1379   
50  687 689  693 695   100 1385       
         … … … ... … … … … 

 
  Note that when each and every one of the above  
elements are used as a substitute, one after another,   
for variable nso in the formula for FHPPs,  no such 
primes  existing within this specific range of numbers 
will be skipped. Table 6.(c) above shows that there 
altogether  290 elements of the solution set for the 

FHPPs formula  in the first 699  numbers on the 
sequence of odd numbers. These are all odd numbers 
from 1 to 1397. These elements represent a total of 
290 FHPPs on the first 4,158 natural numbers from 
unit to 4,157. In this range of numbers, the FHPP is 
established by the seven column table as follows; 
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P1  = 3no +  2 ;  P1  = (3 x 1) + 2; P1  = 3  + 2; P1  =  5 
The last first half pair prime in the range is as 
follows; 
P1  = 3no + 2 ;  P1  = (3 x 1385) + 2 ; P1  = 4155 + 2 ; 
P1  = 4157.     
Numerical Positions of Non-Substitutes on the 
Sequence of Odd Numbers  
  The solution set for the FHPPs formula can also be 
determined by the identification of numerical 
positions of non-substitutes on the sequence of odd 
numbers. In this particular context, a numerical 
position refers to that odd number’s actual position 
on the sequence in terms of counting numbers. For 
example the numerical position of 1 is 1 because it is 
the first odd number on the sequence. The numerical 
position of 3 is 2 because it is the second odd number 
on the sequence.  
  Since odd numbers are those numbers of the form 

(2N + 1) – 2, where N is any natural number , 
variable N in the expression X = (2N + 1) – 2, 
indicate the position of odd number ‘X’ on the 
sequence of odd numbers. For example, if we pick 
any odd number say 59, this numbers’ numerical 
position on the sequence of odd numbers can be 
worked out by replacing X with 59 and solving the 
equation for variable N as follows; 
(2N + 1) – 2 = 59; 2N = (59 – 1) + 2; N = [(59 – 1) + 
2] ÷ 2; N = 30. The value of the expression is 30, 
meaning that 59 is the 30th number on the sequence 
of odd numbers. In short the algebraic expression for 
numerical positions of odd numbers on the sequence 
of odd numbers is N = [(X – 1) + 2] ÷2, where X is 
that odd number. Table 8 below is a display of 
numerical positions of non-substitutes on the 
sequence of odd numbers. 

 
TABLE 8:  DISTRIBUTION OF NUMERICAL POSITIONS, ON THE SEQUENCE OF ODD NUMBERS, OF NON-SUBSTITUTES FOR 

THE VARIABLE IN THE FIRST HALF PAIR PRIMES FORMULA.  
 

 7 13 19 25 31 37 43 49 55 61 67 73 79 85 … 
5 6 11 16 21 26 31 36 41 46 51 56 61 66 71 … 
11 13 24 35 46 57 68 79 90 101 112 123 134 145 156 … 
17 20 37 54 71 88 105 122 139 156 173 190 207 224 241 … 
23 27 50 73 96 119 142 165 188 211 234 257 280 303 326 … 
29 34 63 92 121 150 179 208 237 266 295 324 353 382 411 … 
35 41 76 111 146 181 216 251 286 321 356 391 426 461 496 … 
41 48 89 130 171 212 253 294 335 376 417 458 499 540 581 … 
47 55 102 149 196 243 290 337 384 431 478 525 572 619 666 … 
53 62 115 168 221 274 327 380 433 486 539 592 645 698 751 … 
59 69 128 187 246 305 364 423 482 541 600 659 718 777 836 … 
65 76 141 206 271 336 401 466 531 596 661 726 791 856 921 … 
71 83 154 225 296 367 438 509 580 651 722 793 864 935 1006 … 
77 90 167 244 321 398 475 552 629 706 783 860 937 1014 1091 … 
83 97 180 263 346 429 512 595 678 761 844 927 1010 1093 1176 … 
89 104 193 282 371 460 549 638 727 816 905 994 1083 1172 1261 … 
… … … … … … … … … … … … … … … … 

 

 

 
  The importance of table 6 above is that it separates 
non-substitutes from elements of the solution set on 
the sequence of odd numbers. This is so because, 
elements of the solution set for the FHPPs formula 
are those odd numbers whose numerical positions on 
the sequence, are not part of the endless structure of 
numbers displayed by the table. In other words, 
elements of the solution set are those numbers of the 
form (2N + 1) – 2 , where variable N is any natural 
number,  and which  numbers are not elements of the 
above endless  table of  natural distribution  of 
numerical positions for the variable’s  non-substitutes 
on the sequence.  

  If any number other than the headers in the first row 
and column  is picked from the  table,  and 
substituted for  variable N in the  expression (2N + 1) 
– 2, the  value of the expression will be a non-
substitute element, which when substituted for 
variable no in the FHPPs formula will result in a 
composite odd number divisible by its two odd 
number factors indicated as headers of the column 
and row under which that number falls on the table.  
  For example, if any number is picked from the 
above table, say 69,  and substituted for  variable N in 
the  expression (2N + 1) – 2, the  value of the 
expression will be a non-substitute element, which 
when substituted for variable no in the first half pair 
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primes formula will result in a composite odd number 
divisible by its two odd number factors indicated as 
headers of the column and roll under which that 
number falls on the table;  
|(2 x 69) + 1| – 2 = 137;  P1 = (3 x 137) + 2; P1 ≠ 413;  
  Note that the end value 413 is not a prime but a 
composite odd number divisible by two odd numbers, 
these are 7 which is a header for a column in which 
69 falls and 59 which is a header for the row in which 
69 falls. We can prove this by dividing 413 by both 7 
and 59 as follows; 
413 ÷ 7 = 59; 413÷ 59 = 7  
  Giving yet another example, let us  take another 
number indicated on the table, say 111 which falls 
under the column whose header is 19 and a row 
whose header is 35.  And proceed as follows 
[(2 x 111) + 1] – 2 = 221; P1 = (3 x 221) + 2; P1 ≠ 
665; 
  The value of the expression (665),  is not a prime 
because the table indicates that it is divisible by 19 
and 35. Thus; 665 ÷ 19 = 35; 665 ÷ 35 = 19 
  On the other hand, any numerical position, in terms 
of ordinary counting numbers from 1 endlessly, 
which  is not part of the structure of  the endless 
numbers indicated by the table ,  can  substitute  
variable N in the expression (2N + 1) – 2, and the 
value of the expression will be an element of a 
solution set for the FHPPs  formula. 
  From table 2 above, it can be seen that   counting 
numbers that are not part of the structure of the table, 
and which, can ,  be used to pick elements of the 
solution set from the sequence of odd numbers, 
include natural numbers less than 6,  and each and 
every number  greater than 6  not falling within the 
structure of the table. Part of the set of such numbers, 
as shown by the table is as follows; 
{1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 14, 15, 17, 19, 22, 23, 
25, 28, 29,30, 32, ..} 
  If any of the above counting numbers is substituted 
for N in the expression (2N + 1) – 2, the value of the 
expression will be an element of a solution set for the 
first half pair primes formula. To prove this, we can 
pick any of these numbers, say 17,  and proceed as 
follows; 
[(2 x 17) + 1] – 2 = 33; P1 = (3 x 33) + 2; P1  = 101; 
  We can prove that 101 is a first half pair prime 
because as both tables   4 and 6 (c) above  confirm, 
33 is not an element of any of the countless sets of 
non-substitutes for the variable in the first half pair 
primes formula.  
B.   Solution Set for the Second Half Pair Primes 
Formula (P2 = 3nso – 2)  
 Having shown how to determine the solution set for 
the first half pair primes formula, we now can turn to 
the determination of the solution set for the second 

complementary formula. 
  The solution for the second half pair primes formula 
(P2 = 3nso – 2) is also determined by two types of 
tables. That is the type  that show the distribution of 
non substitute elements on the sequence of odd 
numbers and the type that indicate their numerical 
positions on it. 
  This article   has identified four tables of the first 
type and one table of the second type. Among the 
first type are two complementary tables that show 
two complementary endless structures of odd 
numbers, none of which are elements of the solution 
set. The third table shows the linear progression of 
such elements on the sequence of odd numbers while 
the fourth one shows the distribution of elements of 
the solution set on the seven column odd number 
table. The single table of the second type is an 
endless structure of natural numbers indicating 
numerical positions of non-substitute elements on the 
sequence of odd numbers. We now turn to these 
tables.  
  Tables 9 (a) and 9 (b) below show the systematic 
distribution of odd numbers that must not be 
substituted for  the variable. Table 9 (a)  relate to the 
first set of  divisors of second half pair odd numbers 
(visible divisors) while table 9 (b)  relate to the 
second set of divisors of such numbers (invisible 
divisors). 
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TABLE  9 (a):  NATURAL DISTRIBUTION OF ODD NUMBERS RELATED TO THE FIRST SET OF  DIVISORS OF SECOND HALF 
PAIR ODD NUMBERS,  THAT MUST NOT BE SUBSTITUTED FOR NSO IN THE STANDARD FORMULA FOR FINDING SECOND 
HALF PAIR PRIMES.  
 

G.12 G.14 G.26 G.38 G.50 G.62 G.74 G.86  G.98 G.110 G.122 G.134 … 
G.14 17 31 45 59 73 87 101 115 129 143 157 … 
G.26 31 57 83 109 135 161 187 213 239 265 291 … 
G.38 45 83 121 159 197 235 273 311 349 387 425 … 
G.50 59 109 159 209 259 309 359 409 459 509 559 … 
G.62 73 135 197 259 321 383 445 507 569 631 693 … 
G.74 87 161 235 309 383 457 531 605 679 753 827 … 
G.86 101 187 273 359 445 531 617 703 789 875 961 … 
G.98 115 213 311 409 507 605 703 801 899 997 1095 … 
G.110 129 239 349 459 569 679 789 899 1009 1119 1229 … 
G.122 143 265 387 509 631 753 875 997 1119 1241 1363 … 
G.134 157 291 425 559 693 827 961 1095 1229 1363 1497 … 
… … … … … … … … … … … … … 

 
TABLE 9 (b):  NATURAL DISTRIBUTION OF SPECIAL ODD NUMBERS RELATED TO THE INVISIBLE  DIVISORS OF SECOND 
HALF PAIR ODD NUMBERS,  THAT MUST NOT BE SUBSTITUTED FOR NSO IN THE FORMULA FOR FINDING SECOND HALF 
PAIR PRIMES.  
 

G.12 G.10 G.22 G.34 G.46 G.58 G.70 G.82 G.94 G.106 G.118 G.130 … 
G.10 9 19 29 39 49 59 69 79 89 99 109 … 
G.22 19 41 63 85 107 129 151 173 195 217 239 … 
G.34 29 63 97 131 165 199 233 267 301 335 369 … 
G.46 39 85 131 177 223 269 315 361 407 453 499 … 
G.58 49 107 165 223 281 339 397 455 513 571 629 … 
G.70 59 129 199 269 339 409 479 549 619 689 759 … 
G.82 69 151 233 315 397 479 561 643 725 807 889 … 
G.94 79 173 267 361 455 549 643 737 831 925 1019 … 
G.106 89 195 301 407 513 619 725 831 937 1043 1149 … 
G.118 99 217 335 453 571 689 807 925 1043 1161 1279 … 
G.130 109 239 369 499 629 759 889 1019 1149 1279 1409 … 
… … … … … … … … … … … … … 

  Both tables comprises of sets of non-substitutes 
because replacing the variable in the second half pair 
primes formula for any of their elements will result in 
a composite odd number divisible by the divisor to 
which that particular element’s set relate. 
  Table  9 (a) is a display of the first group of sets of 
non-substitutes for the variable in the SHPPs  
formula. These odd numbers extend from 17 and 
continue without end  in  both rows and columns, at 
uniform gaps indicated by headers. Both columns  
and rows are related to divisors of the form 6N + 7 – 
6 , where N is a natural number. This set of divisors 
is as follows; VDSHPON ={7, 13, 19, 25, 31, 37, 43, 
…}. This is the set of divisors that has been identified 
as a set of visible divisors of second half pair odd 
numbers. Each and every succeeding column and row 
on the table is related to each and every one of these 
divisors in their endless succession. In other words, 
column 1 and row 1 are both related to the first 
divisor which is 7, column 2 and row 2 are both   

related  the second divisor which is 13 and so in that 
order endlessly.  Each and every column shares a 
common divisor with each and every row  because as 
can be seen from the table, each and every column is 
a mirror image of each and every row. Elements on 
this endless table are non-substitutes because if any 
of them replaces variable no in the SHPPs  formula, 
the result will be a composite number divisible by a 
divisor to which that element’s row and column 
relate. 
  In this first group of sets the first set is column 1 or 
row 1 which is related to divisor 7 the second set is 
column 2 or row 2 which is related to the second 
divisor 13. The third set is column 3 or row three 
which is related to the third divisor 19, and so on in 
that order endlessly.  There are three formulas to be 
used in determining endless elements of each and 
every one of the never ending sets of non-substitutes. 
The first formula is for determining a divisor to 
which a given endless set  will relate. This formula is 
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as follow;  X = (6N + 7) – 6 , where N is any natural 
number equal to or greater than 1. The second   
formula is for determining the first element of a set 
relating to that specific divisor. This formula is as 
follows;  X = (14N +17) – 14, where N is any natural 
number substituted for N in the first formula. The last 
formula is for determining the gap between each and 
every element in that particular  set. This formula is 
as follows; X = (12N + 14) – 12,  where N is the 
same natural number substituted for N in the first and 
second formula. With these three formulas, we can 
determine any such endless set as follows; 
Example 1 
  Select any  divisor from the first set of divisors by 
picking any natural number equal to or greater than 1 
and substitute it for N in the first formula;   ( X = 6N 
+ 7 – 6 ).  For easy demonstration, let us pick a 
natural number which we know will give us set of 
numbers appearing  in table 9 (a) above. Let us say 7, 
and work out the  divisor by substituting   variable N 
with 7 in the first formula and evaluating the 
expression as follows;  X = [(6 × 7) + 7] – 6 ;  (42 + 
7) – 6 ; 49 – 6; X = 43.The value of the expression is 
43, meaning that our chosen divisor is 43.  We can 
then determine the first element of a set related  to 
divisor   43 by substituting 7 yet again for variable N 
in the second formula and evaluate the expression as 
follows; X =  [(14 × 7 ) +17] – 14; (98 + 17)  – 14  
;115 – 14 I = 101. The value of the expression, which 
is 101, is the first element of a set  related to  divisor 
43. We  can then work out the gap between elements 
in this particular set by  substituting 7 yet again for 
variable N in the last formula and evaluate the 
expression as follows; X = [(12 ×7) + 14] – 12; (84 + 
14) – 12 ; 98 – 12; X = 86 .  The value of the 
expression which is 86 is the gap between elements 
in this particular endless set whose initial element is 
related to divisor 43 and whose  first element is 101. 
With this gap determined, we can then produce this  
endless set of non-substitutes  whose first element is 
101,  by simply adding 86 to 101 and then repeating 
the addition at each and every stage as follows {101, 
187, 273, 359, 445, 531, 617, 703, 789, 875, 961, …} 
Note that this is the same set of non-substitutes 
appearing as column 7 or row 7 in table 9 (a) above.  
Example 2 

  For further proof, we can also pick a natural number 
which would give us a divisor  whose related set is 
not covered by  table 9(a)  above, let us say 27, and 
then proceed with evaluating each of the three 
different expressions as follows;   X = 6N + 7 – 6; = 
[(6 × 27)  + 7] – 6 ; = (162 + 7) – 6 ; = 169 – 6 ;   X = 
163;     X = 14N +17 – 14; = [(14 × 27)  + 17] – 14 ; 
= (378 + 17) – 14 ; 395 – 14 ;  X = 381;  X = 12N + 
14 – 12; = [(12 × 27) + 14] – 12 ;   = (324 + 14) – 12 
; = 338 – 12 ; X = 326  
  Having picked a divisor from the first set of 
divisors, and having known both the initial number of 
its related endless series of numbers and the gap 
between elements in that particular endless set,  we 
can then  work out the endless set of these numbers 
as follows; VD163 SSON = {381, 707, 1033, 1359, 
1685, 2011, 2337, …}  Note that even if this set is 
has not been reached by  table 9 (a)  above, extending 
it will show this set to be column 27 and row 27.  
  Table 9 (b) above  comprises of a second group of 
sets of non-substitutes for the variable in  the SHPPs 
formula. The sets presented as both columns and 
rows relate to divisors of the form  6N + 5 – 6 where 
N is any natural number. These divisors are as 
follows; IDSHPON = {5, 11, 17, 23, 29, 35, 41, 47, 
53, 59, 65, 71, 77, 83, …}. It is a set of  invisible 
divisors  of  second half pair odd numbers’. The first 
set,  column 1 or row 1, is related to the first divisor 
which is 5, the second set, column 2 or row 2,  is 
related to the second divisor which is 11, the third set 
column 3 or roll 3 is related to the third divisor which 
is 23, and so on in that order endlessly.  Each and 
every column  shares  a common divisor with each 
and every row  because  here too, each and every 
column is a mirror image of each and every row. 
Elements on this endless table are non-substitutes 
because if any of them replaces variable no in the 
SHPPs formula, the result will be a composite 
number divisible by a divisor to which that element’s 
row and column relate. 
 There are three formulas to be used in determining 
each of the subsequent  sets of non-substitutes in this 
second group  of sets.  The first formula is for 
determining  an invisible divisor to which a given 
endless  set relate. This formula is as follows;  X = 
(6N + 5) – 6 , were N is any natural number equal to 
or greater than 1. The second formula is for 
determining the first element of the set related to the 
identified divisor.   This formula is as follows; X = 
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(10N + 9) – 10, were N is any natural number 
substituted for N in the first formula. The last 
formula is for determining the gap between elements 
in this particular set,  this formula is as follows; X = 
(12N + 10) – 12,  were N is the same natural number 
substituted for N in the first and second formula. 
With these three formulas, we can determine any 
such endless set of non-substitutes as follows;  
Example 1 
  Select any invisible divisor by picking any natural 
number equal to or greater than 1 and substitute it for 
N in the first formula;  X = (6N + 5) – 6 .  For easy 
demonstration, let us pick a natural number which we 
know will give us set of numbers  covered by  table 9 
(b) above, let us say 7, and work out the invisible 
divisor by substituting  variable N with 7 in the first 
formula and evaluating the expression as follows; X 
= [(6 × 7)  + 5] – 6 ; (42 + 5) – 6 ; 47 – 6; X = 41. 
The value of the expression is 41, meaning that our 
chosen  divisor is invisible divisor 41.   
  We can then determine the first element  of the set 
related to invisible divisor 41 by substituting 7 yet 
again for variable N in the second formula and 
evaluate the expression as follows; X = [(10 × 7) + 9] 
– 10; (70 + 9) – 10; 79 – 10;  X = 69.  The value of 
the expression, which is 69, is the initial number 
related to invisible divisor 41. We  can then work out 
the gap between elements in this particular endless 
set whose first element is 69, by substituting 7 yet 
again for variable N in the last formula and evaluate 
the expression as follows; X = [(12 × 7) + 10] – 12 ; 
(84 + 10) – 12 ; 94 – 12 X = 82. The value of the 
expression which is 82 is the progression interval of 

an endless series of numbers extending from 69. With 
this uniform gap between elements  determined, we 
can then produce an endless set of numbers extending 
from 69 by simply adding 82 to 69 and then repeating 
the addition at each and every stage as follows  {69, 
151, 233, 315, 397, 561, 643, 725, 807, 889 …} Note 
that this is the same set of non-substitutes indicated 
as column 7 or row 7 in table 9(b) above. 
Example 2 
  For further proof, we can also pick a natural number 
which would give us a divisor  whose related set has 
not been reached by table 9(b) above, let us say 27, 
and then proceed with evaluating each of the three 
different expressions as follows; X = 6N + 5 – 6;  [(6 
× 27)  + 5] – 6 ;  (162 + 5) – 6 ;  167 – 6 ;   X = 161;  
X = [(10 × 27) + 9] – 10 ;  (270 + 9) – 10 ;   279 – 10 
;   X = 269.   X = [(12 × 27)  + 10] – 12 ;   (324 + 10) 
– 12 ;  334 – 12 ;  X = 322 
  Having picked a divisor from the first set of divisors 
and having known both the initial number of its 
related endless series of numbers and the uniform gap 
between elements in that particular set, we can then 
easily work out the elements of this endless set as 
follows;  ID161 SSON = {269, 591, 913, 1235, 1557, 
…} Note that if table 9(b) above is extended to 
include this set, this particular set will be revealed as 
being column or row 27.  
 
Combining Tables 9(a) and 9(b) 
  In order  to  to identify  the solution set for the 
SHPPs formula ,  tables 9(a)  and 9(b) need to be 
combined. This combined table is as follows; 

TABLE 9 (c), COMBINED TABLE OF ODD NUMBERS THAT MUST NEVER BE SUBSTITUTED FOR NSO IN THE FORMULA FOR SECOND HALF PAIR 
PRIMES.  

G12 G10  G22  G34  G46  G58  G70  G82  G94  … 
G12  G14  G26  G38  G50  G62  G74  G86  G98 … 
G10 9  19  29  39  49  59  69  79  … 
G14  17  31  45  59  73  87  101  115 … 
 19 31 41 57 63 83 85 109 107 135 129 161 151 187 173 213  
 29 45 63 83 97 121 131 159 165 197 199 235 233 273 287 311  
 39 59 85 109 131 159 177 209 223 259 269 309 315 359 361 409  
 49 73 107 135 165 197 223 259 281 321 339 383 397 445 455 507  
 59 87 129 161 199 239 269 309 339 383 409 457 479 531 549 605  
 69 101 151 187 233 273 315 359 397 445 479 531 561 617 643 703  
 79 115 173 213 267 311 361 409 455 507 549 605 643 703 737 801  
 89 129 195 239 301 349 407 459 513 569 619 679 725 789 831 899  
 99 143 217 265 335 387 453 509 571 631 689 753 807 879 925 997  
 109 157 239 291 369 425 499 559 629 693 759 827 889 961 1019 1095  
 119 171 261 317 403 463 545 609 687 755 829 901 971 1047 1113 1193  
 … … … … … … … … … … … … … … … …  
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  The above table combines the two groups of endless 
sets of non-substitutes. The columns presented in 
bold font constitute sets of non-substitutes  related to 
invisible divisors of second half pair odd numbers 
while the columns presented in black font constitute  
sets of non-substitutes related to visible divisors of 
second half pair odd numbers. 
 
  The table is of endless continuity. The rows 
presented in bold font, increase in number 
horizontally at a uniform gap of 10, in terms of first 
elements in each and every succeeding set. At the 
same time, there is indicated for each and every row, 
uniform gaps between elements in each and every set,  
which gaps increases by 12, from the first set  to each 
and every succeeding set. Similarly, the rows 
presented in black font also increase in number 
horizontally at a different a uniform gap of 14 in 
terms of first elements in each and every succeeding 
set. Uniform gaps between elements in each and 
every column/set, have also been indicated, which 
gaps also increase by 12 from the first set to each and 
every succeeding set. 
 
  From this combined table, we can identify the 
solution set for the SHPPs formula. We can do so by 
simply picking out all missing odd numbers whose 
range, in terms of number of digits, is complete on 
the table.  On table 9(c) above, the odd numbers 
whose range is complete are only two range of 
numbers. These are, single digit odd numbers and 
two digit odd numbers. Note that the more the table is 
extended the more other range of numbers will be 
complete.   
 
Solution Set Containing Single Digit Numbers  
  To pick out a solution set containing single digit 
numbers, simply generate the set of all single digit 
odd numbers other than unit as follows; { 3, 5, 7, 9}. 
The next thing is to strike off from this set all single 
digit numbers appearing on the table . Since in the 
table has only one single digit odd number, which is 
9, only 9 will be removed from this set meaning that 
the single digit number solution set for the SHPPs  
formula  is as follows;  
{ 3, 5, 7} 
 
Solution Set Containing Two Digit Numbers  
  To pick out a solution set containing  two digit odd 
numbers, generate a set of all two digit odd numbers 
as follows; {11, 13, 15, 17, 19, 21, 23, 25, 27, 29 31, 
33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 
61, 63, 65, 67, 69, 71, 73, 75, 77, 79,  81, 83, 85, 87, 
89, 91, 93, 95, 97, 99} 

  Pick out all two digit odd numbers from the  table  
as follows; {19, 29, 39, 49, 59, 69,79, 89, 99, 41, 63, 
85, 97, 17, 31, 45, 59, 73, 87, 57, 83} 
 
  Strike out these numbers from the first set of two 
digit odd numbers and remain with the following two 
digit odd number solution set for the SHPPs  formula; 
{11, 13, 15, 21, 23, 25, 27, 33, 35, 37, 43, 47,  51, 53, 
55, 61, 65, 67, 71, 75, 77, 81, 91, 93, 95,}  
 
Solution Sets Containing Odd Numbers of Other 
Digits 
 The more table 9(c) is extended, the more solution 
sets containing odd numbers of other digits will be 
determined. 
 
Linear Progression of Non-Substitutes  
  Here too, we can also move away from the 
systematic cluster of non-substitutes above by 
establishing the linear progression of such non-
substitute on the sequence of odd numbers. Table 10 
below shows this linear progression;  
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TABLE 10. LINEAR PROGRESSION OF NON-SUBSTITUTES ON THE SEQUENCE OF ODD NUMBERS, FOR THE SECOND HALF 

PAIR PRIMES FORMULA (P2 = 3nso – 2 ). 
 
G10  G22  G34  G46   G58  G70  G82  G94  G106  … 
 G14  G26  G38  G50  G62  G74  G86  G98  G110 … 
9                  9 
 17                 17 
19  19                19 
29    29              29 
 31  31               31 
39      39            39 
  41                41 
 45    45             45 
49        49          49 
   57               57 
59 59      59   59        59 
  63  63              63 
69            69      69 
 73        73         73 
79              79    79 
   83  83             83 
  85    85            85 
 87          87       87 
89                89  89 
    97              97 
99                  99 
 101            101     101 
  107      107          107 
109   109    109           109 
 115              115   115 
119                  119 
     121             121 
129 129 129        129       129 129 
… … … … … … … … … … … … … … … … … … … 
 
The table10 above shows how sets of non-substitutes 
in the second half pair primes formula combine into a 
union set of non-substitutes (linear progression of 
non-substitute elements). The union set is shown in 
the last column of the table. The three dots 
underneath the last indicated figure of 129 shows that 
the set continues without end in that particular order. 
In the same way, the three dots indicated at the 
bottom of each and every column shows endless 
continuity of each and every such column 
  In addition, the three dots each, at the ‘end’ of the  
first and second row of the table, comprising of 
headers, are indicators for an endless uniform 
continuity of columns on the table and the changing 
uniform gaps in between each and every succeeding 
column’s elements. This also implies that the 
seemingly last column showing the union set of non-
substitutes is only an imposition on the table. 
 
  The Unification of Sets of Non-Substitutes 
  The manner in which sets of non-substitute  are 
combining into a union set is such that there is an 
initial set into which each and every succeeding 
subset is feeding into. The initial set is column 1. It is 

a set whose elements are of the form 10N + 9 – 10, 
where N is any natural number. The uniform gap of 
10 implies that there is a total of  4 odd numbers 
missing in between each and every element of this 
set. The feeding into this set by elements of each and 
every other succeeding set implies elements of such 
sets either taking their actual locations in any of the 
four missing odd number locations or intersecting 
with identical elements of the initial set. 
  The first set to feed into the initial set is the second 
column, whose elements are of the form (14N + 17) – 
14 , where N is any natural number. One after 
another, elements of this set  either fill up gaps of 
their actual location or intersect with their identical 
elements in the initial set. Other sets follow, one after 
another, with their elements either occupying gaps of 
their natural location in the initial set or intersecting 
with identical elements in the initial set and in other  
sets that precede them. On the table above, 
intersecting elements are presented in red font. 
  A union set of non-substitutes for any given range 
of odd numbers is complete at a point at which the 
first element of a succeeding set is the last odd 
number in that given range. In the table above, the 
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union set of non-substitutes for the variable in the 
second half pair primes formula is complete only up 
to 129 because it is the first element of the last set 
within that particular range. 
  In the range of odd numbers covered by the table 7 
above, the  solution set for the SHPPs formula 
comprises of all odd numbers within this range that 
are missing from the indicated union set of non-
substitutes. 
The Seven Column Odd Numbers’ Table   
 Arising from the combined table of natural 
distribution of sets of non-substitutes in the formula 
for SHPPs, and as read with the two separate tables 
prior to it, a seven column table has been constructed. 
The purpose of the table is to expose elements of the 
solution set for the formula and show their natural 
distribution on the sequence of odd numbers. This 
table is as follows;  
 
TABLE 11 (a).THE SEVEN COLUMN ODD NUMBERS’ 
TABLE FOR LOCATING SUBSTITUTES AND NON-
SUBSTITUTES IN THE FORMULA FOR    SECOND HALF 
PAIR PRIMES . 

                       
 
  Other than the first two odd numbers 1 and 3, which 
have been omitted for being inconsistent with the 
logic of the table, and the last  column which has 
been added as an appendage,   Table 11(a)  above 
indicates, the entire sequence of odd numbers 
arranged in seven columns only. This can be seen  by 
reading the table horizontally within the confines of 
the seven columns.   
 
Locating the Solution Set Within the Seven Column 
Table 
  Column 7,  represents the  initial set of non-

substitutes related to visible divisors of second half 
pair odd numbers. It is a set whose elements are of 
the form  (14N + 17) – 14 , where N is any natural 
number. It is  related to visible divisor 7.  There is 
therefore no single element of the solution set in this 
particular set of endless elements. Most importantly, 
the column   is also an endless set of first elements of 
the first sets of non-substitutes, each of whose 
endless elements are systematically spread out within 
columns 1 to 6 of the table. 
  Similarly, the last column (appendage)  represent 
the initial set of non-substitutes related to invisible 
divisors of second half pair odd numbers. It is a set 
whose elements are of the form (10N + 9) – 10, 
where N is any natural number.  It is a set that is 
related to invisible divisor 5. This appended column 
is  an endless set of first elements of the second group 
of sets of non-substitutes in the SHPPs formula, each 
of which endless elements are also systematically 
spread within the confines of the seven columns of 
the table.  
 
Deleting Sets of Non- Substitutes From the Seven 
Column Table 
  As indicated already, columns 7 and 8 of the seven 
column table above, respectively constitute first 
elements of each and every one of the endless sets of 
non-substitutes. Therefore, generating elements of 
these sets and striking them off from columns 1 to 6 
of  the seven column table will leave only substitutes 
on the table.  
  For easy demonstration, we can extend our seven 
column table to  100 rows comprising of the first 702 
odd numbers (including 1 and 3 not included on the 
table). In this range, the first odd number is 1, in 
column 6 of the discarded first row, The second is 3 
in column 7 of the same discarded first row. But 
because this first row has been discarded for its 
distortion effect on the logic of the table, there are 
700 odd numbers in this range, starting with 5 in 
column 1 of roll 1, and ending with 1403 in column 7 
of the 100th row.  

 
 

 

       App. 
5 7 9 11 13 15 17 9 
19 21 23 25 27 29 31 19 
33 35 37 39 41 43 45 29 
47 49 51 53 55 57 59 39 
61 63 65 67 69 71 73 49 
75 77 79 81 83 85 87 59 
89 91 93 95 97 99 101 69 
103 105 107 109 111 113 115 79 
117 119 121 123 125 127 129 89 
131 133 135 137 139 141 143 99 
145 147 145 151 153 155 157 109 
159 161 163 165 167 169 171 119 
173 175 177 179 181 183 185 129 
187 189 191 193 195 197 199 139 
… … … … … … … … 
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TABLE 8 (b): THE SEVEN COLUMN TABLE EXTENDED TO THE  100TH  ROW.  

 
S.N C1 C2 C3 C4 C5 C6 C7 App.  S.N C1 C2 C3 C4 C5 C6 C7 App. 
1 5 7 9 11 13 15 17 9  51 705 707 709 911 713 715 717 509 
2 19 21 23 25 27 29 31 19  52 719 721 723 725 727 729 731 519 
3 33 35 37 39 41 43 45 29  53 733 735 737 739 741 743 745 529 
4 47 49 51 53 55 57 59 39  54 747 749 751 753 755 757 759 539 
5 61 63 65 67 69 71 73 49  55 761 763 765 767 769 771 773 549 
6 75 77 79 81 83 85 87 59  56 775 777 779 781 783 785 787 559 
7 89 91 93 95 97 99 101 69  57 789 791 793 795 797 799 801 569 
8 103 105 107 109 111 113 115 79  58 803 805 807 809 811 813 815 579 
9 117 119 121 123 125 127 129 89  59 817 819 821 823 825 827 829 589 
10 131 133 135 137 139 141 143 99  60 831 833 835 837 839 841 843 599 
11 145 147 149 151 153 155 157 109  61 845 847 849 851 853 855 857 609 
12 159 161 163 165 167 169 171 119  62 859 861 863 865 867 869 871 619 
13 173 175 177 179 181 183 185 129  63 873 875 877 879 881 883 885 629 
14 187 189 191 193 195 197 199 139  64 887 889 891 893 895 897 899 639 
15 201 203 205 207 209 211 213 149  65 901 903 905 907 909 911 913 649 
16 215 217 219 221 223 225 227 159  66 915 917 919 921 923 925 927 659 
17 229 231 233 235 237 239 241 169  67 929 931 933 935 937 939 941 669 
18 243 245 247 249 251 253 255 179  68 943 945 947 949 951 953 955 679 
19 257 259 261 263 265 267 269 189  69 957 959 961 963 965 967 969 689 
20 271 273 275 277 279 281 283 199  70 971 973 975 977 979 981 983 699 
21 285 287 289 291 293 295 297 209  71 985 987 989 991 993 995 997 709 
22 299 301 303 305 307 309 311 219  72 999 1001 1003 1005 1007 1009 1011 719 
23 313 315 317 319 321 323 325 229  73 1013 1015 1017 1019 1021 1023 1025 729 
24 327 329 331 333 335 337 339 239  74 1027 1029 1031 1033 1035 1037 1039 739 
25 341 343 345 347 349 351 353 249  75 1041 1043 1045 1047 1049 1051 1053 749 
26 355 357 359 361 363 365 367 259  76 1055 1057 1059 1061 1063 1065 1067 759 
27 369 371 373 375 377 379 381 269  77 1069 1071 1073 1075 1077 1079 1081 769 
28 383 385 387 389 391 393 395 279  78 1083 1085 1087 1089 1091 1093 1095 779 
29 397 399 401 403 405 407 409 289  79 1097 1099 1101 1103 1105 1107 1109 789 
30 411 413 415 417 419 421 423 299  80 1111 1113 1115 1117 1119 1121 1123 799 
31 425 427 429 431 433 435 437 309  81 1125 1127 1129 1131 1133 1135 1137 809 
32 439 441 443 445 447 449 451 319  82 1139 1141 1143 1145 1147 1149 1151 819 
33 453 455 457 459 461 463 465 329  83 1153 1155 1157 1159 1161 1163 1165 829 
34 467 469 471 473 475 477 479 339  84 1167 1169 1171 1173 1175 1177 1179 839 
35 481 483 485 487 489 491 493 349  85 1181 1183 1185 1187 1189 1191 1193 849 
36 495 497 499 501 503 505 507 359  86 1195 1197 1199 1201 1203 1205 1207 859 
37 509 511 513 515 517 519 521 369  87 1209 1211 1213 1215 1217 1219 1221 869 
38 523 525 527 529 531 533 535 379  88 1223 1225 1227 1229 1231 1233 1235 879 
39 537 539 541 543 545 547 549 389  89 1237 1239 1241 1243 1245 1247 1249 889 
40 551 553 555 557 559 561 563 399  90 1251 1253 1255 1257 1259 1261 1263 899 
41 565 567 569 571 573 575 577 409  91 1265 1267 1269 1271 1273 1275 1277 909 
42 579 581 583 585 587 589 591 419  92 1279 1281 1283 1285 1287 1289 1291 919 
43 593 595 597 599 601 603 605 429  93 1293 1295 1297 1299 1301 1303 1305 929 
44 607 609 611 613 615 617 619 439  94 1307 1309 1311 1313 1315 1317 1319 939 
45 621 623 625 627 629 631 633 449  95 1321 1323 1325 1327 1329 1331 1333 949 
46 635 637 639 641 643 645 647 459  96 1335 1337 1339 1341 1343 1345 1347 959 
47 649 651 653 655 657 659 661 469  97 1349 1351 1353 1355 1357 1359 1361 969 
48 663 665 667 669 671 673 675 479  98 1363 1365 1367 1369 1371 1373 1375 979 
49 677 679 681 683 685 687 689 489  99 1377 1379 1381 1383 1385 1387 1389 989 
50 691 693 695 697 699 701 703 499  100 1391 1393 1395 1397 1399 1401 1403 999 
           … … … … … … … … 
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Deleting Sets of Non-Substitutes from the Seven 
Column Table 
  In deciding what sets whose elements we should 
generate in order to cover our specified range, we 
should first determine from both columns 7 and 8, 
the most necessary sets whose elements we ought 
to produce, and within those sets, what elements we 
ought to discard. 
 
  The first thing is to establish for each column, the 
maximum number of sets whose elements we 
should generate, to cover  our specified range of 
odd numbers.  We begin from column 8 which has 
the smallest first element 9, and pick from it, 
elements up to an element whose second significant 
element is equal to or less than our selected limit of 
1403. In this particular context, the second 
significant element of any set of non-substitutes 
implies the element after its  first element which is 
not intersected  with elements of sets preceding it. 
The two column sets have each,  a different formula 
for working out second significant elements of their 
sets.  
 
  With regard to sets indicated by Column 8, we 
begin by selecting  a first element of the set  whose 
second significant element we wish to establish, let 
us say 29,  and substitute this chosen number for X 
in the following equation and evaluate it as follows; 
N = |(X + 10) – 9 | ÷ 10; N = |(29 + 10) – 9 | ÷ 10; 
N = 3 
 
  Next is to work out the gap between each and 
every element of this set whose first element is  29,  
by substituting 3 for N in the following equation  
and evaluating it as follows;  
X = (12N + 10) – 12;    X= |(12 x 3) + 10| – 12 ;  X 
= 34 
 
  Next is to work out the second significant element 
in this chosen set by substituting   3 for N yet again 
in the following equation and evaluating it as 
follows; 
X = (34N + 29) – 34;  X = |(34 x3) + 29| – 34 ;   X 
= 97 
 
  We have established that 97 is the second 
significant element in the set of non-substitutes 
whose first  element  is 29, because all other 
elements  before it (including the first element) are 
intersected by preceding sets.  
 Using the above method, the search for a set whose 
second significant element   is equal to or less than 
our limit of 1403 will establish this set as one 
whose first element is  99, which second significant 
element is  1161 . This means that the sets required 
from column S2, for our selected range are 10. 
These sets, as indicated by their first elements, are 
as follows {9, 19, 29, 39, 49, 59, 69, 79, 89, 99}. 
 

  With regard to sets in column 7, we begin by 
selecting  a first element of a set  whose second 
significant element we wish to establish, Let us say 
87,  and substitute it  for X  in  following equation  
and evaluate it as follows;  
N = [(X + 14) – 17 ] ÷ 14; N = [(87 + 14) – 17 ] ÷ 
14;  N = 6 
 
  Next is to work out the gap between each and 
every elements of this set whose first element is 87, 
by substituting 6 for N in the following equation 
and evaluating it as follows; 
X = (12N + 14 ) – 12;  X = [(12 x 6) + 14] – 12;  X 
= 74 
 
  Next is to work out the second significant element 
in this chosen set by substituting   6 for N yet again 
in the following equation and evaluating it as 
follows;  
X = (74N + 87) – 74; [(74 x 6) + 87] – 74;   X = 
457 
 
  We have established that 457 is the second 
significant element in the set of non-substitutes 
whose first element is 87, because all other 
elements before it including 87  intersect with some 
elements of preceding sets.  
 
  When we follow the above method, our search for 
the set whose second significant element   is equal 
to or less than our limit of 1403, will be established 
to be the set whose first element is 143, which 
second significant element is 1241. This means that 
the sets required form column 7, for our selected 
range are also 10. These sets as indicated by their 
first elements are as follows; { 17, 31, 45, 59, 73, 
87, 101, 115, 129, 143, }.  With the two sets 
determined in accordance with our selected range 
of numbers, the next stage is to prune both sets by 
removing unnecessary sets from amongst them. 
These unnecessary sets are those that are subsets of 
sets preceding them.  
 
  With regard to sets listed in column 8, First 
elements of sets that are to be discarded are of the 
form (50N + 9) – 50 where N is any natural 
number. This set is as follows; {59, 109, 159, 209, 
259 …}. Such sets can be discarded because they 
are subsets of a preceding set whose elements are 
of the form (10N + 9) – 10  where N is any natural 
number. Within the range of numbers that we have 
selected, there is at least one set of this form, and 
that is the set whose first element is 59. The 
omission of this set leaves us with a total of 9 sets 
whose element we have to generate and remove 
from the table. This pruned set is as follows;  {9, 
19, 29, 39, 49,  69, 79, 89, 99}. 
  With regard to sets listed in column 7, first 
elements of sets that should be removed are  of the 
form (70N + 59) – 70 where N is any natural 
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number. This set is as follows; {59, 129, 199, 269, 
339, …}. Within our selected  range, there are two 
sets of this form. These are the set whose first 
element is 59 and the one whose first element is 
129. These two sets can be discarded because they 
are subsets of a preceding set of the form (10N + 9) 
– 10 where N is any natural number.  This 
preceding initial set is located in column 8 of the 
seven column table.  The omission of these two sets 
leaves us with a total of 8 sets whose element we 
have to generate and remove from the table.  The 
Pruned set is as follows; {17, 31, 45, 73, 87, 101, 
115, 143}.  
 
  The other sets that are to be omitted are sets of the 
form 98N + 115 – 98 where N is any natural 
number.  This set is as follows {115, 213, 213, 311, 
409, 507, 605 …}. Such sets are not necessary 
because all their endless elements are  located 
within column 7.  In other words, they are all 
subsets of the set of the form (14N + 17) – 14 
where N is any natural number  In our chosen range 
of numbers there is one such set which set is 
indicated by its first element of 115. If this set is 
removed, our final set of sets of appropriate non-
substitutes will be as follows; {17, 31, 45, 73, 87, 
101, 143}. 
 
   In order to systematically remove elements of the 
identified sets from the table, we first combine the 
two pruned sets in the ascending order of their 
combined elements as follows; 
{9, 17, 19, 29, 31, 39, 45, 49, 69, 73, 79, 87, 89, 99, 
101, 143}.  
 
   We can now generate elements of these sets, each 
up to our maximum limit of 1403  and delete them 
all from the seven column table to leave only 
elements of the solution set for the formula. Note 
that, elements of the first set need not be generated  
because being elements of the form  (10N + 9) – 
10, where N is any natural number, they are each 

and every number whose last digit is 9 including 9 
itself.  They are therefore identifiable and can be 
removed on sight from the entire seven column 
table. Note too that  elements of the second set all 
of which are of the form (14N + 17) – 14, where N 
is any natural number need not be produced 
because they in actual fact constitute column 7 
which is removable  on sight. The other set of 
numbers that requires to be removed on sight is the 
entire column 8 because it is only an appendage to 
the table 
  It should be further noted that the determination of 
the second significant elements for each of the two 
groups of sets, already explained in this section, 
implies disregarding for each and every set, 
elements that intersect with preceding sets. 
Therefore, instead of generating elements from the 
very beginning of each and every selected set, all 
elements of succeeding sets that intersect with 
elements of preceding have to be discarded. 
However, for the purpose of maintaining the 
original identity of all sets, an indication of the 
original starting point (first element) should  be 
made together with the column to which each of the 
sets belong. For example the form (82N + 69) – 82 
where N is any natural number, which has 69 as its 
first element and 561 as its second significant 
element should be presented as follows; Column 8, 
69: (82N + 561) – 82 < 1403. 
  This implies that generating elements of the set 
whose first element is 69, should not begin with 69, 
but with the set’s second significant element which 
is 561.  Consequently, elements of this set will not 
be of the form (82N + 69) – 82, but of the form 
(82N + 561) – 82 where N is any natural number.  
  The verbally, the expression: Column 8, 69: (82N 
+ 561) – 82 < 1403, means the set in Column 8 
whose first element is 69, and whose gap between 
each and every element is 82, comprising of 
elements from 561 to an element less than or equal 
to the limit of 1403. 

   
With these clarifications we can now generate elements of the remaining 16 most appropriate sets as follows; 
and thereafter, delete them all from the seven column table.  

3. Column 8, 19:  (22N + 41) – 22 < 1403 

{41, 63, 85, 107, 129, 151, 173, 195, 217, 239, 261, 283, 305, 327, 349, 371, 393, 415, 437, 459, 481, 503, 525, 
547, 569, 591, 613, 635, 657, 679, 701, 723, 745, 767, 789, 811, 833, 855, 877, 899, 921, 943, 965, 987, 1009, 
1031, 1053, 1075, 1097, 1119, 1141, 1163, 1185, 1207, 1229, 1251, 1273, 1295, 1317, 1339, 1361, 1383} 

4. Column 8, 29:  (34N + 97) – 34 < 1403 

[97, 131, 165, 199, 233, 267, 301, 335, 369, 403, 437, 471, 505, 539, 573, 607, 641, 675, 709, 743, 777, 811, 
845, 879, 913, 947, 981, 1015, 1049, 1083, 1117, 1151, 1185, 1219, 1253, 1287, 1321, 1355, 1389} 

5. Column 7, 31: (26N + 57) – 26 <  1403 

{57, 83, 109, 135, 161, 187, 213, 239, 265, 291, 317, 343, 369, 395, 421, 447, 473, 499, 525, 551,577, 603, 629, 
655, 681, 707, 733, 759, 785, 811, 837, 863, 889, 915, 941, 967, 993, 1019, 1045, 1071, 1097, 1123, 1149, 
1175, 1201, 1227, 1253, 1279, 1305, 1331, 1357, 1383} 

6. Column 8, 39: (46N + 177) – 46 <  1403 



International Journal of Mathematics Trends and Technology- Volume25 Number1 – September 2015 

ISSN: 2231-5373                                  http://www.ijmttjournal.org                         Page 101 

{177, 223, 269, 315, 361, 407, 453, 499, 545, 591, 637, 683, 729, 775, 821, 867, 913, 959, 1005, 1051, 1097, 
1143, 1189, 1235, 1281, 1327, 1373} 
 
 
 

7. Column 8, 45: 38N + 121 – 38 <  1403 

{121, 159, 197, 235, 273, 311, 349, 387, 429, 463, 501, 539, 577, 615, 653, 691, 729, 767, 805, 843, 881, 919, 
957, 995, 1033, 1071, 1109, 1147, 1185, 1223, 1261, 1299, 1337, 1375}  

8. Column 8, 49: (58N + 281) – 58 <  1403 

{281, 339, 397, 455, 513, 571, 629, 687, 745, 803, 861, 919, 977, 1035, 1093, 1151, 1209, 1267, 1325, 1383} 
9. Column 8, 69: (82N + 561) – 82 < 1403 

{561, 643, 725, 807, 889, 971, 1053, 1135, 1217, 1299, 1381} 
10. Column 7, 73: (62N + 321) – 62 < 1403. 

{321, 383, 445, 507, 569, 631, 693, 755, 817, 879, 941, 1003, 1065, 1127, 1189, 1251, 1313, 1375,} 
11. Column 8, 79: (94N + 737) – 94 < 1403. 

{737, 831, 925, 1019, 1113, 1207, 1301, 1395} 
12. Column 7, 87: (74N + 457) – 74 < 1403. 

{457, 531, 605, 679, 753, 827,901, 975, 1045, 1123, 1197, 1271, 1345} 
13. Column 8, 89: (106N + 937) – 106 < 1403. 

{937, 1043, 1149, 1255, 1361,} 
14. Column 8, 99: (118N + 1161) – 118 < 1403. 

{1161, 1279, 1397,}Column 7, 101: (86N + 617) – 86 < 1403.  
{617, 703, 789, 875, 961, 1047, 1133, 1219, 1305, 1391} 

15 Column 7, 143: (122N + 1241) – 122 < 1403. {1241, 1363} 

 
Elements of the Solution Set up to the 100th Row of the Seven Column Table 
  After deleting from the seven column table, all sets of non-substitutes indicated above, the seven column table 
will reveal the natural spread of elements of the solution set, on the sequence of odd numbers up to the 100th row 
of the table as follows; 
 
 
TABLE 11 (c):THE NATURAL SPREAD OF ELEMENTS OF THE SOLUTION SET FOR THE SECOND HALF PAIR PRIMES  
FORMULA, ON THE SEQUENCE OF ODD NUMBERS, UP TO THE 100TH ROW OF THE SEVEN COLUMN TABLE (This table 
must be read horizontally).  
 
S.N C1 C2 C3 C4 C5 C6 C7 App.  S.N C1 C2 C3 C4 C5 C6 C7 App. 
1 5 7  11 13 15    51 705   911 713 715   
2  21 23 25 27     52  721   727    
3 33 35 37   43    53  735   741    
4 47  51 53 55     54 747  751 753  757   
5 61  65 67  71    55 761 763 765   771   
6 75 77  81      56    781 783    
7  91 93 95      57  791 793 795 797    
8 103 105   111 113    58      813   
9 117   123 125 127    59    823 825    
10  133  137  141    60   835   841   
11 145 147   153 155    61  847  851 853    
12   163  167     62    865     
13  175   181 183    63 873     883   
14   191 193      64 887   893 895 897   
15 201 203 205 207  211    65  903 905 907  911   
16 215   221  225    66  917   923    
17  231   237     67  931 933 935     
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18 243 245 247  251 253    68  945   951 953   
19 257   263      69    963     
20 271  275 277      70 971 973       
21 285 287   293 295    71 985   991     
22   303  307     72  1001   1007    
23 313     323    73 1013  1017  1021 1023   
24   331 333  337    74 1027     1037   
25 341  345 347  351    75 1041        
26 355 357   363 365    76 1055 1057  1061 1063    
27   373 375 377     77   1073  1077    
28  385   391     78  1085 1087  1091 1093   
29   401  405     79   1101 1103 1105 1107   
30 411 413  417      80 1111  1115   1121   
31 425 427  431 433 435    81 1125   1131     
32  441 443       82    1145     
33     461     83 1153 1155 1157      
34 467    475 477    84 1167  1171 1173  1177   
35  483 485 487  491    85 1181 1183  1187  1191   
36 495 497        86 1195    1203 1205   
37  511  515 517     87  1211 1213 1215     
38 523  527   533    88  1225   1231 1233   
39 537  541 543      89 1237   1243 1245 1247   
40  553 555 557      90    1257     
41 565 567    575    91 1265     1275   
42  581 583 585 587     92   1283 1285     
43 593 595 597  601     93 1293  1297   1303   
44   611       94 1307  1311  1315    
45 621 623 625 627      95  1323       
46      645    96 1335   1341 1343    
47  651        97  1351 1353      
48 663 665 667  671 673    98  1365 1367  1371    
49 677    685     99 1377    1385 1387   
50   695 697      100  1393    1401   
           … … … … … … … … 

 
  There are altogether, 288 elements of the solution 
set for the SHPPs formula  in the first 703 odd 
numbers on the sequence of odd numbers. These 
are all odd numbers from 1 to 1403. These 
elements represent a total of 288 second half pair 
primes on the first 4,202 natural numbers from unit  
to 4,201.  
  In this range of numbers, the first SHPP  is as 
follows; P2  = 3no – 2 ;  P2  = 3 x 3 – 2; P2  = 9  – 2; 
P2  =  7.  
  The last SHPP in the range is as follows; P2  = 3no 
– 2 ;  P2  = (3 x 1401) – 2 ; P2  = 4203 – 2 ; P2  = 
4201.     

 
Numerical Positions of Non Substitutes on the 
Sequence of Odd Numbers  
  Elements of the solution set for the SHPPs 
formula can also be identified by knowledge of the  
distribution of numerical positions of non-
substitute elements on the sequence of odd 
numbers.  The tables 12(a) and 12(b) below show 
such a distribution.  

 
TABLE 12 (a): THE FIRST TABLE OF THE DISTRIBUTION OF NUMERICAL POSITIONS, ON THE SEQUENCE OF ODD 

NUMBERS, OF NON-SUBSTITUTES, FOR THE VARIABLE IN THE SECOND HALF PAIR PRIMES FORMULA. 
 

 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 … 
7 9 16 23 30 37 44 51 58 65 72 79 86 93 100 107 … 
13 16 29 42 55 68 81 94 107 120 133 146 159 172 185 198 … 
19 23 42 61 80 99 118 137 156 175 194 213 232 251 270 289 … 
25 30 55 80 105 130 155 180 205 230 255 280 305 330 355 380 … 
31 37 68 99 130 161 192 223 254 285 316 347 378 409 440 471 … 
37 44 81 118 155 192 229 266 303 340 377 414 451 488 525 562 … 
43 51 94 137 180 223 266 309 352 395 438 481 524 567 610 653 … 
49 58 107 156 205 254 303 352 401 450 499 548 597 646 695 744 … 
55 65 120 175 230 285 340 395 450 505 560 615 670 725 780 835 … 
61 72 133 194 255 316 377 438 499 560 621 682 743 804 865 926 … 
67 79 146 213 280 347 414 481 548 615 682 749 816 883 950 1017 … 
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73 86 159 232 305 378 451 524 597 670 743 816 889 962 1035 1108 … 
79 93 172 251 330 409 488 567 646 725 804 883 962 1041 1120 1199 … 
85 100 185 270 355 440 525 610 695 780 865 950 1035 1120 1205 1290 … 
91 107 198 289 380 471 562 653 744 835 926 1017 1108 1199 1290 1381 … 
… … … … … … … … … … … … … … … … … 

 

 
 
TABLE 12 (b): THE SECOND TABLE OF THE DISTRIBUTION OF NUMERICAL POSITIONS, ON THE SEQUENCE OF ODD 

NUMBERS, OF NON-SUBSTITUTES, FOR THE VARIABLE IN THE SECOND HALF PAIR PRIMES FORMULA. 

 5 11 17 23 29 35 41 47 53 59 65 71 77 83 89 … 
5 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 … 
11 10 21 32 43 54 65 76 87 98 109 120 131 142 153 164 … 
17 15 32 49 66 83 100 117 134 151 168 185 202 219 236 253 … 
23 20 43 66 89 112 135 158 181 204 227 250 273 296 319 342 … 
29 25 54 83 112 141 170 199 228 257 286 315 344 373 402 431 … 
35 30 65 100 135 170 205 240 275 310 345 380 415 450 485 520 … 
41 35 76 117 158 199 240 281 322 363 404 445 486 527 568 609 … 
47 40 87 134 181 228 275 322 369 416 463 510 557 604 651 698 … 
53 45 98 151 204 257 310 363 416 469 522 575 628 681 734 787 … 
59 50 109 168 227 286 345 404 463 522 581 640 699 758 817 876 … 
65 55 120 185 250 315 380 445 510 575 640 705 770 835 900 965 … 
71 60 131 202 273 344 415 486 557 628 699 770 841 912 983 1054 … 
77 65 142 219 296 373 450 527 604 681 758 835 912 989 1066 1143 … 
83 70 153 236 319 402 485 568 651 734 817 900 983 1066 1149 1232 … 
89 75 164 253 342 431 520 609 698 787 876 965 1054 1143 1232 1321 … 
… … … … … … … … … … … … … … … … … 

 

 
  Tables 12(a) and 12(b) above, in combination, 
show the distribution of numerical positions, on the 
sequence of odd numbers, of non-substitutes, for 
the variable in the SHPPs formula. Table 12(a) 
indicate the numerical positions of non-substitutes 
relating to multiples of visible divisors of second 
half pair odd numbers, while table 12(b) show the 
numerical positions of non substitutes relating to 
multiples of their invisible divisors.  
  The sequence of odd numbers is such that it 
comprises of  both non-substitutes and elements of 
the solution set for the second half pair primes 
formula. The significance of the two tables above is 
that they serve to  separate,  non-substitute 
elements from elements of the solution set on the 
sequence. This is so because they indicate the 
numerical positions of only non-substitute elements 
on the sequence, meaning that any odd number on 
the sequence, whose numerical position is not part 
of the structure of numbers on either  table is an 
element of the solution set.  
  If any number appearing in the actual text of 
either of  the two tables  is picked  and substituted 
for  variable N in the  expression (2N + 1) – 2, the  
value of the expression will be a non-substitute 
element, which when substituted for variable no in 
the SHPPs formula,  will result in a composite odd 
number divisible by its two odd number factors 
indicated as headers of the column and roll under 
which that number falls on  that particular table. 
  As an example, lets pick any number which is part 
of the structure of either table, say 135 in table 4 

(b), substitute it for variable N in the expression 2N 
+ 1 – 2, and evaluate the expression as follows; 
{[(2 x 135)] + 1} – 2 = 269. Next is to substitute 
269  for variable no in the SHPPs  formula and 
evaluate the expression as follows; P2 = (3 x 269) – 
2 ; P2 ≠ 805. Note that the value of the expression 
which is 805 is not a prime but a composite number 
divisible by 23 and 35, which are headers for the 
column and roll respectively under which 135 falls. 
This can be proved as follows; 
805÷ 23 = 35; 805 ÷ 35 = 23  
  On the other hand, If any natural number other 
than 1, which is not part of the endless structure of 
numbers of either table is substituted for variable N 
in the expression (2N + 1) – 2,  the value of the 
expression will be an element of a solution set for 
the SHPPs  formula. With reference to the two 
tables above,  counting numbers that can be used to  
pick elements of the solution set from the sequence 
of odd numbers, include  numbers less than 5 and 9, 
other than unit,  and each and every number  
greater than 5 and 9  not falling within the endless 
structure of either of the two tables. Part of the set 
of such numbers, as shown by the two  is as 
follows; 
{2,3,4,6,7,8,11,12,13,14,17,18,19,22,24,26,27,28,3
1, 33,34, 36,38,39,41,46,..} 
  Note that if any of the above counting numbers is 
substituted for N in the expression (2N + 1) – 2, the 
value of the expression will be an element of a 
solution set for the SHPPs. For example, let us pick 
any of the above numbers, none of which is part of 
the structure of either table above, say 41, and 
substitute it for variable N  in the expression (2N + 
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1) – 2,  and evaluate the expression as follows;  
{[(2 x 41)] + 1} – 2 = 81.   
Next is to substitute 81  for variable no in the 
SHPPs  formula and evaluate the expression as 
follows; P2 = (3 x 81) – 2 ; P2  = 241. Note that  the 
value of the expression which is 241 is a second 
half pair  prime. The evidence is that 81 is not an 
element of either table, but an element of the 
solution set for the SHPPs formula as confirmed by 
table 11 (c) above. 
 
Conclusion  
  To conclude this section, it has been demonstrated 
that  there is indeed a solution set that satisfies the 
new standard formula for finding primes and which 
solution set can be established in various ways.  
 
V. COMPOSITE ODD NUMBER 

DISCOUNT TABLES 

  A composite odd number discount table is one that 
contains specific odd numbers of any chosen range 
among which missing odd numbers other than 
specified obvious non-substitutes within that range, 
are the only substitutes (solutions) for variable nso 
in the standard formula for finding primes. There 
are two such tables. The first table is for the 
identification of a solution set for the first half pair 

primes formula while the second table helps to 
identify a solution set for the second half pair 
primes  formula.   
Basic Rules 
The basic rules involved in the compilation  of the 
tables  are as follows: Trimming the sequence of 
natural numbers to the most essential sequence of 
odd numbers called ‘Paired Odd Numbers’; 
Recognizing that primes  belong to two different 
sets, that is the set of first half pair primes 
(SFHPPs) and the set of second half pair primes 
(SHPPs). Excluding from the set of appropriate 
divisors of paired odd numbers,  the numbers 2 and   
3 and their endless multiples.  Allocating 
appropriate sets of divisors to appropriate sets of 
paired odd numbers; Recognizing the difference 
between visible and invisible divisors of paired odd 
numbers and the distinction between them with 
regard to their divisibility of composites among 
such numbers and recognizing that primes are the 
only ultimate and most appropriate divisors of 
divisible natural numbers.  
 
A.   The First Half Pair Primes Formula Table 
The first table which can be used to identify 
elements of the solution set for the first half pair 
primes formula is table 13 (a) below; 

 

TABLE 13 (a): FIRST HALF PAIR PRIMES FORMULA’S ( P1 = 3nso + 2) NON-SUBSTITUTE ODD NUMBERS RANGING 

FROM 1 TO 3,399. (Pick any missing odd number, excluding any number whose last digit is 1, other than 1 itself, 
falling before or in between any of the following numbers and substitute it for nso in the above formula, and the 
result  will be  a first half pair prime). (This table must be read horizontally) 

 25,   39,   47,   53,   67,  69,  73,  95,  99, 107, 109, 113, 123,  125,  135,  137, 145,  157,  165 175,  177,  179,  183,  193, 203,  207, 209,  

223  229,   235, 237,  243,  245, 249,   255, 259,  263, 267,  277,  283,  289, 297,  299, 305, 307, 319,  329,  333,  335,  345,  347,  355, 357, 

359,    373,   375,  377, 379,  385, 389,  399,  403,  413,  415,  417, 423, 437,  443,  445, 447,  449,  459,  463 , 465, 467,  473,   485,  487, 

489,  505,  509,  513,  515, 525,  529,  543, 547, 549,  553, 557, 559,  563,  567,  575, 579,   583,  585, 587, 589,  593,  597, 599,  605, 609, 

613, 617,  619,  627,   639,  645, 647, 653, 655,  663,  669, 673,  677,   683, 685,   697,  705,  707, 715,  719,  723,  725, 727,  729,   733,  

739,   743, 749,  753, 759,  763,  767,   773, 775,   787,   795,  809,  817,   823, 827, 829, 833, 835, 837, 839,   845,  853, 855, 857,  865,  

867,  875,  879,   883,  889, 893, 905,  907, 915,  919,  923,  927,  935,  937,   943, 945,   949, 955,  957,  963,   973,  977,   983, 993, 995, 

997,  1005, 1009,    1015, 1017,  1019, 1023, 1025, 1033, 1035, 1037,  1043, 1047, 1049,  1053,  1057,  1059, 1065,  1075, 1077,  1079,  

1087, 1089,  1093, 1095, 1097, 1103,  1105, 1113,  1117,  1125, 1127,  1133, 1139,   1043,  1145, 1147,  1157,  1159,    1165, 1167,  1169,   

1173,   1183,  1187, 1189,  1195, 1199, 1203,  1209,  1213,  1215, 1217  1227,  1229,  1235, 1237,  1243,  1245,  1247, 1249,  1257,   1263,  

1269,  1275,   1279, 1285,   1289,   1295, 1297,   1299,  1313, 1317, 1319,  1323,  1325,  1327,    1343,  1345, 1347,   1353,  1355,  1365,  

1367, 1369, 1373,    1383, 1387,  1389,  1393,  1395, 1397, 1399, 1407,  1415,  1425, 1433, 1435  1437,  1439,  1443, 1447,  1453, 1455, 

1459,   1467,   1475,  1477,  1479,  1489,   1495, 1499, 1503,  1509,  1513, 1517, 1519,  1523, 1525,  1529,  1533,  1535, 1537, 1539,  1543,  

1553, 1555, 1565,  1569,   1575 1579,  ,1585, 1587, 1589,  1593,  1603,  1607,  1609, 1613,  1615,  1617, 1619,   1627,  1633,  1635, 1637, 

1649,  1653  1659,   1663, 1665, 1675,  1677, 1685, 1687, 1689,  1691, 1697, 1703, 1705, 1707, 1709,   1713,   1719,  1725, 1727,   1733, 

1735,  1737, 1739,  1747, 1749, 1755, 1763,   1773, 1775, 1779,  1785, 1787,  1789,  1801, 1803, 1807,  1809,  1815,  1817, 1819,  1829, 

1837,  1845,   1847, 1849,  1853, 1855,   1859,   1865,  1867, 1869,  1873, 1875, 1877, 1887, 1893, 1895, 1899,  1907, 1909,  1915 , 1917, 

1919,  1923, 1925,  1929,    1939, 1943, 1945,  1957,  1963,  1969,  1973,  1977,   1983, 1985,   1987, 1989,    1997, 1999, 2005, 2007,  

2013, 2019, 2023, 2025, 2027,  2035,  2039,  2045,  2049, 2053,  2055, 2059,  2063,  2069, 2075, 2077,  2079,  2083,  2093, 2097, 2113, 

2115,   2123,  2125, 2127,  2133, 2135,   2137,  2139, 2143 2145,   2147,  2153, 2155,  2159,  2165, 2167, 2169,  2175, 2177,  2179, 2185, 

2195, 2197, 2203, 2005, 2207,  2209, 2213,  2215,   2223, 2225, 2227,  2235, 2237,  2243,  2247, 2249, 2255, 2257, 2265, 2269, 2273,  
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2279, 2283,    2293, 2295, 2297,  2307, 2309,  2313, 2317, 2329,   2335, 2237, 2343, 2345,   2349,   2353, 2355,  2357,  2363, 2365, 2377, 

2379, 2385,  2387, 2389,  2393,   2399,  2405, 2407,   2413, 2419, 2423, 2425, 2429,  2433,   2437, 2439, 2445,  2447, 2453, 2455, 2457, 

2459, 2463, 2465,  2467, 2469,  2473, 2475, 2479,  2487, 2489,  2497,  2503,  2517,  2523,  2533, 2537,  2539,  2543, 2545, , 2553,   2555,   

2559,  2565, 2569,  2571, 2573, 2577,  2579,  2581, 2583,  2587,  2589,  2591, 2593,  2595, 2599, 2603,  2615, 2619 2623, 2629,  2637, 

2641, 2643, 2647, 2653, 2655,   2657,  2659, 2663, 2665, 2667,  2673, 2675, 2677,  2683, 2685 2687, 2699,   2709,  2713, 2717, 2719,  

2725,  2727,  2729, 2733, 2735,  2737,  2749, 2753, 2755, 2759, 2767, 2769,  2773,  2775, 2777, 2779,  2783, 2785, 2793,  2797,   2799,  

2803, 2805,   2813, 2817, 2819, 2823  2825,  2827,  2829, 2835,  2839,  2843, 2849,  2853,  2855, 2859, 2863,  2867, 2873, 2877, 2879,   

2883,    2885,  2895, 2903 , 2905,   2907,  2909, 2919, 2923, 2925, 2929, 2933,  2937,  2947,  2957,  2959,  2963,  2965,  2967, 2969, 2973, 

2975, 2979,  2985, 2993, 2995,  2997, 3005, 3007, 3015, 3017, 3023,    3025, 3027, 3029  3033,  3035, 3037,  3039, 3043, 3047, 3049, 

3055, 3059,  3063,  3065,   3077, 3083,  3087, 3089,  3095,  3099,  3105,   3109,  3115, 3117,  3119,  3127, 3129,  3133,  3135,  3147, 3149, 

3167, 3169,  3175,  3185, 3187, 3189,  3193, 3197,  3199,   3203, 3205, 3213,  3215,  3217, 3219, 3223, 3227, 3233, 3235,  3237,  3243,  

3245,   3253, 3257,  3259,   3265  3269,  3273, 3275,  3287,  3289, 3293,   3297, 3299, 3303, 3305,  3315, 3317, 3319, 3323, 3325, 3327, 

3329, 3333, 3337,  3339 3343, 3347, 3349, 3357, 3365, 3369  3373, 3375, 3385,  3395,  3399. 

 

B.   Composite Number Discount Table of Any 
Range of Odd Numbers  
   Since it is unrealistic to generate an entire range 
of non-substitute odd numbers from their very 
beginning to any range of our choice, we can chose 
any desirable range of numbers within which we 
want to establish primes, determine the number of 
most appropriate sets of none substitutes falling 
within that range and establish the stage at which 
elements of each one of the identified most 
appropriate sets of non-substitutes enter  that 
specific range, and use their progression intervals 
to determine the entire list of those elements  up to 
the element  ending that range. It means therefore 
that we can also produce a table to cover any 
desirable range of odd numbers within which we 
want to locate primes of either form.  
  The first thing is to determine the range of paired 
odd numbers within which we want to pick a 
solution set for an appropriate formula. If we chose 
a formula for finding first half pair primes 
(FHPPs), we must ensure that the odd numbers we 
pick as our range of operation are elements of the 
set of first half pair odd numbers. Both the 
minimum and maximum number we chose must be 
confirmed as elements of the set of first half pair 
odd numbers.  
  For example, we can select the following range of 
numbers which  can be confirmed as elements of 
the set of first half pair odd numbers; 41555 to 
43001. We can then work out a finite set of most 
appropriate visible and invisible divisors of first 
half pair odd numbers up to the last most critical 
divisor for our selected maximum number 43001. 
Note that as indicated already, the most appropriate 

set of divisors of multiples of either set of paired 
odd numbers are primes other than 2 and 3 less 
than the square root of any selected upper limit, 
which in this case is 43001. These are primes 
ranging from first half pair prime 5 to second half 
pair prime 199. This combines set of primes is as 
follows; {5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 
43, 47, 53, 59, 61, 67, 71, 73, 79,  83, 89, 97, 101, 
103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 
157, 163, 167, 173, 179, 181, 191, 193 197, 199}. 
Note that second half pair primes are in bold print 
to distinguish them from first half pair primes that 
are in normal print.   
  We can then produce, for each of these indivisible 
divisors’, finite sets of special odd numbers related 
to them, and falling within our specified range of 
numbers from 41555 to 43001, none of which are 
substitutes for the variable in the formula. The key 
formula in  the production of any such table is as 
follows; {[(2no ÷ a) – D] x 2a}  + b ; where no is  
any paired odd number representing the minimum 
range of odd numbers from which we want to 
establish non-substitutes, where a is any 
appropriate divisor to which the special odd 
numbers relate, where D represent units to the right 
of a decimal point in the quotient of no ÷ 2a and 
where b is  an initial odd number which begins  the 
endless sequence of special odd numbers related to 
divisor ‘a’. The formula gives us a specific 
divisor’s first special odd number in a chosen range 
of numbers  upon which number we can generate,  
by using that divisor’s division intervals,  
subsequent odd numbers in that series up to our 
chosen maximum range 
  We can establish the stage at which a given 
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divisors’ related specific odd numbers will enter a 
specified range of numbers by proceeding as 
follows;  
  First we have to distinguish between visible and 
invisible divisors of the set of paired odd numbers 
we are working with. For first half pair odd 
numbers visible divisors are of the form 6N + 5 – 6 
where N is any natural number,  In the above 
combined set of primes, visible divisors are 
presented in plain print. On the other hand,  
invisible divisors are of the form 6N + 7 – 6 where 
N is any natural number and are presented in bold 
print in the combined set of primes above. For 
second half pair odd numbers, visible divisors are 
of the form 6N + 7 – 6 where N is any natural 
number ,  whereas invisible divisors are of the form 
6N +5 – 6 where N is any natural number .  
  We can then start our operation by  determining 
an initial element in the  divisor’s  set of non- 
substitutes related to it. If that divisor is a visible 
divisor of first half pair odd numbers the formula 
we shall use is as follows; b = (7a – 2) ÷ 3; where a 
is that divisor.  If it is an invisible divisor of first 
half pair odd numbers the formula we shall use is 
as follows; b = (5a – 2 ) ÷ 3 where a is that divisor. 
For example,  for first half pair odd numbers, 
divisor 5 being visible, the initial element of the set 
of numbers related to it is worked out as follows; 
b = (7a – 2) ÷ 3;[(7 × 5) – 2 ] ÷ 3; (35 – 2 ) ÷ 3; 33 
÷ 3; b = 11.  
  On the other hand, divisor 7 being invisible, the 
initial element of the set of numbers related to it 
will be worked out as follows; 
 b = (5a – 2) ÷ 3; [(5 × 7) – 2 ] ÷ 3; (35 – 2 ) ÷ 3; 
33 ÷ 3; b = 11.  
  The next step is to work out the progression 
intervals of the numbers related to those divisors 
by using the following formula; P = 2a where a, is 
that divisor, whether visible or invisible. For 
example with regard to the two divisors above, we 
can work out their respective progression intervals   
as follows; 2 × 5 = 10 for odd numbers related to  
visible divisor 5, and 2 × 7 = 14 for odd numbers 
related to invisible divisor 7. 
  The next step is to work out the point at which the 
special odd numbers (non-substitute elements) 
related to our selected divisors will enter our 
specified range of operation (≥ 41555≤43001). The 
formula to use in order to establish these entry 

points is as follows; {[(no1 ÷ 2a) – d] × 2a} + b 
where no1 is a number indicating any selected 
minimum range (41555 in this case), where a is 
any selected divisor, where d represents units to the 
right of a decimal point in the quotient no1 ÷ 2a, 
where b is an initial element of the set of numbers 
related to divisor a . For example, we can work out 
the points at which numbers related to the two 
divisors we have picked will enter the range of 
numbers beginning from 41555 respectively as 
follows; Entry point for numbers related to visible 
divisor 5 into range ≥ 41555≤43001;   
{[(no1 ÷ 2a) – d] × 2a} + b; [41555 ÷ (2 × 5)  – d] × 
2 × 5 + 11; {[(41555 ÷ 10) – d ] × 10} + 11; 
[(4155.5 – .5) × 10] + 11; (4155 × 10) + 11 ;  
41550 + 11 = 41561.  
  The value of the expression is 41561. Note that 
this number is the entry point of non-substitutes 
related to visible divisor 5 of first half pair odd 
numbers in the range of numbers beginning with 
41555.  
 To prove that 41561 is indeed visible divisor 5’s 
first  related special odd number in the range of 
numbers from 41555 onwards, we can subtract 
these numbers’ progression interval (2 × 5), to get 
a difference that is just less than the minimum 
range; that is, 41561 – 10 = 41551. As further 
proof we can keep on subtracting this progression 
interval (10) form each and every difference we 
obtain until we reach 11 which is the initial number 
for this series  of non-substitutes.  
  Similarly we can work out the entry point for 
numbers related to invisible divisor 7 into range ≥ 
41555≤43001 as follows;  
{[(no1 ÷ 2a) – d] × 2a} + b; [41555 ÷ (2 × 7)  – d] × 
2 × 7 + 11; {[(41555 ÷ 14) – d ] × 14} + 11; 
[(2968.21 – .21) × 14] + 11; (2968 × 14) + 11; 
41552 + 11= 41563. 
  In the same way, we can confirm that this number 
is indeed the first in the range from 41555 by 
subtracting the progression interval for this series 
of numbers (2 × 7) from 41563 and obtain a 
difference that is less than the minimum range of 
41555. We can also repeatedly subtract this 
progression interval form (14) from each and every 
difference obtained until we reach 11 which is also 
the initial number for this particular series of 
numbers. 
  The last thing is to produce complete sets of non-
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substitutes related to the two identified divisors as 
follows; For visible divisor 5, the first element is 
41561 which we have worked out to be its related 
numbers’ entry point into the range beginning with 
41555.  
  To get the rest of the elements up to our 
maximum of 43001, we add the progression 
interval for this particular series of numbers (2 × 5) 
to the first element and then keep on adding this 
interval to each and every sum we obtain until we 
get the number equal to, or just less than 43001. 
For invisible divisor 7, the first element is 41563 
which we established to be its related numbers’ 
entry point into the range of numbers starting with 

41555.To obtain the other remaining elements of 
this finite set, we simply add the progression 
interval for this particular series of numbers  (2 × 
7) to the first element and thereafter to each and 
every sum up to end with a number just less than or 
equal to 43001.  
  If we generate all sets of special odd  numbers 
related to visible and invisible divisors of first half 
pair odd numbers falling within  our range of 
numbers from 41561 to 43001, arrange all 
elements in their ascending order and eliminate all 
non-substitute elements whose last digit is 1, The 
result will be table 13 (b) below.  

 

TABLE 13 (b): FIRST HALF PAIR PRIMES FORMULA’S NON-SUBSTITUTE ODD NUMBERS RANGING FROM 41,561 TO 

43,001 (P = 3nso + 2). (Pick any missing odd number , excluding any number  whose last digit is 1,  in between 
any of the following numbers and substitute it for variable  nso in the first half pair primes formula  and the result 
will be a first half pair prime). (This table must  be read horizontally). 
 
41561  41563, 41565, 41569, 41575,  41577,  41583, 41585,  41587, 41595,    41603,  41605, 41609, 41613,  41619, 41623, 41625,  41627,  
41629,  41633, 41637,  41647,  41649,   41653,  41655, 41657,  41673,   41675,  41677,  41679,  41683,  41685,  41689,  41693,   41695, 
41699,  41703,  41709, 41715,  41717, 41723,  41725, 41729,  41737,  41745,  41751,  41755,  41757, 41759, 41765,  41769, 41773, 41775, 
41777, 41783,   41785,  41787,  41793, 41797,  41803,  41805, 41815, 41819,  41825,  41827,  41829,   41839,  41843,   41845, 41847,   
41855,    41857, 41859,  41867,  41869, 41875, 41877, 41885, 41887, 41893, 41899,    41907,  41909, 41913, 41919 41923,  41927, 41933, 
41935, 41939,  41943,  41945,  41947,  41953,  41955, 41957,   41959, 41963,  41967, 41969,  41979, 41983, 41985, 41989, 41993,  41995, 
41997, 41999,  42005, 42009, 42019,  42023, 42025, 42027,  42029,  42033, 42037,  42039,   42045,  42049,  42053, 42055, 42059, 42063,  
42065,  42067,  42069,   42073,  42083, 42089,   42093, 42095, 42097, 42099,  42109, 42115, 42117, 42123, 42125,  42127, 42133, 42135 
42137, 42139,   42143, 42145,  42149, 42155, 42159,  42165,  42167, 42169, 42173, 42175, 42177,  42179,  42187,  42189, 42193,  42195,   
42197, 42199, 42203, 42205, 42207, 42209,  42215,  42219,  42223, 42225,  42229, 42233,   42235, 42243, 42245,  42249,   42259,  42263,   
42265, 42269, 42273,  42276, 42277, 42285,  42287, 42293,  42297 42299, 42303, 42305, 42309, 42313,  42315,   42317, 42319,  42323,  
42325,   42327, 42333, 42335, 42337,   42339, 42347, 42349, 42353, 42357,  42363, 42365,   42367, 42369,  42373,  42375,  42383,  
42389,  42393,  42395, 42397,   42403, 42407,  42409,  , 42417,  42419, 42427,  42435,  42437, 42439,   42445, 42449,   42453, 42455,   
42459,  42463,   42465,   42469,  42473,  42475,  42477, 42479,  42485, 42487, 42499,  42503,  42505,    42507,  42515,  42519, 42523,  
42525,   42529,   42537, 42539,  42543, 42553, 42555, 42557, 42573,  42583,    42585, 42589,  42591,   42595, 42597,  42599,  42601, 
42603, 42607,  42609,  42611,  42613,  42615,  42617,  42623,  42627, 42629,   42633,  42635, 42639,  42645,   42647,  42649,  42655, 
42663,  42667,  42669,  41673, 42675,  42679,   42683,  42685,  42687,  42689,  42695,   42697, 42705,  42707, 42709,  42713,  42723,  
42725, 42727,   42735,   42739,  42743,   42749, 42753,   42755, 42759,  , 42765,    42767, 42769,   42777,   42785,  42787, 42789,  42793,  
42795,  42807,  42809,  42813,   42815, 42817, 42819,  42823,  42833,   42835,  42837, 42843, 42845, 42847,  42853, 42855,  42857  
42859,  42865,  42869, 42879,   42883,  42893,   42895,   42899,  42903,  42907,  42909,  42913, 42917,  42923, 42925, 42927,  42929,  
42933, 42935, 42947,  42949,  42955, 42963, 42965,  42969, 42973,   42977,  42985,  42987,  42999, 43001 

 
C.   The Second Half Pair Primes Formula Table 
The second table which is meant for the identification of elements of the solution set for the second half pair 
primes formula is table 14 below. Note that this table too can be produced for any chosen range of odd numbers  
 
TABLE 14, SECOND HALF PAIR PRIMES FORMULA’S NON-SUBSTITUTE ODD NUMBERS RANGING FROM 1 TO 3,399 (P2 = 
3nso – 2). (Pick any missing odd number, excluding 1 and 9 and any number whose last digit is 9,  before or in 
between any of the following numbers and substitute it for variable  nso in the second half pair primes  formula, 
and the result will be  a second half pair prime). (This table must be read horizontally). 
17, 31,  41,  45,  57,  63, 73 83, 85, 87, 97, 101, 107,  115,  121, 131, 135,   143,   151,  157,  161, 165,  171, 173, 177,  185,  187,  195,  197,   

213, 217, 223, 227,   233,  235,  241,  249,  255, 261, 265, 267,  273,  281,  283, 291,  297,  301, 305, 311, 315,  317,  321,  325,  327, 335,  

343,  353,  361, 367,  371,  381, 383,  387,   393, 395, 397,  403, 407,  415,  419,  421,  423, 425,  437,  445,  447,  451, 453, 455,  457,   

463,   465,  471, 473,  481,  493,   501, 503, 505,  507,  513,  521,    525,  531, 535,   545, 547, 551, 563,  561, 563, 571, 573,  577,  591,  
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603, 605, 607,  613,  615,   617, 631,  633, 635,  637,  641, 643,  647,  653,  655, 657,  661,  693,  675,  681, 683, 687  691, 693,  701, 703,   

707,   717,  723, 725, 731,  733, 737,  743, 745,  753, 755, 767,  773, 775,  777, 785,  787,  801, 803,  805, 807,  811,  815,  817,   821, 827,  

831, 833, 837,  843, 845,  855,  857,  861,  863,  867, 871,  875, 877,  881,    885,  901,  913,  915,  921, 927, 925,  937,    941,  943, 947,  

955,  957,  961, 965, 967,   971, 975,  977,  981,  983, 987,  993, 995,   997, 1003, 1005,  1011, 1015, 1025,  1031, 1033,  1035, 1043,  1045,  

1047, 1051,  1053,  1055, 1065,  1067,  1071, 1075, 1081, 1083,  1185,   1093,  1095,    1097,  1113, 1117,  1123, 1127,  1133, 1135, 1137,  

1141, 1143,  1147,   1151,  1161, 1163, 1165,  1175,    1185,  1193, 1197,   1201,  1207,  1217,  1221,  1223, 1227,  1235,  1241, 1251,  

1253, 1255,  1261, 1263, 1267, 1271, 1273, 1277,  ,1281,  1287,  1291, 1295,  1301,  1305,  1313, 1317,  1321, 1325,  1327, 1331,  1333,  

1337,  1345, 1347,  1355, 1357,  1361, 1363,  1373, 1375,  1381,  1383,    1391, 1395, 1397, 1403, 1405, 1413,  1417,  1423, 1427,  1431, 

1435 ,  1437,  1441, 1445,  1451, 1457,  1461, 1463, 1465, 1467, 1471, 1473, 1477, 1485, 1487, 1491, 1493,  1497, 1501, 1511,  1513,  

1515,  1525, 1527, 1537, 1543, 1545, 1557,  1561,  1563, 1565,  1567,     1571, 1573, 1581, 1583, 1585,   1591, 1593,  1603,   1607, 1613,  

1615,  1617,  1623, 1625,  1627,   1631, 1633, 1641,  1643, 1647,  1655,  1661, 1673, 1677, 1681,  1683, 1685,  1691,  1695,   1697,    1711, 

1713, 1715,  1717,   1721,  1725,  1731, 1735,  1741,  1747,  1751,  1753,  1755,  1757,  1763,  1765,  1767,  1771,  1773, 1777,  1781, 

1785, 1787, 1791, 1793,   1795, 1797, 1801,  1821,  1823,  1825,  1831, 1833, 1837,  1845, 1847, 1851,  1863,  1865, 1967, 1871, 1873, 

1875,  1877,   1891, 1893,   1903, 1905, 1907,  1911, 1921,  1923, 1925,  1933,  1935,  1937,  1945,  1955,  1963, 1965, 1967,  1971, 1973,  

1977,  1981, 1983, 1987, 1991, 1993,  1995, 1997,  2001, 2005,  2007,  2011, 2017, 2021, 2033, 2035,  2037,  2043,  2047,  2053, 2057,  

2061, 2063, 2065,  2075,  2081,  2085, 2087,  2095,  2097,  2103, 2107, 2105, 2111,  2117,  2131, 2135, 2137,  2145, 2147, 2153, 2155,  

2163,  2165,  2167,  2171, 2173,  2175,   2181,  2187,  2195, 2197,  2201, 2205,  2211,  2215,  2217, 2223,  2233,  2241,  2243, 2247, 2251, 

2253, 2257,  2361,  2263, 2267,  2271, 2273, 2283,  2285,  2287,    2293, 2297, 2301,  2305,  2307,  2311  2313, 2315,  2325,   2327,  2335, 

2337,  2341,  2345,  2351,  2355,  2361,  2363, 2365,   2367,   2371, 2373, 2375,  2381,   2383,  2385, 2391, 2395,  2397,  2401,  2411, 

2417, 2421, 2423,  2425,  2427, 2431, 2435,  2443, 2447,  2453,  2455,  2461, 2463,  2467,  2475, 2477,  2481, 2483, 2485, 2491,  2495,  

2501, 2505,  2507,  2511, 2515, 2523,  2527, 2533, 2537,  2543, 2545,  2551,   2553,  2555,  2565,  2571, 2577, 2583, 2591,  2593,  2595, 

2601, 2603, 2605,  2607,  2611, 2613, 2615, 2617, 2621,  2631,  2633, 2635, 2637, 2641, 2647,  2653,   2657,  2661, 2663,   2667,   2675, 

2677,  2681, 2683,  2691, 2693, 2695, 2703,  2705,  2707,   2711,  2713, 2715, 2717,  2725, 2733,  2735, 2743,  2747,  2751, 2753, 2761,  

2767, 2775,  2781,  2783,  2787,   2791, 2795, 2801,  2803, 2805,  2813, 2817,  2825,  2827,  2831, 2833, 2835, 2837, 2845,  2851, 2853, 

2857,  2863,   2865,  2871,   2873,  2885, 2887,  2891, 2895, 2901,  2915,  2917,  2923,  2925,   2931, 2933,  2937, 2943,  2945, 2951, 2953,  

2957,  2967, 2961, 2971,  2973,  2983, 2985,  2987, 2993,  2995, 2997  3007, 3011, 3013,  3021,  3025,  3027,  3033, 3041,  3047,  3055, 

3057,  3065, 3071, 3073,  3075, 3077 3083, 3085, 3087, 3091, 3097,    3101,  3103, 3105,  3111, 3121,  3123, 3125,  3127, 3137, 3143, 

3151, 3153, 3157,  3161,  3163, 3165,  3167,  3173, 3175, 3177,  3181, 3185,  3187,   3191,  3193,  3195, 3197, 3203,   3213, 3229,  3223, 

3225, 3231, 3235, 3237, 3243,  3251, 3253, 3255,  3265,  3267, 3275,  3281,  3283, 3285,  3293, 3297,  3305, 3307, 3313,  3315, 3321, 

3327, 3331, 3333, 3335,  3341, 3343, 3345, 3351, 3353,  3355, 3361, 3363, 3373, 3375, 3377, 3383, 3385, 3391, 3395, 3397, 3399.  

 

VI. CONCLUSION 

  This article has introduced a new standard formula 
for finding each and every prime number on the 
sequence of natural numbers without having to 
stumble upon composite numbers.  
  The formula is based on the recognition that 
primes only occur within a set of paired odd 
numbers, which numbers are located in between 
odd multiples of 3 on the sequence of natural 
numbers. The set of paired odd numbers comprises 
of two different sets of numbers. The first set is the 
set of first half pair odd numbers while the second 
set is the set of second half pair odd numbers. Each 
of these two sets has its own endless set of primes. 
The first set contains first half pair primes while the 
second set contains second half pair primes.  
  Owing to this differentiation between the two sets 

of primes, the new standard formula  is split into 
two complementary formulas. The first is for 
finding first half pair primes while the second is  
for finding second half pair primes. Each of the two 
formulas is satisfied by its own solution set of 
endless elements. These elements are indentified as 
missing numbers in tables of natural distribution of 
non-substitutes for variables in each of the two 
formulas. The significance of such tables is that 
they not only confirm the validity of the new 
standard formula, but also provide a basis upon 
which to arrive at various formulas of locating 
elements of the two solution sets.  
  The significance of this article is that it has laid a  
foundation for more informed research in the 
speedy and efficient location of prime numbers on 
the sequence of natural numbers. 
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