On CR-Structure and F-Structure Satisfying $F^7+F=0$

Lakhan Singh, Shailendra Kumar Gautam*

Department of Mathematics, D.J. College, Baraut, Baghpat (U.P.)

*Eshan College of Engineering, Mathura(UP)

ABSTRACT

In this paper, we have studied a relationship between CR-structure and F-structure satisfying $F^7+F=0$. Nijenhuis tensor, integrability conditions and metric F-structure have also been discussed.

Keywords: Projection operators, distributions, Nijenhuis tensor, integrability conditions and CR-structure.

1. INTRODUCTION:

Let F be a non zero tensor of type (1,1) and of class C^{∞} , which is defined on n dimensional manifold M such that

 $(1.1) F^7 + F = 0$

Let rank of F is r which is constnat everywhere we define the operators on M as

 $(1.2) l = -F^6, m = F^6 + I$

where *I* denote the identity operator.

Theorem (1.1) Let M be an F-structure manifold satisfying (1.1), then

(1.3) (a) l + m = I

 $(b) l^2 = l$

(c) $m^2 = m$

(d) lm = ml = 0

Proof: From (1.1) and (1.2), we get the results.

Thus for the tensor field $F \neq 0$ satisfying (1.1) there exist complementary distribution D_l

and $D_{\it m}$ corresonding to the projection operators $\it l$ and $\it m$ respectively. Then

$$Dim D_1 = r$$
, $dim D_m = n - r$

Theorem (1.2): Let M be an F-structure manifold satisfying (1.1) then

(1.4) (a) lF = Fl = F, mF = Fm = 0

(b)
$$F^6 l = -l, \quad F^6 m = 0$$

Proof: from (1.1) and (1.2), we get the results

From (1.4) (b), we observe that F^3 acts as an almost complex structure on D_l and as a null operator on D_m .

Theorem (1.3) Let M be an F-structure manifold satisfying (1.1), define

(1.5)
$$p = m + F^3$$
, $q = m - F^3$, then

(1.6) (a) pq = I,

(b)
$$p^2 = q^2 = m - l$$

Proof: from (1.2), (1.3) (a), (1.3) (c) and (1.5) we get (1.6) (a) from (1.2), (1.3) (c), (1.4) (a) and (1.5) we get (1.6) (b)

Theorem (1.4): Let M be an F-structure manifold satisfying (1.1). Define

(1.7)
$$c = l + F^3$$
, $d = l - F^3$ then

(1.8)
$$cl^n = l^n c = cl = lc = c, dl^n = l^n d = dl = ld = d$$

Proof: From (1.2) and (1.7) we get cl=c, then by (1.3) (b) and (1.4) (a), we get the results.

2. **NIJENHUIS TENSOR:**

Definition (2.1) Let X and Y be two vector fields on a Y-structure manifold Y satisfying (1.1) then their Lie bracket Y is defined as

(2.1)
$$X,Y = XY - YX$$
 and Nijenhuis tensor N X,Y of F as

(2.2)
$$N X,Y = FX,FY - F FX,Y - F X,FY + F^2 X,Y$$

Theorem (2.1): Let M be an integrable F-structure manifold M satisfying (1.1), then

(2.3)
$$-F^5 FX, FY + F^2 X, Y = l X, FY + F^2 X, Y$$

Proof: From (2.2),

$$N X,Y = FX,FY - F FX,Y - F X,FY + F^2 X,Y$$

as M is integrable $\therefore N \mid X, Y \mid = 0$ we have,

(2.4)
$$FX.FY + F^2 X.Y = F FX.Y + X.FY$$

Operating by $-F^5$ on both sides of (2.4) and using (1.2)

$$-F^5$$
 $FX,FY + F^2 X,Y = l FX,Y + X,FY$

Theorem (2.2) Let M be an F-structure manifold satisfying (1.1), then

$$(2.5) (a) mN X,Y = m FX,FY$$

(b)
$$mN F^5X, Y = m \lceil F^6X, FY \rceil$$

Proof: From (2.2) and (1.4) (a), we get (2.5) (a) Now replacing X by F^5X in (2.5) (a), we get (2.5) (b).

Theorem (2.3) Let M be an F-structure manifold satisfying (1.1), then the following conditions are all equivalent

(2.6) (a)
$$m N X,Y = 0$$
 (b) $m FX,FY = 0$

(c)
$$m N F^5 X, Y = 0$$
 (d) $m \lceil F^6 X, FY \rceil = 0$

(e)
$$m \left[F^6 lX, FY \right] = 0$$

Proof: from Theorem (2.2), (1.4) (a), (1.4) (b), we get the results.

Theorem (2.4) Let M be an F-structure manifold satisfying (1.1). Let us define

(2.7)
$$N X,Y = lX,lY - l lX,Y - l X,lY + l^2 X,Y$$

(2.8)
$$N_{m} X, Y = mX, mY - m mX, Y - m X, mY + m^{2} X, Y$$
 then

$$(2.9) (a) N_{l} mX, mY = l mX, mY$$

(b)
$$N_m lX, lY = m lX, lY$$
 (c) $N_l lX, mY = N_m mX, lY = 0$

Proof: Using (1.3 (b), (c), (d) in (2.7) and (2.8), we get the results.

3. CR-STRUCTURE:

Definition (3.1) Let T_c M denotes the complexified tangent bundle of the differentiable manifold M.

A CR-structure on M is a complex sub-bundle H of T_c M such that

$$(3.1) \quad (a) \qquad H_p \cap \tilde{H}_p = 0$$

(b) H is involutive that is $X,Y \in H \implies X,Y \in H$ for complex vector fields X and Y.

For the integrable F-structure satisfying (1.1) rank F = r = 2m on M, we define

(3.2)
$$H_p = X - \sqrt{-1}FX : X \in X D_l$$

where X D_l is the F D_m module of all differentiable sections of D_l .

Theorem (3.1) If P and Q are two elements of H, then

(3.3)
$$P, O = X, Y - FX, FY - \sqrt{-1} - 1 \quad FX, Y + X, FY$$

Proof: Defining $P = X - \sqrt{-1}$ -1 FX, $Q = Y - \sqrt{-1}$ -1 FY and simplifying, we get (3.3)

Theorem (3.2) for $X,Y, \in X$ D_I

$$(3.4) l FX,Y + X,FY = FX,Y + X,FY$$

Proof: Using (1.4) (a) and (2.1), we get the result as

(3.5)
$$l FX,Y + X,FY = l FXY - YFX + XFY - FYX$$
$$= FXY - YFX + XFY - FYX$$
$$= FX,Y + X,FY$$

Theorem (3.3) The integrable F-structure satisfying (1.1) on M defines a CR-structure H on it such that

$$(3.6) R_{\rho} H = D_{l}$$

Proof since X, FY, $FX, Y \in X$ D_I then from (3.3), (3.4), we get

$$(3.7) \quad l \ P,Q = P,Q \quad \Rightarrow P,Q \in X \ D_{l}$$

Thus F structure satisfying (1.1), defines a CR-structure on M.

Definition (3.2) Let $ilde{K}$ be the complementary distribution of R_e H to TM . We define a morphism

$$F:TM \longrightarrow TM$$
, given by

$$F X = 0, \forall X \in X \tilde{K}$$
 such that

(3.8)
$$F X = \frac{1}{2} \sqrt{-1} - 1 P - \tilde{P}$$

where $P = X + \sqrt{-1} - 1$ $Y \in X$ H_p and \tilde{P} is complex conjugate of P.

Corollary (3.1): From (3.8) we get

$$(3.9) F^2 X = -X$$

Theorem (3.4): If M has CR structure then $F^7+F=0$ and consequently F structure satisfying (1.), is defined on M s.t. D_l and D_m concide with $R_e(H)$ and \tilde{K} respectively

Proof:
$$F^3 \ X = -F \ X \ , F^4 \ X = X, F^5 \ X = F \ X \ , F^6 \ X = -X$$

$$F^7 \ X = -F \ X \ : F^7 + F = 0$$

4. **METRIC F-STRUCTURE:**

We now assume that the Riemannian metric tensor g is s.t.

(4.1)
$$F X,Y = g FX,Y$$
 is symmetric. That is

$$(4.2) g FX,Y = g X,FY$$

Theorem (4.1) g satisfied the relation

(4.3)
$$g F^5 X, F^2 Y = {}^{1}F X, Y + m X, Y$$
 where

$$(4.4) \quad m \quad X,Y = g \quad mX,FY$$

Proof: In (4.2) replacing X and Y by F^5X and FY respectively

(4.5)
$$g F^6 X, FY = g F^5, F^2 Y$$
 using (1.2) in (4.5)

(4.6)
$$g \quad m-I \quad X, FY = g \quad F^{5}X, F^{2}Y$$
$$g \quad mX - X, FY = g \quad F^{5}X, F^{2}Y$$
$$g \quad mX, FY - g \quad X, FY = g \quad F^{5}X, F^{2}Y$$

(4.7)
$$g F^5X, F^2Y = -g FY, X + g mX, FY$$

using (4.1) and (4.4) in (4.7)
 $g F^5X, F^2Y = - F Y, X + m X, Y$

$$g F^5 X, F^2 Y = - F X, Y + m X, Y$$

REFERENCES:

- 1. Bejancu, A., CR-submanifolds of a Kaehler manifold 1, Proc. Amer. Math. Soc., 69, 135-143 (1978).
- 2. Demetropoulou-Psomopoulou, D. and Andreou, F. Gouli, On necessary and sufficient conditions for an n-dimensional manifold to admit a tensor field $f \neq 0$ of type (1, 1) satisfying $f^{2\nu+3} + f = 0$ Tensor (N.S.), 42,252-257 (1985).
- 3. Blair, D.E. and Chen. B.Y.. On CR-submanifolds of Hermitian manifolds. Israel Journal of Mathematics, 34(4), 353-363 (1979).
- 4. Goldberg, S.I. and Yano, K., On normal globally framed f-manifolds. Tohoku Math., I. 22, 362-370 (1970).
- 5. Goldberg, S.I., On the existence of manifold with an F-structure. *Tensor (N.S.)*, 26, 323-329 (1972).
- 6. Upadhyay, M.D. and Gupta, V.C.. Inlegrability conditions of a structure f_{λ} satisfying $f^3 + \lambda^2 f = 0$, Publications Mathematics, 24 (3-4), 249-255 (1977).
- 7. Yano, K, On structure defined by a tensor Reid f of type (1, 1) satisfying $f^3 + f = 0$, Tensor (N.S.), 14,99-109(1963).
- 8. Yano, K. and Kon, M., Differential geometry of CR-submanifolds, Geometriae Dedicala. 10, 369-391(1981).
- 9. Das, L.S., Nivas, R. and Singh, A., On CR-structures and F-structures satisfying $F^{4n} + F^{4n-1} + ... + F^2 + F = 0$, Tesor N.S. 70. 255-260(2008).
- 10. Das L.S., On CR-structures and F(2K+1.1)-structure satisfying $F^{2K+1} + F = 0$, JTSI, India. 22, 1-7(2004).
- 11. Das. L.S.. Nikic, J. and Nivas. R., Distributions parallelism and geodesic in F a_1, a_2, \ldots, a_n structure Lagrangian manifolds. Differential Geometry Dynamitical Systems, Romania, 7, 82-89 (2005).
- 12. Ram Nivas and Surendra Yadav: On CR-structures and F_{λ} $2\nu+3$, 2-HSU- structure satisfying $F^{2\nu+3}+\lambda^rF^2=0$, Acta Ciencia Indica, Vol. XXXVIII M, NO. 4, 645 (2012).