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Abstract — In this article, the problem of optimal 
control of time-varying singular systems with 
quadratic performance index has been studied via 
Adomian Decomposition Method (ADM). The results 
obtained via RK-Butcher algorithm (RKB)[10] and 
ADM are compared with the exact solutions of the 
time-varying optimal control of linear singular 
systems. It is observed that the results obtained using 
ADM is closer to the true solution of the problem. 
Error graphs for the simulated results and exact 
solutions are presented in graphical form to highlight 
the efficiency of the ADM. This ADM can be easily 
implemented in a digital computer and the solution 
can be obtained for any length of time. 
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I. INTRODUCTION 
Optimal control of singular systems arises in many 

industrial processes in the steel industry, oil industry 
etc. The problem of optimal control of singular 
systems has invoked immense interest, especially 
among the researchers in the field of computational 
mathematics to study the existing problems in the field 
of control theory and to compute the value of the 
control vector numerically which controls the state 
vector.[3] 

Many models that enter into this framework can be 
found in practice and, in particular, in the existing 
literature. Among these we can mention: Chen and 
Hsiao [4], Chen and Shih [5], applied Walsh series to 
study the problem of optimal control of time-invariant 
and time-varying linear systems. It is to be noted that 
from the study of past literature that Cobb [6] and 
Pandolfi [9] seems to have been the first authors to 
consider the optimal regulator problem of continuous 
time singular systems. Both of them used state feed 
backs and their results were derived by the aid of 
Ricatti-type matrix equations. 

 K. Balachandran and K. Murugesan [2] derived 
optimal control of singular systems via single-term 
Walsh series. C.F. Chen and C.H. Hsiao [3] Walsh 
series analysis in optimal control in detail. W.L. Chen 
and Y.P. Shih [5] analysis and optimum control of 
time varying linear systems via Walsh functions. H. 
Maurer [7] gave numerical solution of singular control 

problems using multiple shooting techniques. H.J. 
Oberle [8] gave the numerical computation of singular 
control functions in trajectory optimization problems. 
H.J. Pesch [11] highlight a practical guide to the 
solution of real-life optimal control problems. M. 
Razzaghi and H. Marzban [12] derived optimal 
control of singular systems via piecewise linear 
polynomial functions. The above all the systems 
investigated in the cited articles. 

In this paper we developed numerical methods for 
addressing optimal control of time-varying singular 
systems by an application of the Adomian 
Decomposition Method which was studied by Sekar 
and team of his researchers [13-17]. Recently, Park et 
al. [10] discussed the optimal control of time-varying 
singular systems using RKB. In this paper, the same 
optimal control of time-varying singular systems was 
considered (discussed by Park et al. [10]) but present a 
different approach using the Adomian Decomposition 
Method with more accuracy for optimal control of 
time-varying singular systems.  

II. ADOMIAN DECOMPOSITION METHOD 

Suppose k  is a positive integer and 1 2, , , kf f f  
are k  real continuous functions defined on some 
domain G . To obtain k  differentiable functions 

1 2, , , ky y y  defined on the interval I  such that 

1 2( , ( ), ( ), , ( ))kt y t y t y t G  for t I .  
Let us consider the problems in the following 

system of ordinary differential equations: 

1 2
( )

( , ( ), ( ), , ( ))i
i k

dy t
f t y t y t y t

dt
   ,   

( ) | 0y ti t i    (1) 

where i  is a specified constant vector, ( )iy t  is the 
solution vector for 1, 2, ,i k  . In the 
decomposition method, (1) is approximated by the 
operators in the form: 

( ) ( , ( ), ( ), , ( ))1 2Ly t f t y t y t y ti i k   where L  is the 
first order operator defined by /L d dt  and 

1, 2, ,i k  . Assuming the inverse operator of L  is 
1L  which is invertible and denoted by 

0

1 (.) (.)
t

t
L dt   , then applying 1L  to ( )

i
L y t  yields  
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1 1( ) ( , ( ), ( ), , ( ))1 2L Ly t L f t y t y t y ti i k
    

where 1, 2, ,i k  . Thus 
1( ) ( ) ( , ( ), ( ), , ( ))0 1 2y t y t L f t y t y t y ti i i k

   . 

Hence the decomposition method consists of 
representing ( )y ti  in the decomposition series form 
given by 

( ) ( , ( ), ( ), , ( )), 1 2
0

y t f t y t y t y ti i n k
n


 


           

where the components ,i ny , 1n  and 1,2, ,i k   
can be computed readily in a recursive manner. Then 
the series solution is obtained as 

1( ) ( ) { ( , ( ), ( ), , ( ))},0 , 1 2
1

y t y t L f t y t y t y ti i i n k
n

   




.  
For a detailed explanation of decomposition method 

and a general formula of Adomian polynomials, we 
refer reader to [Adomian 1]. 

III.  OPTIMAL CONTROL OF TIME-VARYING 
SINGULAR SYSTEMS   

Considered the linear time-varying singular system 
           
  00 xx

tutBtxtAtxtK



         

(2) 
where  tK  is an nn  singular matrix, and  tA and 
 tB  are nn  and pn constant matrices, 

respectively. The elements (not necessarily all the 
elements) of the matrices  tK ,  tA  and  tB  are 
time dependent,  tx is an n-component state vector 
and  tu is the p-control input vector. 

Assuming that   ,0det  AsK ,
0










pI
B 










2

1

K
K

K      

(3) 
Where  01 pnIK   

Now the problem can be stated as follows: Given 
the initial state   00 xx   find a control vector  tu  
that generates a state  tx  such that   ff xtx  , where 

ft is a prescribed time and fx  is a fixed vector, and 
minimizes the cost functional  

              dtuxLJ
ft


0

,                                                         

(4) 
where  ,2

1 RuuQxxL TT   Q and R denote given 
real symmetric constant matrices. In case the initial 
state  0x  is not known, the method developed by 
E1-Tohami et al. [51] may be used to reconstruct the 
state. It has been proved by Lovass-Nagy et al. [89], 
which the problem of finding an optimal control 

reduces to the solution of a two-point boundary value 
problem. 

Let   ,
2

1










x
x

x  

1x  is   1 pn  and  2x  is ,1p  
 ,22212 KKK   where 21K  is  pnp   and 

22K is pp   

,
2

1










A
A

A   ,12111 AAA    

 22212 AAA   

where 22211211 ,,, AAAA  are respectively 
        .,,, pppnpppnpnpn   

Further take  TQQQ 21 where 1Q  and 2Q are 
  npn   and np   respectively. Then we have the 
following equations (Lovass-Nagy et al. [89]) 

212111
1 xAxA

dt
dx

                                            

(5) 

uxAxA
dt

dxK
dt
dxK  222121

2
22

1
21            

(6) 

xQRuA
dt
duRKpA

dt
dp TTT

12121111
1             

(7) 

xQRuA
dt
duRKpA TTT

22222112                        

(8) 
where  Tppp 21 is the co-state vector 
corresponding to equations (2). The optimal state and 
optimal control can be calculated from equations (5)-
(8).  

The governing equations for determining 
 tu and  tx for the time-varying optimal control 

problem can be obtained using the set of equations 
(5)-(8). It should be noted that these governing 
equations may not suit all types of time-varying 
optimal control problem. Hence, it is necessary to 
investigate further to derive the governing equations 
exclusively (a generalized form) for the time-varying 
optimal control problem of the form in equation (2). 

IV.  FORMULATION OF TIME-VARYING OPTIMAL 
CONTROL PROBLEM 

Rearranging the equations (5)-(8), we have the 
following system. 














































































 1

2

1

11211211

12222212

2221

1211

1

2

1

21

22

2221 0
00

00
000
00
000

p
u
x
x

ARAQQ
ARAQQ

IAA
AA

p
u
x
x

IRK
RK

KK
I

TT

TT

T

T









which can be written in the form      tytMtytK )(                                      
Where      
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





















IRK
RK

Kk
I

tK

T

T

21

22

2221

00
000
00
000

)( , 

  























TT

TT

ARAQQ
ARAQQ

IAA
AA

tM

11211211

12222212

2221

1211

0
00

 

and   Tpuxxy 121  
where the matrix K(t) is singular and some of the 
elements are time dependent and so it is called as 
time-varying “singular systems” or “descriptor 
systems” or “generalized state space systems” and it 
can not be written in the standard form.  

V. EXAMPLE FOR OPTIMAL CONTROL OF TIME-
VARYING LINEAR SINGULAR SYSTEMS 

The following time-varying linear singular system 
is considered 

u
x
x

tx
x

t 












































 1

0
11

01
0
01

2

1

2

1




              

 (9)  
with initial condition 

  









1
1

0x  

and the performance index 

             duxxj
ft

T 
0

2

2
1                                         

The objective is to determine an optimal control 
 tu  that will drive the system from an admissible 

initial state   00 xx  to some desired final state 

fx in a given time ft  and minimizing the above cost 
functional (performance index).  

The exact solution of the system (9) is 
   
     tttx

ttx
sinexp

exp

2

1




                              

 (10)    
and the optimal control is 
           ttu sin                                      
 (11) 

Time 
t 

Approximate solution  tx1 -values 

Exact 
Solutions  

RKB 
Solutions 

RKB  
Error 

ADM 
Solutions 

ADM 
Error 

0.00 1.000000 1.000000 0 1.000000 0 
0.25 0.778801 0.778801 0.00002 0.778801 2E-07 
0.50 0.606531 0.606531 0.00007 0.606531 7E-07 
0.75 0.472367 0.472367 0.00009 0.472367 9E-07 
1.00 0.367879 0.367879 0.00014 0.367879 0.000014 
1.25 0.286504 0.286504 0.00017 0.286504 0.000017 
1.50 0.223130 0.223130 0.00019 0.223130 0.000019 
1.75 0.173774 0.173774 0.00022 0.173774 0.000022 
2.00 0.135335 0.135335 0.00026 0.135335 0.000026 

Table 1 Solutions for time-varying system for various values of 
“  tx1 ”. 

The simulation results and the exact solutions of the 
state vector  tx  are calculated using ADM and (10) 
and is presented in Table 1-2 along with the solution 
obtained using RKB method. The corresponding 
optimal control  tu  is calculated using ADM and 
(11) and the results are presented in Table 3. 
 

Time 
t 

Approximate solution  tx2 -values 
Exact 
Solutions  

RKB 
Solutions 

RKB  
Error 

ADM 
Solutions 

ADM 
Error 

0.00 1.000000 1.000000 0 1.000000 0 
0.25 1.026204 1.026204 0.000002 1.026204 2E-08 
0.50 1.085956 1.085956 0.000007 1.085956 7E-08 
0.75 1.154005 1.154005 0.000009 1.154005 0.000009 
1.00 1.209350 1.209350 0.000014 1.209350 0.0000014 
1.25 1.235489 1.235489 0.000017 1.235489 0.0000017 
1.50 1.220625 1.220625 0.000019 1.220625 0.0000019 
1.75 1.157759 1.157759 0.000022 1.157759 0.0000022 
2.00 1.044632 1.044632 0.000026 1.044632 0.0000026 

Table 2 Solutions for time-varying system for various values of 
“  tx2 ”. 

 

Time 
t 

Approximate solution  tu -values 
Exact 
Solutions  

RKB 
Solutions 

RKB  
Error 

ADM 
Solutions 

ADM 
Error 

0.00 0.000000 0.000000 0 0.000000 0 
0.25 0.247404 0.247404 4.00E-

06 
0.247404 4.00E-

08 
0.50 0.479426 0.479426 6.00E-

06 
0.479426 6.00E-

08 
0.75 0.681639 0.681639 3.00E-

05 
0.681639 3.00E-

07 
1.00 0.841471 0.841471 4.00E-

05 
0.841471 4.00E-

07 
1.25 0.948984 0.948984 5.00E-

05 
0.948984 5.00E-

07 
1.50 0.997495 0.997495 6.00E-

05 
0.997495 6.00E-

07 
1.75 0.983986 0.983986 7.00E-

05 
0.983986 7.00E-

07 
2.00 0.909297 0.909297 8.00E-

05 
0.909297 8.00E-

07 
Table 3 Solutions for time-varying system for various values of 

“  tu ”. 
 

 
Fig. 1 Error graph for the state )(1 tx  
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Fig. 2 Error graph for the state )(2 tx  

 

 
Fig. 3 Error graph for the control input  tu  

VI. CONCLUSIONS 
The results obtained for the time-varying optimal 

control of linear singular systems with quadratic 
performance index show that the ADM works well for 
finding the state vector  tx  and the control input 
vector  tu . Table 1-3 and Fig. 1-3 shows that, for 
most of the time intervals, the absolute error is less 
(almost zero) with the ADM than with the RKB 
method, which yields a small error compared with the 
exact solutions of the problem.  Hence the ADM 
method is more suitable for studying the harmonic 
oscillators. 
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