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Abstract — The ECG (electrocardiogram), which 
records heart’s electrical activity, is able to give 
information about the type of Cardiac disorders 
suffered by the patient depending upon the deviations 
from normal ECG signal pattern. We have plotted the 
coefficients of continuous wavelet transform using a 
new wavelet (raees wavelets). We used different ECG 
signal available at MIT-BIH database and performed 
a comparative study. We demonstrated that the 
coefficient at a particular scale represents the 
presence of QRS signal very efficiently irrespective of 
the type or intensity of noise, presence of unusually 
high amplitude of peaks other than QRS. 
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I. INTRODUCTION  
In recent paper we introduce a new continuous 
wavelet (raees wavelets) and in this paper we are 
using them in the wavelet transform to detect the 
presence of QRS signal very efficiently irrespective of 
the type or intensity of noise, presence of unusually 
high amplitude of peaks other than QRS. 
 
The ECG (electrocardiogram), which is nothing but 
recording heart’s electrical activity, provides very vital 
information about the wide range of Cardiac disorders 
depending upon the deviations from normal ECG 
signal pattern. In general, the frequency range of an 
ECG signal varies between 0.05–100 Hz with the 
dynamic range between 1–10 mV. The ECG signal is 
characterized by five peaks and valleys labelled by the 
letters P, Q, R, S, T. In some cases we also use another 
peak called U. The QRS complex is the most 
prominent waveform within the electrocardiographic 
(ECG) signal, with normal duration from 0.06 s to 0.1 
s. The performance of ECG analysing system depends 
mainly on the accurate and reliable detection of the 
QRS complex, as well as T- and P waves. However 
since the QRS complexes have a time-varying 
morphology, they are not always the strongest signal 
component in an ECG signal. In addition there are 
many sources of noise in a clinical environment, for 
example, 
power line interference, muscle contraction noise, 
poor electrode contact, patient movement, and 
baseline wandering 
due to respiration that can degrade the ECG signal. 
Previously applied algorithms commonly use 
nonlinear filtering to detect QRS complexes using 

thresholding, artificial intelligence using hidden 
Markov models, and time recursive prediction 
techniques. A General algorithm is passing the signal 
passed through a nonlinear transformer like derivative 
and square, etc., to enhance the QRS complexes after 
filtering the ECG signal using a band pass filter to 
suppress the P and T waves and noise and finally 
determining the presence of QRS complexes using 
decision. The main drawbacks of these techniques are 
that frequency variation in QRS complexes adversely 
affects their performance. The frequency band of QRS 
complexes generally overlaps the frequency band of 
noise, resulting in both false positives and false 
negatives. Methods using artificial intelligence are 
time consuming due to the use of grammar and 
inference rules as mentioned earlier. The hidden 
Markov model approach too requires considerable 
time even with the use of efficient algorithms. 
Wavelet analysis is a very promising mathematical 
tool ‘a mathematical microscope’ that gives good 
estimation of time and frequency localization. Wavelet 
analysis has become a renowned tool for 
characterizing ECG signal and some very efficient 
algorithms has been reported using wavelet transform 
as QRS detectors. In this paper we have reported 
methodologies that are very simple in order to develop 
algorithms to detect the QRS complex using 
continuous wavelet transform. We used the raees 
wavelet (rsw2) and plotted coefficients to detect the 
QRS. 
 

II. NEW CONTINUOUS WAVELET TRANSFORM 
 
A new family of continuous Wavelet known as raees 
wavelets defined by 
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i.e.  k t is a Mother Wavelet for each k are used. 



International Journal of Mathematics Trends and Technology- Volume26 Number1 – October 2015 

ISSN: 2231-5373                                  http://www.ijmttjournal.org                         Page 21 

This family is named as raees wavelet family, shortly 
rsw associated with numbers 1, 2……7, according to 
their order. 
The wavelet transform of a continuous time 
signal,  x t using the above mother wavelet is defined 
as 
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Where  k t   is the complex conjugate of 

 k t and a is the dilation parameter of the wavelet 

and b is the location parameter of the wavelet. 
 
The contribution to the signal energy at the 
specific a scale and b location is given by the two 
dimensional wavelet energy density function known 
as the ‘Scalogram’: 
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The total energy in the signal may be found from its 
wavelet transform as follows: 
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 and     is the 

Fourier transform of  t  and is given by 
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In practice a fine discretization of the continuous 
wavelet transform is computed where usually 
the b location is discretized at the sampling interval 
and the a scale is discretized logarithmically. 
The a scale discretization is often taken as integer 
powers of 2; however, we use a finer resolution in our 
method where scale discretization is in fractional 

powers of two. This discretization of the continuous 
wavelet transform (CWT) is made distinct from the 
discrete wavelet transform (DWT) in the literature. In 
its basic form, the DWT employs a dyadic grid and 
orthonormal wavelet basis functions and exhibits zero 
redundancy. Our method, i.e. using a high resolution 
in wavelet space as described above, allows individual 
maxima to be followed accurately across scales, 
something that is often very difficult with discrete 
orthogonal or dyadic stationary wavelet transforms 
incorporating integer power of two scale discretization. 

 

III.  IMPLEMENTATION 
The data has been taken from MIT-BIH arrhythmia 
database. We analyzed different signal of length 10 
seconds for our algorithm and analysis have some 
different types of deviations from normal specifically. 
Namely, Record 105, which is more noisy than the 
others; Record 108 has unusually high and sharp P 
waves; Record 203 has a great number of QRS 
complexes with multiform ventricular arrhythmia; and 
Record 222 has some non-QRS waves with highly 
unusual morphologies and 109 having an base line 
drift in the signal which is one of the major problem 
causing failure of threshold type algorithms. As shown 
in figures 1.1, 2.1 … 6.1. We have analysed different 
signal with different types of noises, errors and 
fluctuations and we see that in the coefficient plot we 
get a band of high energy corresponding to exact 
number of the QRS peaks available in the signal. Very 
efficient and lucid algorithms can be developed to 
read this plot at a particular scale. We have done a 
localized analysis of a signal for a particular duration 
and one can count manually to check the results. For a 
very long duration signal, a variable scale can be 
defined to make the perfect count of QRS signal. 
Another inference that can be drawn from the 
Coefficients plot is about the exact positions where the 
energy scale representation is zoomed by the 
continuous wavelet transform. Here the transformation 
is done using rsw2 (raees wavelet of order 2). 

IV. TABLE AND FIGURE 
Table-1 

Order 
of the 

Wavelet 
( k ) 

k
C  kC   

1 119.0753391489156   1.601616579725480  

2 431.3058522364652   9.112718044441433  
3 3441.012559088567   95.974203313082995  
4 46109.58291987393   1596.419728602841 
5 935295.5508285811   38948.93123589542  
6 27136072.04053418   1330506.195338057  
7 1081545882.025461   61348820.76589487  
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Figures: 

 
Figure 1.1: ECG-signal of record 100 from MIT-

BIH database 

 
Figure 1.2: Coefficient Plot of ECG-signal of 

record 100 after Applying Wavelet Transform 

 
Figure 2.1: ECG-signal of record 105 from MIT-

BIH database 

 
Figure 2.2: Coefficient Plot of ECG-signal of 

record 105 after Applying Wavelet Transform 

 
Figure 3.1: ECG-signal of record 108 from MIT-

BIH database 

 
Figure 3.2: Coefficient Plot of ECG-signal of 

record 108 after Applying Wavelet Transform 

 
Figure 4.1: ECG-signal of record 109 from MIT-

BIH database 

 
Figure 4.2: Coefficient Plot of ECG-signal of 

record 109 after Applying Wavelet Transform 

 
Figure 5.1: ECG-signal of record 203 from MIT-

BIH database 

 
Figure 5.2: Coefficient Plot of ECG-signal of 

record 203 after Applying Wavelet Transform 

 
Figure 6.1: ECG-signal of record 222 from MIT-BIH database 

 
Figure 6.2: Coefficient Plot of ECG-signal of 

record 222 after Applying Wavelet Transform 
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V. CONCLUSION 
In this paper we have reported a time-frequency 
multiresolution analysis of an ECG signal. We have 
plotted the coefficients of continuous wavelet 
transform using raees wavelet. We used different ECG 
signal available at MIT-BIH database and performed a 
comparative study. We demonstrated that the 
coefficient at a particular scale 
represents the presence of QRS signal very efficiently 
irrespective of the type or intensity of noise, presence 
of 
unusually high amplitude of peaks other than QRS 
peaks and Base line drift errors. In postscript we 
suggest that with few modifications of the current 
work can reveal the features and characteristics of 
other ECG waveform viz. P and T waveform which 
can also provide with some important information 
about physiological conditions of patient suffering 
from heart disease.  
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