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for Nonlinear Fuzzy Differential Equations by an 
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I. INTRODUCTION 
The study of fuzzy differential equations is rapidly 

expanding as a new branch of fuzzy mathematics. 
Both theory and applications have been actively 
discussed over the last few years. According to 
Vorobiev and Seikkala [34], the term ‘fuzzy 
differential equation’ was first coined in 1978. Since 
then, it has been a subject of interest among scientists 
and engineers. In the literature, the study of fuzzy 
differential equations has several interpretations. The 
first one is based on the notion of Hukuhara derivative 
[17,31]. Under this interpretation, the existence and 
uniqueness of the solution of fuzzy differential 
equations have been extensively studied (see 
[13,20,33,36,37]).  

In 1987, the concept of Hukuhara derivative was 
further explored by Kaleva [20] and Seikkala [32]. 
Subsequently, the theory of fuzzy differential 
equations has been developed and fuzzy initial value 
problems have been studied. However, this approach 
produces many solutions that have an increasing 
length of support as the independent variable increases 
(see [7,12,31,34]). Moreover, different formulations of 
the same fuzzy differential equation might lead to 
different solutions. According to Diamond [12] the 
approach based on the Hukuhara derivative does not 
produce the variety of behaviours as in the case of 
ordinary differential equations. This shortcoming has 
been alleviated by Hullermeier [19], who studied a 
fuzzy differential equation as a family of differential 
inclusions. According to Bede et al. [6], the main 
shortcoming of Hullermeier’s approach is that it does 
not include a ‘‘fuzzification’’ of the differential 
operator. The same authors also claim that the solution 
of a fuzzy differential equation is not necessarily a 
fuzzy interval-valued function. In [4] it is shown that 
in some situations, the approach based on 

Hullermeier’s interpretation also yields different 
solutions. 

The third interpretation was suggested by Buckley 
and Feuring [9], who applied the extension principle 
to the crisp solution of ordinary differential equations 
in order to obtain a solution in the fuzzy setting. In 
this case, different formulations of the same ordinary 
differential equation lead to the same solution 
ensuring its uniqueness. In 2005, Bede and Gal [5] 
introduced a new concept of fuzzy derivatives called 
the generalised differentiability of fuzzy interval-
valued functions. In this setting, the solution of a 
fuzzy differential equation may have a decreasing 
length of support as the independent variable 
increases. However, it depends on the selection of the 
fuzzy derivatives. Moreover, different formulations of 
the same fuzzy differential equation will lead to 
different solutions as well. Therefore, the uniqueness 
is not ensured. This generalisation was further studied 
by Chalco-Cano and Roman-Flores [10,11] who 
established relationships with other interpretations 
(see also [27]). Indeed, the uniqueness of the solution 
of a fuzzy differential equation has been challenging. 
However, according to Remark 4 in [6], the existence 
of several solutions is not a deficiency of the methods: 
we can choose the solution which better reflects the 
characteristics of the problem. In [23], the authors 
used the generalised differentiability to study the 
existence of solutions of a class of first-order linear 
fuzzy differential equations with periodic boundary 
conditions. 

Recently, Gasilov et al. [15] proposed a new 
method to solve a system of linear differential 
equations with real coefficients and with an initial 
condition described by a vector of fuzzy intervals. The 
proposed method is based on properties of linear 
transformations. However, the authors considered a 
fuzzy set of real vector functions rather than a fuzzy 
vector function. In order to solve fuzzy differential 
equations with fuzzy coefficients, fuzzy initial values 
and fuzzy forcing functions, Akin et al. [3] proposed a 
new algorithm based on an analysis of the crisp 
solution.  

Results in [11,9,10,32] have motivated several 
authors to propose numerical methods for solving 
fuzzy differential equations. One of the earliest 
contributions was a fuzzy version of Euler’s method 
by Ma et al. [26]. A new version of Euler’s method 
based on generalised differentiability has been studied 
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in [29]. However, a serious shortcoming is that the 
authors did not take into account the dependency 
problem, which arises when multiple occurrences of 
the same fuzzy interval are treated independently in 
fuzzy interval arithmetic. As discussed in 
[11,14,18,24,25,28,35,38], this can lead to a repetition 
of some numerical computations, producing 
approximations that are less accurate. In [2], the 
authors developed a 4-th order Runge–Kutta method 
for solving fuzzy differential equations. However, 
their proposed method suffers from the same problem 
as in [26,29]. We can see the same problem in 
numerical methods proposed by Abbasbandy and 
Allahviranloo [1], Khastan and Ivaz [22], Palligkinis 
et al. [30], and the latest by Ghazanfari and Shakerami 
[16]. By considering the dependency problem in fuzzy 
interval arithmetic, we propose a new fuzzification of 
Euler’s method for a more general class of problems. 

In this study, we develop numerical methods for 
nonlinear fuzzy differential equations by an 
application of the Leapfrog which was studied by 
Sekar and team of his researchers [39-44]. Recently, 
M. Z. Ahmad et al. [43] and M. Rostami et al. [44] 
discussed the nonlinear fuzzy systems by extension 
principle and second order Runge-Kutta method. In 
this paper, the same nonlinear fuzzy differential 
equations is considered (discussed by M. Z. Ahmad et 
al. [43] and M. Rostami et al. [44]) but a different 
approach using the Leapfrog method with more 
accuracy is presented.  

II. LEAPFROG METHOD 
In mathematics Leapfrog integration is a simple 

method for numerically integrating differential 
equations of the form  xFx  , or equivalently of the 
form   vxxFv   , , particularly in the case of a 
dynamical system of classical mechanics. Such 
problems often take the form  xVx  , with 

energy function    xVvvxE  2

2
1, , where V is the 

potential energy of the system. The method is known 
by different names in different disciplines. In 
particular, it is similar to the Velocity Verlet method, 
which is a variant of Verlet integration. Leapfrog 
integration is equivalent to updating positions  tx and 
velocities    txtv   at interleaved time points, 
staggered in such a way that they 'Leapfrog' over each 
other. For example, the position is updated at integer 
time steps and the velocity is updated at integer-plus-
a-half time steps. 

Leapfrog integration is a second order method, in 
contrast to Euler integration, which is only first order, 
yet requires the same number of function evaluations 
per step. Unlike Euler integration, it is stable for 
oscillatory motion, as long as the time-step t is 
constant, and wt 2 . In Leapfrog integration, the 
equations for updating position and velocity are 

  ,,, 2121211 tavvxFatvxx iiiiiiii  

where ix is position at step 21, ivi , is the velocity, or 

first derivative of x, at step  ii xFai  ,21 is the 
acceleration, or second derivative of x, at step i and 

t is the size of each time step. These equations can 
be expressed in a form which gives velocity at integer 
steps as well. However, even in this synchronized 
form, the time-step t must be constant to maintain 
stability.  

  .
2
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One use of this equation is in gravity simulations, 
since in that case the acceleration depends only on the 
positions of the gravitating masses, although higher 
order integrators (such as Runge–Kutta methods) are 
more frequently used. There are two primary strengths 
to Leapfrog integration when applied to mechanics 
problems. The first is the time-reversibility of the 
Leapfrog method. One can integrate forward n steps, 
and then reverse the direction of integration and 
integrate backwards n steps to arrive at the same 
starting position. The second strength of Leapfrog 
integration is its symplectic nature, which implies that 
it conserves the (slightly modified) energy of 
dynamical systems. This is especially useful when 
computing orbital dynamics, as other integration 
schemes, such as the Runge-Kutta method, do not 
conserve energy and allow the system to drift 
substantially over time. 

III.  NONLINEAR FUZZY DIFFERENTIAL EQUATIONS   
An arbitrary fuzzy number is represented by an 

ordered pair of functions     ruru ,   for all r ∈  [0, 1], 
which satisfy the following requirements [O. Kaleva 
(1990)]: 

(i)  ru  is a bounded left continuous non-
decreasing function over [0, 1], 

(ii)  ru  is a bounded right continuous non-
increasing function over [0, 1], 

(iii)   ru ≤  ru   r   [0, 1], 
Let E be the set of all upper semi-continuous normal 
convex fuzzy numbers with bounded α-level intervals. 
 
Lemma   

Let      vv , , α   (0, 1] be a given family of 
non-empty intervals. If 

(i)           vvvv ,,    for 0 < α ≤ β, 
and 

(ii)         ,,lim,lim  vvvv kkkk







 

whenever (αk) is a non-decreasing sequence 
converging to α  (0, 1], then the family      vv , , α 
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  (0, 1], represent the α-level sets of a fuzzy number v 
in E.  

Conversely if      vv , , α   (0, 1], are α-level 
sets of a fuzzy number v   E, then the conditions (i) 
and (ii) hold true. 
 
Definition 

Let I be a real interval. A mapping v : I →  E is 
called a fuzzy process and we denoted the α-level set 
by         ,,, tvtvtv  . The Seikkala derivative 

 tv  of v is defined by       



   ,,, tvtvtv , 

provided that is a equation defines a fuzzy number 
 tv    E. 

 
Definition 

Suppose u and v are fuzzy sets in E. Then their 
Hausdroff D : E × E → R+ ∪ {0}, 
             vuvuvuD   ,maxsup, 1,0 , 

i.e.,D(u, v) is maximal distance between α-level sets 
of u and v. 

In this section, we study the fuzzy initial value 
problem for a second-order linear fuzzy differential 
equation. 

           
 
  













,0
,0

,

2

1

cx
cx

ttxtbtxtatx 
  

    (1) 
where       RttbtaRcc f  ,,,, 21 . In this paper, we 

suppose     0, tbta . Our strategy of solving (1) is 
based on the selection of derivative type in the fuzzy 
differential equation. We first give the following 
definition for the solutions of (1). 
 
Definition 

Let   fRbax ,:  be fuzzy-valued function and 
n,m = 1,2. One says x is an (n,m)-solution for problem 
(4.1). If         txDtxD mnn

2
,

1 ,  exist   
and 

          txDtatxD nmn
12

,

            2
1

1 0,0, cxDcxttxtb n  . 
 

IV.  NUMERICAL EXAMPLE OF NONLINEAR FUZZY 
DIFFERENTIAL EQUATIONS 

Example 4.1  
Consider the following nonlinear fuzzy differential 

equation with fuzzy initial value is given by M. 
Rostami et al. [44].  

         
    








1,1,00
2,0,342

x
ttxttxtxttx  

  

Example 4.2  
Consider the following nonlinear fuzzy differential 

equation with fuzzy initial value is given by M. Z. 
Ahmad et al. [43].  

     
   







 ,43,4,00
3,0,cos

x
ttxtx

 

  

 
 

Fig. 1. Solution Graph for Example 4.1 using Runge-Kutta Method  
 

 
 

 
 

Fig. 2. Solution Graph for Example 4.1 using Leapfrog Method 
 
 

 

 
Fig. 3. Solution Graph for Example 4.2 using extension principle  
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Fig. 4. Solution Graph for Example 4.2 using Leapfrog Method 

 

 

 
Fig. 5. Solution Graph for Example 4.2 using extension principle 

 

 

 
Fig. 6. Solution Graph for Example 4.2 using Leapfrog Method 

 
Since the exact solution cannot be found 

analytically, we use the numerical method proposed in 
this study. The results are shown in Fig. 1-6, where we 
can see that the diameter of the approximate solution 
shows a non-monotone behaviour as t increases. This 
illustrates that the numerical method proposed in this 
paper is capable of generating periodic solutions, 
while the other two numerical methods do not have 
this capability. 

V. CONCLUSIONS 
In this paper we introduce a new numerical method 

for solving nonlinear fuzzy differential equations. The 
efficiency and the accuracy of the Leapfrog method 
have been illustrated by suitable examples. The 

solutions obtained are coincide well with the solutions 
of the nonlinear fuzzy differential equations and other 
methods.   
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