Domination Uniform Subdivision Number of Graph

M. K. Angel Jebitha
Department of Mathematics
Holy Cross College (Autonomous)
Nagercoil - 629 004, Tamil Nadu, India

Abstract

Let $G=(V, E)$ be a simple undirected graph. A subset D of $V(G)$ is said to be dominating set if every vertex of $V(G)-D$ is adjacent to at least one vertex in D. The minimum cardinality taken over all minimal dominating sets of G is the domination number of G and is denoted by $\gamma(G)$. The domination uniform subdivision number of G is the least positive integer k such that the subdivision of any k edges from G results in a graph having domination number greater than that of G and is denoted by usd ${ }_{\gamma}(G)$. In this paper, we investigate the domination uniform subdivision number of some standard graphs. Also we determine the bounds of usd γ_{γ} and characterize the extremal graphs.

Keywords - domination number, domination uniform subdivision number.
AMS Subject Classification: 05C69

I. Introduction

Let $G=(V, E)$ be a simple undirected graph of order n and size m. If $v \in V(G)$, then the neighbourhood of v is the set $N(v)$ conisting of all vertices u which are adjacent to v. The closed neighbourhood is $N[v]=N(v) \cup\{v\}$. The degree of v in G is $|N(v)|$ and is denoted by $\operatorname{deg}(v)$. The maximum degree of G is $\max \{\operatorname{deg}(v): v \in V(G)\}$ and is denoted by (G). A vertex v is said to be full vertex if $\operatorname{deg}(v)=n-1$. A vertex v is said to be pendant vertex if $\operatorname{deg}(v)=1$. A vertex is called support if it is adjacent to a pendant. A support is said to be strong support if it is adjacent to more than one pendent. A subgraph F of a graph G is called an induced subgraph of G if whenever u and v are vertices of F and $u v$ is an edge of G, then $u v$ is an edge of F as well. If F is induced by a vertex set $V^{\prime} \subset V(G)$, then F can be represented as $\left\langle V^{\prime}\right\rangle$.

A path, a cycle, and a complete graph on n vertices are denoted by P_{n}, C_{n} and K_{n} respectively. A graph is said to be connected if there exists a path
between any pair of vertices. Otherwise it is said to be disconnected. Tree is a connected acyclic graph. A tree T is said to be caterpillar if removel of leaves from T gives path. A graph G is a k-partite graph if $V(G)$ can be partitioned into k subsets V_{1}, V_{2}, \ldots, V_{k} such that $u v$ is an edge of G if u and v belong to different partite sets. If, in addition, every two vertices in different partite sets are joined by an edge, then G is a complete k-partite graph. If $|V i|=n_{i}$ for $1 \leq i \leq k$, then we denote such graphs by $K_{n 1}, n 2, \ldots, n k$. It is also known as complete multipartite graph. A bipar-tite graph is denoted by $K_{r, s}$.

The corona of two graphs G_{1} and G_{2}, is the graph $\quad G=G_{1} \circ G_{2}$, formed from one copy of G_{1} and $\left|V\left(G_{1}\right)\right|$ copies of G_{2} where the $i^{\text {th }}$ vertex of G_{1} is adjacent to every vertex in the $i^{\text {th }}$ copy of G_{2}.

A set $S \subseteq V(G)$ is a dominating set if every vertex in $\quad V-S$ is adjacent to at least one vertex in S. The minimum cardinality taken over all dominating sets of G is called the domination number of Gand is denoted by $\gamma(G)$.

The domination subdivision number introduced by Arumugua Velammal in [10]. It's bound was obtained in [2] and several authors characterised trees according to their domination subdivision number. Also many results have also been obtained on the parameters $s d_{d d}, s d_{\gamma c}$ and $s d_{\gamma t}$.

An edge $u v \in E(G)$ is subdivided if the edge $u v$ is deleted, a new vertex x (called a subdivision vertex) is added, along the new edges: $u x$ and $x v$. A derived graph G^{\prime} of G by subdividing all the edges of $E \subseteq E(G)$ is denoted by $G \| E^{\prime}$. A subdivision graph $S(G)$ of a graph G is obtained from G by subdividing all the edges exactly once. Subdivision graph of star graph $K_{1, r}$ is said to be spider. A graph is said to be wounded spider if it is obtained by subdividing at most $\quad r-1$ edges of
$K_{1, r}$. The domination subdivision number is defined by $\quad s d_{\gamma}(G)=\min \left\{\left|E^{\prime}\right|: \chi\left(G| | E^{\prime}\right)>\chi(G)\right\}$.
In [7] and [8], two different graph theoretical concepts were studied on subdivision graphs. In this paper, generalized definition of domination uniform subdivision number.

II. EXACT VALUE FOR SOME STANDARD GRAPHS

In this section, we define domination uniform subdivision number and obtained exact value for some standard graphs.

Definition 2.1. A domination uniform subdivision number of G is the least positive integer k such that the sub division of any k edges from G results in a graph having domination number greater than that of G and is denoted by $\operatorname{usd}_{\gamma}(G)$. If it is not exists, then $u s d_{\gamma}(G)=0$.

Definition 2.2. A subset $S \subseteq E(G)$ is said to be stable subdivision set if $\gamma(G \| S)=\gamma(G)$. A stable subdivision set S is said to be maximum stable subdivision set if there is no stable subdivision set S^{\prime} such that $\left|S^{\prime}\right|>|S|$.
Remark 2.3. $\operatorname{usd}_{\gamma}(G)=|S|+1$, where S is a maximum
stable subdivision set of G.
Theorem 2.4. If $\Delta(G)=n-1$, then $\operatorname{usd}_{\gamma}(G)=1$.
Proof. Since $\Delta(G)=n-1, \gamma(G)=1$. Let $e \in E(G)$. Then $\quad \Delta(G \|\{e\})=n-2$ and so $\gamma(G \|\{e\}) \geq 2$. Hence $\quad \gamma(G)<\gamma(G \|\{e\})$ for every e $\in E(G)$. Thus $u s d_{\gamma}(G)=1$.

Theorem 2.5. For $n \geq 3, \operatorname{usd}_{\lambda}\left(P_{n}\right)=\left\{\begin{array}{ll}1 & \text { if } n \cong 0 \\ \bmod 3 & \text { if } n \cong 1\end{array}, l\right.$
$\bmod 3$

$$
2 \quad \text { if } n \cong 2
$$

$\bmod 3$
Proof. Case (i) : $n \cong 0 \bmod 3$
Then $n=3 k, k \in N$. Therefore $\gamma\left(P_{n}\right)=k$. Let $e \in$ $E\left(P_{n}\right)$. Then $P_{n} \|\{e\}=P_{n+1}$ and hence $\gamma\left(P_{n} \|\{e\}\right)=$ $k+1$. Therefore $\quad \gamma\left(P_{n} \|\{e\}\right)>\gamma\left(P_{n}\right)$ for any edge $e \in E(P n)$.Hence $\operatorname{usd}_{\gamma}\left(P_{n}\right)=1$.
Case (ii) : $n \cong 1 \bmod 3$
Then $n=3 k+1, k \in N$. Therefore $\gamma(P n)=k+1$. Let $e \in(P n)$. Then $P_{n} \|\{e\}=P_{n+1}$ and so $\gamma\left(P_{n} \|\{e\}\right)$ $=k+1$. Let
$\left.e^{\prime}\right\}=P_{n+2}$ and hence

Let $e^{\prime \prime} \in E\left(P_{n}\right)$. Then $P_{n} \|\left\{e, e^{\prime}, e^{\prime \prime}\right\}=P_{n+3}$ and so $\chi\left(P_{n} \|\left\{e, e^{\prime}, e^{\prime \prime}\right\}\right)=k+2$. Hence $\chi\left(P_{n} \|\left\{e, e^{\prime}, e^{\prime \prime}\right\}\right)>$ $\chi\left(P_{n}\right)$ for any three edges $e, e^{\prime}, e^{\prime \prime}$. Thus $\operatorname{usd}_{\lambda}\left(P_{n}\right)=3$.

Case (iii): $n \cong 2 \bmod 3$
Then $n=3 k+2, k \in N$. Therefore $\gamma(P n)=k+1$. Let $\quad e \in E\left(P_{n}\right)$. Then $P_{n} \|\{e\}=P_{n+1}$ and hence $\gamma\left(P_{n} \|\{e\}\right)=k+1$. Let $e, e^{\prime} \in E\left(P_{n}\right)$. Then $P_{n} \|\left\{e, e^{\prime}\right\}=P_{n+2}$ and so $\gamma\left(P_{n} \|\left\{e, e^{\prime}\right\}\right)=k+2$. Hence $\gamma\left(P n \|\left\{e, e^{\prime}\right\}\right)>\gamma(P n)$ for any two edges e, e^{\prime} of P_{n}. Thus $u s d_{\gamma}\left(P_{n}\right)=2$.

Theorem 2.5. $\operatorname{usd}_{\gamma}\left(\mathrm{C}_{n}\right)= \begin{cases}1 & \text { if } n \cong 0 \bmod 3 \\ 3 & \text { if } n \cong 1 \bmod 3 \\ 2 & \text { if } n \cong 2 \bmod 3\end{cases}$
Proof. Proof is similar to the proof of Theorem 2.5.
Theorem 2.7. $\operatorname{usd}_{\gamma} K_{n_{1}, n_{2}, \ldots, n_{r}}=1$ for some $n_{i}=1$. Proof. Since $\Delta K_{n_{1}, n_{2}, \ldots, n_{r}}=n-1$, where $n=n_{1}+n_{2}+$ $\ldots+n_{r}$, by Theorem $2.4 \operatorname{usd}_{\gamma} K_{n_{1}, n_{2}, \ldots, n_{r}}=1$.

Corollary 2.8. usd $_{\gamma}\left(K_{1, r}\right)=1$, for all $r \geq 2$.
Theorem 2.9. $u s d_{y} K_{n_{1}, n_{2}, \ldots, n_{v}}=\sum_{i=1}^{r} n_{i}-1$ with $n_{k}=2$ and $n_{i}>1$ for all i.
Proof. Let $G=K_{n_{1}, n_{2}, \ldots, n_{r}}$. Then $\gamma(G)=2$. Let V_{1}, V_{2}, . \ldots, V_{r} be partition of vertex set $V(G),\left|V_{i}\right|=n_{i}$ and V_{k} $=\left\{u_{1}, u_{2}\right\}$. Let $\quad E^{\prime}=\left\{e \in E(G) / e=u_{1} v_{i}\right.$ or $e=$ $u_{2} v_{j}$ and $\left.v_{i} \neq v_{j}\right\}$. Take $\quad G^{\prime}=G \| E^{\prime}$. Then $\left|E^{\prime}\right|$ $=n_{1}+n_{2}+\ldots+n_{k-1}+n_{k+1}+\ldots+n_{r}=\sum_{i=1}^{r} n_{i}-2$. In G^{\prime}, u_{1} is adjacent to all the new vertices correspond to the subdivided edges which are incident with u_{1} in G and all the vertices in $N_{G}\left(u_{1}\right)$ which are not adjacent to u_{2} in G^{\prime}. Similarly u_{2} is adjacent to all the new vertices correspond to the subdivided edges which are incident with u_{2} in G and all the vertices in $N_{G}\left(u_{2}\right)$ which are not adjacent to u_{1} in G^{\prime}. Therefore $\chi\left(G^{\prime}\right)=\chi(G)=2$. Therefore, E^{\prime} is a stable subdivision set of G. Now, we are going to prove that E^{\prime} is a maximum stable subdivided set of G. Suppose there exists a stable subdivision set $E^{\prime \prime}$ of G such that $\left|E^{\prime \prime}\right|>\left|E^{\prime}\right|$. If $E^{\prime \prime} \supset E^{\prime}$, then $E^{\prime \prime}$ can not be a stable subdivision set since $\gamma\left(G \|\left\{E^{\prime} \cup\{e\}\right\}\right)>$ $\gamma(G)$ for any $e \in E(G)-E^{\prime}$. Therefore $E^{\prime \prime} \neq E^{\prime}$. Then $E^{\prime \prime}$ contains at least two edges which are not in E^{\prime}.

Case (i): $E^{\prime} \cap E^{\prime \prime}=\phi$.
Since $E^{\prime \prime}$ is stable subdivision set, $E^{\prime \prime}$ does not contain independent set of cardinality more than 2 . Therefore
there exists two vertices x and y such that every edges
of $E^{\prime \prime}$ adjacent to either x or y. By the definition of $E^{\prime \prime}, x$
and y do not belong to the same partite set. Therefore
x and y belong to the two different partite sets V_{i} and V_{j} respectively. Without loss of generality assume that
$i<j<k$. Then $\left|E^{\prime \prime}\right|=n_{1}+n_{2}+\ldots+n_{i-1}+n_{i+1}+\ldots$.
$+$
$n_{j-1}+n_{j+1}+\ldots+n_{k-1}+n_{k+1}<\sum_{i=1}^{r} n_{i}-2=\left|E^{\prime}\right|$
which is contradiction.

Case (ii): $E^{\prime} \cap E^{\prime \prime} \neq \phi$.
Since $E^{\prime \prime}$ contains at least two edges which are not in $E^{\prime}, E^{\prime \prime}$ has three independent edges. Therefore $E^{\prime \prime}$ is not stable subdivision set which is a contradiction.
Hence E^{\prime} is the maximum stable subdivision et of
G. Thus $\operatorname{usd}_{\gamma}(G)=\sum_{i=1}^{r} n_{i}-2+1=\sum_{i=1}^{r} n_{i}-1$.

Corollary 2.10. $u s d_{\gamma}\left(K_{2, r}\right)=r+1$ for $r \geq 2$.
Theorem 2.11. $\operatorname{usd}_{\gamma} K_{n_{1}, n_{2}, \ldots, n_{r}}=\sum_{i=1}^{r-2} n_{i}+2$ where n_{i} $\geq n_{i+1}>2$ for all i.
Proof. Let $G=K_{n_{1}, n_{2}, \ldots, \mathrm{n}_{r}}$, where $n_{1} \geq n_{2} \geq \ldots n_{r}>$ 2 and $V_{1}, V_{2}, \ldots, V_{r}$ be partition of $V(G)$ with $\left|V_{i}\right|=$ n_{i}. We have $\gamma(G)=2$. Let $V_{r}=\left\{u_{1}, u_{2}, \ldots, u_{n_{r}}\right\} \quad$ and $V_{r-1}=\left\{v_{1}, v_{2}, \ldots, v_{n_{r-1}}\right\}$. Fix $u \in V_{r}$ and $v \in$ V_{r-1}. Now consider a set $E^{\prime}=\left\{e \in E(G) / e=u x_{j}\right.$ where $x_{j} \in V_{k}, k \neq n_{r-1}$ or $e=v y_{j}$ where $y_{j} \in V_{k}, k \neq$ n_{r} and $\left.x_{j} \neq y_{j}\right\} \cup\{u v\}$. Then $\left|E^{\prime}\right|=n_{1}+n_{2}+\ldots+$ $n_{r-2}+1$. Let us take $G^{\prime}=G \| E^{\prime}$. Then u is adjacent to all the new vertices which correspond to subdivided edge having u as an end vertex in G and all the $y_{j}{ }^{\prime}$ s. Also v is adjacent to all the new vertices which correspond to subdivided edge having v as an end vertex in G and all the x_{j} 's. Hence $\gamma\left(G^{\prime}\right)=2=\gamma(G)$.
Let $E^{*}=E^{\prime} \cup\{e\}, e \in E(G) \backslash E^{\prime}$. Then
e is any one of the following form
(i) $e=u_{i} v_{j}$, where $u_{i} \neq u$ and $v_{j} \neq v$
(ii) $e=u y_{j}$, where $y_{j} \in V_{k} \cap N(v)$ and $k \neq n_{r}$
(iii) $e=v x_{j}$, where $x_{j} \in V_{k} \cap N(u)$ and $k \neq n_{r-1}$
(iv) e is incident with neither u nor v.

In the above four possibilities, there is no two element dominating set of $G \| E^{*}$ and hence $\gamma\left(G \| E^{*}\right)$ $>\chi(G)$. Therefore E^{\prime} is the maximal set having the property that $\gamma\left(G \| E^{\prime}\right)=\gamma(G)$. Thus $u s d_{\gamma} G \geq \sum_{i=1}^{r-2} n_{i}+2$. Suppose $E^{\prime \prime} \subseteq E(G)$ such that $\gamma\left(G \| E^{\prime \prime}\right)=\gamma(G)$ and $\left|E^{\prime \prime}\right|>\left|E^{\prime}\right|$. Since E^{\prime} is maximal, $E^{\prime} \not \subset E^{\prime \prime}$. Also $E^{\prime \prime}$ contains at least two edges e^{\prime} and $e^{\prime \prime}$ which are not in E^{\prime}. Let $E^{* * *}=E^{\prime} \backslash$
$\{e\} \cup\left\{e^{\prime}, e^{\prime \prime}\right\}$, where $e \in E^{\prime}$. Then e^{\prime} and $e^{\prime \prime}$ are combination any two the above mentioned form. Therefore $G \| E^{* *}$ has no dominating set of cardinality two. If $E^{* *}=E^{\prime \prime}$, then $E^{\prime \prime}$ is not possible. Proceeding like this finally we get a set $E^{\prime \prime}$ such that $E^{\prime \prime} \cap E^{\prime}=\phi$ with $\gamma\left(G \| E^{\prime \prime}\right)>\chi(G)=2$. Hence E^{\prime} is a maximal set with maximum cardinality. Thus
$u^{u s d_{\gamma}} G=\left|E^{*}\right|=\sum_{i=1}^{r-2} n_{i}+2$.
Corollary 2.12. $\operatorname{usd}_{\gamma}\left(K_{m, n}\right)=2$ where $m, n>2$.

III. RESULTS ON TREES

In this section we obtain exact value for some special trees and determine bound for tree in terms of maximum degree.

Theorem 3.1. If T is a spider with k leaves, then $u s d_{\gamma}(T)=k$.
Proof. Let x be vertex of T with $\operatorname{deg}(x)=\Delta(T),\left\{u_{1}\right.$, $\left.u_{2}, \ldots, u_{k}\right\}$ be set of all support vertices and $\left\{v_{1}, v_{2}\right.$, $\left.\ldots, v_{k}\right\}$ be set of all pendant vertices such that $u_{i} v_{i}$ $\in E(T)$. Take $E^{\prime}=\left\{u_{i} v_{i}: 1 \leq i \leq k-1\right\}$. Then $\left|E^{\prime}\right|=k$ -1 and $\gamma\left(T \| E^{\prime}\right)=k=\gamma(T)$. Therefore E^{\prime} is a stable subdivision set. Suppose there exist stable subdivision set $E^{\prime \prime}$ such that $\left|E^{\prime}\right|>|E|$. Since for every $e \notin E^{\prime}, E^{\prime} \cup\{e\}$ is not a stable set, $E^{\prime} \not \subset E^{\prime \prime}$. Then $E^{\prime \prime}$ contains at least two edges e^{\prime} and $e^{\prime \prime}$ which are not in E^{\prime}. Both e^{\prime} and $e^{\prime \prime}$ are of the form $u_{i} x$, where $1 \leq i \leq k$ or $u_{k} v_{k}$. Let $E^{* *}=E^{\prime} \backslash\{e\} \cup\left\{e^{\prime}, e^{\prime \prime}\right\}$, where $\quad e \in E^{\prime}$. Therefore $G \| E^{* *}$ has no dominating set of cardinality two. If $E^{* *}=E^{\prime \prime}$, then $E^{\prime \prime}$ is not possible. Proceeding like this finally we get a set $E^{\prime \prime}$ such that $E^{\prime \prime} \cap E^{\prime}=\phi$ with $\gamma\left(T \| E^{\prime \prime}\right)>\chi(T)=2$. Hence E^{\prime} is a maximum stable subdivision set. Thus $u s d_{\gamma}(T)=k$.

Theorem 3.2. For $n \geq 3$, usd $\gamma(T) \leq 2 k-1$, where k $=n-\Delta(T)$ and $k \in N$.
Proof. Let v be vertex of T such that $\operatorname{deg}(v)=\Delta(T)$. If $\quad V(T)-N[v]=\phi$, then $T \cong K_{1, n-1}$ and hence $\operatorname{usd}_{\gamma}(T)=1=2 k-1$. Next we consider tree T such that $V(T)-N[v] \neq \phi$.

Case (i): $\langle V(T)-N[v]\rangle \cong \bar{K}_{k-1}$.
Since T is tree, no two vertices of $N(v)$ are adjacent.

Subcase (i): $N(v)$ contains no strong support.
If $\langle V(T)-\{v\}\rangle \cong r K_{1} \cup(k-1) K_{2}$, where $r \geq 1$, then $\operatorname{usd}_{\gamma}(T)=2(k-1)+1=2 k-1$. Otherwise T is a spider and so by Theorem $3.1 u s d_{\gamma}(T)=k-1$.

Subcase (ii): $N(v)$ contains at least one strong support.

If $\langle V(T)-\{v\}\rangle$ has r stars, $i^{\text {th }}$ star contains l_{i}
leaves $\quad(1 \leq i \leq r)$ and if it has isolated vertices, then
$u s d_{\gamma}(T)=2\left[(k-1)-\sum_{i=1}^{r} l_{i}\right]+2=2 \mathrm{k}-2 \sum_{i=1}^{r} l_{i}<:$
Otherwise
$\operatorname{usd}_{\gamma}(T)=(k-1)-\sum_{i=1}^{r} l_{i}+1=\mathrm{k}-\sum_{i=1}^{r} l_{i}<2 k-1$.
Case (ii): $\langle V(T)-\{v\}\rangle \not \equiv \bar{K}_{k-1}$.
Then $\langle V(T)-\{v\}\rangle$ contains at least one component with two vertices. Since T is tree, exactly one vertex of each component of $\langle V(T)-$ $\{v\}\rangle$ is adjacent to exactly one vertex of $N(v)$. Therefore we can not find a stable subdivision set which is constructed by two edges for each vertex of $\langle V(T)-\{v\}\rangle$. Hence $u s d_{\gamma}(T)<2(k-1)+1=k-1$.

Theorem 3.3. Let T be a tree. Then $\operatorname{usd}_{\gamma}(T)=2 k-1$, where $\quad k=n-\Delta(T)$ if and only if T is either wounded spider or star.
Proof. Assume that T is either wounded spider or star. If T is a wounded spider, then $u s d_{r}(T)=2 k-1$. Otherwise $T \cong K_{1, n-1}$ and so $\operatorname{usd}_{,}(T)=1=2 k-1$.

Conversely, assume that $u s d_{\gamma}(T)=2 k-1$. Suppose T is neither wounded spider nor star. Since T is not a star, there is no tree such that $V(T)-N[v]$ $=\phi$. Now assume that

$$
V(T)-N[\nu] \neq \phi .
$$

Case (i) : $\langle V(T)-\{v\}\rangle \cong \bar{K}_{k-1}$.
If $N(v)$ contains no strong support, then T is a spider and hence by Theorem $3.1 \operatorname{usd}_{\gamma}(T)=k$. Otherwise $N(v)$ contains at least one strong support and hence by the proof of Theorem 3.2,
$\operatorname{usd}_{j}(T)<2 k-1$.
Case (ii) : $\langle V(T)-\{v\}\rangle \not \equiv \bar{K}_{k-1}$.
By case (ii) in the proof of the Theorem 3.2, $\operatorname{usd}_{2}(T)<2 k-1$.

Theorem 3.4. If T is a caterpillar, then $\operatorname{usd}_{\gamma}(T) \leq$ $\lceil 3 n / 4\rceil$.
Proof. Let D be a dominating set of T. Without loss of generality we assume that D contains all the supports of T.
Case (i): Every internal vertex is a support.
Let us first consider graph T having no strong support. Let $u_{1}, u_{2}, \ldots, u_{k}$ be supports and v_{1}, v_{2}, \ldots , v_{k} be corresponding pendant vertices. Let $E^{\prime}=\left\{u_{i} u_{j}\right.$ $\in E(T)\} \cup\left\{u_{i} v_{i}\right.$: no two u_{i}^{\prime} s are adjacent $\}$. Then $\left|E^{\prime}\right|$ $\leq k-1+\lceil k / 2\rceil=\lceil 3 k / 2\rceil-1$. We can easily verify that $\gamma\left(T \| E^{\prime}\right)=\gamma(T)$ and hence E^{\prime} is a stable subdivision set of T.

Claim : E^{\prime} is a maximum stable subdivision set of T. For $n \leq 20$, we can verify that E^{\prime} is a maximum stable subdivision set of T. Now we prove this for general case. Suppose there exists a stable subdivision set $E^{\prime \prime} \subseteq E(T)$ such that $\left|E^{\prime \prime}\right|>\left|E^{\prime}\right|$.
subcase (i): $E^{\prime \prime} \supset E^{\prime}$.

Let us take $E^{\prime \prime} \supseteq E^{\prime} \cup\left\{u_{j} v_{j}\right\}, u_{j} v_{j} \notin E^{\prime}$. Then $u_{j^{\prime}} v_{j^{\prime}} \in$ E^{\prime}, where $u_{j^{\prime}}$ is adjacent to u_{j}. Since the internal edge $u_{j} u_{j^{\prime}}, u_{j^{\prime}} v_{j^{\prime}}$ and $u_{j} v_{j}$ are subdivided in $T \| E^{\prime \prime}, \gamma\left(T \| E^{\prime \prime}\right)=$ $\gamma\left(T\left|\mid E^{\prime}\right)+1>\gamma(T)\right.$. Therefore $E^{\prime \prime}$ is not a maximum stable subdivision set.
Subcase (ii): $E^{\prime \prime} \nsupseteq E^{\prime}$.
If $E^{\prime} \cap E^{\prime \prime}=\phi$, then $\left|E^{\prime \prime}\right| \leq(n-1)-\left|E^{\prime}\right| \leq 2 k-1-$ $\lceil 3 k / 2\rceil+1=\lceil k / 2\rceil<\left|E^{\prime}\right|$ which contradicts the definition of $E^{\prime \prime}$. Therefore we assume that $E^{\prime} \cap E^{\prime \prime}$ $\neq \phi$. Suppose $\left|E^{\prime} \backslash E^{\prime \prime}\right|=1$. Let $e \in E^{\prime}$ and $e \notin E^{\prime \prime}$. Therefore $e=u_{i} u_{j}$ or $u_{i} v_{i}$. Then $E^{\prime \prime}$ cotains at least two leaves $u_{j} v_{j}$ and $u_{k} v_{k}$ which are not in E^{\prime}. Therefore $\quad u_{j^{\prime}} v_{j^{\prime}}, u_{k^{\prime}} v_{k^{\prime}} \in E^{\prime}$, where $u_{j^{\prime}}$ is adjacent to u_{j} and $u_{k^{\prime}}$ is adjacent to u_{k}. Let $E_{1}=\left\{u_{j} v_{j}\right.$, $\left.u_{j} u_{j^{\prime}}, u_{j^{\prime}} v_{j^{\prime}}\right\}$. Then $\gamma\left(T\left|\mid E_{1}\right)>\gamma(T) \ldots \ldots(1)\right.$. Hence $\gamma\left(T\left|\mid E^{\prime \prime}\right)>\gamma(T)\right.$. Suppose $\left|E^{\prime} \backslash E^{\prime \prime}\right|=r$, then $E^{\prime \prime}$ contains at least $r+1$ leaves which are not in E^{\prime}. Since by (1), subdivision of $E^{\prime \prime}$ increases the domination number. By both the subcases we get contradiction. Hence E^{\prime} is a maximum stable subdivision set of T. Now usd. $(T)=\left|E^{\prime}\right|+1 \leq\lceil 3 k / 2\rceil$ $=\lceil 3 n / 4\rceil$.

If T has strong support, then the number of independent leaves is less than $\lceil n / 2\rceil$. Hence $u s d_{\gamma}(T)$ $<\lceil 3 n / 4\rceil$.
case (ii): There exists an internal vertex which is not support.

Since there exists at least two supports which are not adjacent, we can not take all the internal edges in maximum stable subdivision set M and the number of leaves is less than $\lceil n / 2\rceil,|M|<\lceil 3 n / 4\rceil$.

Corollary 3.5. If T is a columb graph, then usd $\boldsymbol{u}_{\gamma}(T)$ $=\lceil 3 n / 4\rceil$.

IV. LOWER AND UPPER BOUNDS

In this section we obtain the lower and upper bounds for domination uniform subdivision number and we characterize the extremal graphs.

Theorem 4.1. Let G be a graph with components $G_{1}, G_{2}, \ldots, G_{k}$. Then
$u s d_{\gamma} G=\sum_{i=1}^{k} u s d_{\gamma} \quad G_{i}-k+1$.
Proof. Let $d_{i}=u s d_{\gamma}\left(G_{i}\right)$ and $E_{i} \subseteq E(G i)$ such that $\gamma\left(G_{i} \| E_{i}\right)=\gamma\left(G_{i}\right)$ and $\left|E_{i}\right|=d_{i}-1$. Therefore E_{i} is a maximal set with the above condition. Take
$E^{\prime}=\bigcup_{i=1}^{k} E_{i}$.
Then
$\left|E^{\prime}\right|=\sum_{i=1}^{k}\left(\mathrm{~d}_{i}-1\right)=\sum_{i=1}^{k} d_{i}-k$.
Now
$\gamma\left(G \| E^{\prime}\right)=\sum_{i=1}^{k} \gamma\left(G_{i} \| E_{i}\right)=\sum_{i=1}^{k} \gamma\left(G_{i}\right)=\gamma(G)$.
To prove E^{\prime} is a maximal set having maximum
cardinality with respect to the above condition. Consider $E^{*}=\bigcup_{i=1}^{k} E_{i} \cup e$, where $e \in E(G) \backslash E^{\prime}$. Then

$$
\begin{aligned}
& e \quad \in \quad E\left(G_{i}\right) \quad \text { for } \\
& \gamma\left(G \| E^{*}\right)=\sum_{j \neq i} \gamma\left(G_{j} \| E_{j}\right)+\gamma\left(G_{i} \|\left(E_{i} \cup e\right)\right)>\sum_{j=1}^{k} \gamma\left(G_{j}\right)
\end{aligned}
$$

Therefore E^{\prime} is a maximal set. Suppose $E^{\prime \prime} \subseteq E$, $\gamma\left(G\left|\mid E^{\prime \prime}\right)=\gamma(G)\right.$ and $\left|E^{\prime \prime}\right|>|E|$. If $E^{\prime \prime} \supseteq E^{\prime}$, then $E^{\prime \prime}$ contains $E_{i} \cup\left\{e_{i}\right\}, \quad e_{i} \in E(G i) \backslash E i$. Then $\gamma\left(G_{i} \|\left(E_{i} \cup\{e i\}\right)\right)>\gamma\left(G_{i}\right)$ and hence $\gamma\left(G \| E^{\prime \prime}\right)>\gamma(G)$ which is a contradiction. If $E^{\prime \prime} \nsupseteq E^{\prime}$, then there exists at least one component G_{j} such that $E^{\prime \prime}$ contains more number of elements of G_{j} than that E^{\prime} contains. Let us take $\quad E^{\prime \prime} \supseteq E_{j}^{\prime}$. Then $\left|E_{j}^{\prime}\right|>\left|E_{j}\right|=$ d_{i} and $\gamma\left(G_{j} \| E_{j}^{\prime}\right)>\gamma\left(G_{j}\right)$. Therefore $\gamma\left(G \| E^{\prime \prime}\right)>\not \gamma(G)$ which is a contradiction. Hence $u s d_{y} G \quad=\left|E^{*}\right|=\sum_{i=1}^{k} d_{i}-k+1$.

Theorem 4.2. For any graph $G, 0 \leq \operatorname{usdg}(G) \leq m$. Also the bounds are sharp.
Proof. If $\chi(G \| E(G))=\gamma(G)$, then usd $(G)=0$. For example $\operatorname{usd}_{\gamma}\left(P_{2}\right)=0$. If $\chi(G \| E(G))>\chi(G)$, then $\operatorname{usd}_{\gamma}(G) \leq m$. Consider usd ${ }_{\gamma}\left(P_{3} \circ K_{1}\right)=6=$ size of $P_{3} \circ K_{1}$. Hence the bounds are sharp.

Theorem 4.3. For any graph $G, \operatorname{usd} d_{\lambda}(G)=0$ if and only if
$G \cong k_{1} P_{1} \cup k_{2} P_{2}$ where $k_{1} \geq 0$ and $k_{2} \geq 0$.
Proof. Assume that $G \cong k_{1} P_{1} \cup k_{2} P_{2}, k_{1} \geq 0$ and $k_{2} \geq$ 0 . Clearly $\operatorname{usd}_{2}(G)=0$. Conversely, assume that $\operatorname{usd}_{2}(G)=0$. Suppose $G \not \equiv k_{1} P_{1} \cup k_{2} P_{2}$. Then G contains a component G_{i} with at least three vertices and $s d_{\gamma}\left(G_{i}\right)$ exists. Hence $u s d_{\gamma}(G)>0$.

Theorem 4.4. For any connected $\operatorname{graph} G, \operatorname{usd}_{\gamma}(G)$ $=m$ if and only if $G \cong K_{1, r} \circ K_{1}$, for all $r \geq 1$.
Proof. Assume that $G \cong K_{1, r} \circ K_{1}$ for some $\mathrm{r} \geq 1$. Then $\quad E(G)-\{e\}$, where e is leaf which is incident with full vertex of $K_{l, r}$, is maximum stable subdivision set of G and hence $u s d_{\gamma}(G)=m$.

Conversely assume that $u s d \gamma(G)=m$. Suppose $G ® K_{1, r} \circ K_{1}$ for all $r \geq 1$.

Case (i) : $\chi(G)=n / 2$
Then by theorem $G \cong H \circ K_{1}$. Also $H ® K_{1, r}$, for some $r \geq 1$. Since $u s d_{\gamma}>0, H ® K_{1}$. Let $v \in V H$ such that $\operatorname{deg}(v)=\Delta(H)$. Let $N_{H}(v)=\left\{v_{1}, v_{2}, \ldots\right.$, $\left.v_{k}\right\}, u_{1}, u_{2}, \ldots, u_{k}$ be corresponding pendent vertices of $v_{1}, v_{2}, \ldots, v_{k}$ respectively and $u v$ be leaf in G. Then $\langle N(v)\rangle$ contains at least one edge. Let $E^{\prime}=\left\{v v_{1}\right.$, . . . $\left.v v_{r}, v_{1} u_{1}, \ldots, v_{r} u_{r}\right\}$. Then E^{\prime} is stable subdivision set. Any edge set consists of E^{\prime} and at least one edge of $\langle N H(v)\rangle$ or $u v$ whose subdivision
increase the domination number. Also any maximum stable subdivision set S containing $v_{i} v_{j}$ does not contain either $v_{i} u_{i}$ or $v_{j} u_{j}$ and S does not contain $u v$. Therefore by the above argument $u s d_{\gamma}(G) \leq m-1$.

Case (ii) : $\chi(G)<n / 2$.

Then any minimum dominating set D contains at least one vertex which has at least two private neighbors in $V(G)-D$. Let $v \in D$. Then v has at least two neighbors say, v_{1} and v_{2} in $V(G)-D$. Let $e_{1}=v v_{1}$ and $e_{2}=v v_{2}$. Then $E_{1}=E(G)-\left\{e_{1}\right\}$ and E_{2} $=E(G)-\left\{e_{2}\right\}$ whose subdivision increase the domination number and $\left|E_{1}\right|=\left|E_{2}\right|=m-1$. Therefore, for any minimum dominating set D, subdivision of any $m-1$ edges increases the domination number. Since D is arbitrary, $\operatorname{usd}_{2}(G) \leq$ $m-1$.

Corollary 4.5. For any graph G, usd $\gamma_{\gamma}(G)=m$ if and only if $\quad G \cong k_{1}\left(K_{1, r}\right) \cup k_{2} P_{1} \cup k_{3} P_{2}$.

ACKNOWLEDGMENT

The author of this article is supported by the University Grants Commission, New Delhi through the Minor Research Project (UGC XII - Plan) (F.NO : 4-4/2014-15 (MRP - SEM / UGC - SERO)).

REFERENCES

[1] Abdollah Khodkar, B. P. Mobaraky and S. M. Sheikholeslami, Upper Bound for the Roman Domination Subdivision number of a Graph, AKCE J. Graphs Combin., 5 (2008), 7-14.
[2] Amitava Bhattacharya and Gurusamy Rengasamy Vijayakumar, Effect of Edge-Subdivision on VertexDomination
in a Graph, Discussiones Mathematicae Graph Theory, 22 (2002) , 335-347.
[3] H. Aram, O. Favaron and S. m. Sheikholeslami, Domination
Subdivision Number of Trees, Discrete Mathematics, 309 (2009), 622-628.
[4] M. Atapour, S. M. Sheikholeslami, A. Hansberg, L. Volkmann and A. Khodkar, 2-Domination Subdivision Number of Graphs, AKCE J. Graphs Combin., 5 (2008), No. 2, 165-173.
[5] Gary Chartrand, Ping Zhang, Introduction to Graph Theory, Tata McGraw-Hill Edition, 2006.
[6] T.W. Haynes, S. M. Hedetniemi, S. T. Hedetniemi, D. P. Jacobs, J. Knisely and L. C. Van der Merwe, Domination Subdivision Numbers, Discussiones Mathematicae Graph Theory, 21 (2001), 239-253.
[7] J. Paulraj joseph and S. Arumugam, Domination in Subdivision Graphs, J. Indian Math. Soc., 62(1996), 274282.
[8] S.S.Sandhya, E. Ebin Raja Merly and B. Shiny, Subdivision
of Super GeometricMean Labeling for Quadrilateral Snake Graphs, Int. J. Math. Trends and Tech., Vol. 24, No. 1 - August 2015.
[9] Teresa W. Haynes, Stephen T. Hedetniemi and Peter
J. Slater, Fundamentals of Domination in Graphs, Marcel

Dekker, 1998.
[10] S. Velammal, Studies in Graph Theory: Covering, Independence, Domination and Related Topics, Ph. D. Thesis, 1997.

