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Abstract - Let G = (V, E) be a simple undirected graph. A 

subset D of V (G) is said to be dominating set if every 

vertex of V (G) − D is adjacent to at least one vertex in D. 

The minimum cardinality taken over all minimal 

dominating sets of G is the domination number of G and is 

denoted by γ(G). The domination uniform subdivision 

number of G is the least positive integer k such that the 

subdivision of any k edges from G results in a graph 

having domination number greater than that of G and is 

denoted by usdγ (G). In this paper, we investigate the 

domination uniform subdivision number of some standard 

graphs. Also we determine the bounds of usdγ and 

characterize the extremal graphs. 
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I. INTRODUCTION  

Let G = (V, E) be a simple undirected graph of 

order n and size m. If v ∈  V (G), then the 

neighbourhood of v is the set N(v) conisting of all 

vertices u which are adjacent to v. The closed 

neighbourhood is N[v] = N(v) ∪ {v}. The degree of v 

in G is |N(v)| and is denoted by deg(v). The 

maximum degree of G is max {deg(v) : v ∈ V (G)} 

and is denoted by (G). A vertex v is said to be full 

vertex if   deg(v) = n − 1. A vertex v is said to be 

pendant vertex if deg(v) = 1. A vertex is called 

support if it is adjacent to a pendant. A support is 

said to be strong support if it is adjacent to more 

than one pendent. A subgraph F of a graph G is 

called an induced subgraph of G if whenever u and 

v are vertices of F and uv is an edge of G, then uv is 

an edge of F as well.  If  F  is  induced  by  a  vertex  

set V’ ⊂ V (G), then F can be represented as < V’ >.  
A path, a cycle, and a complete graph on n 

vertices are denoted by Pn , Cn and Kn respectively. 

A graph is said to be connected if there exists a path 

between any pair of vertices. Otherwise it is said to 

be disconnected. Tree is a connected acyclic graph. 

A tree T is said to be caterpillar if removel of leaves 

from T gives path. A graph G is a k-partite graph if 

V (G) can be partitioned into k subsets V1, V2, . . .  , 

Vk such that uv is an edge of G if u and v belong to 

different partite sets. If, in addition, every two 

vertices in different partite sets are joined by an 

edge, then G is a complete k-partite graph. If |Vi| = ni 

for 1 ≤  i ≤  k, then we denote such graphs by 

Kn1 ,n2 ,...,nk . It is also known as complete 

multipartite graph. A bipar-tite graph is denoted by 

Kr,s . 

  
The corona of two graphs G1 and G2, is the 

graph           
1 2 ,G G G formed from one copy of 

G1 and |V (G1 )| copies of G2 where the i
th

 vertex of 

G1 is adjacent to every vertex in the i
th

 copy of G2. 

  
A set S ⊆ V (G) is a dominating set if every 

vertex in      V − S is adjacent to at least one vertex 

in S. The minimum cardinality taken over all 

dominating sets of G is called the domination 

number of Gand is denoted by γ(G). 

  
The domination subdivision number introduced 

by Arumugua Velammal in  [10]. It’s bound was 

obtained in  [2] and several authors characterised 

trees according to their domination subdivision 

number. Also many results have also been obtained 

on the parameters sddd , sdγc and sdγt. 

 

      An edge uv ∈ E(G) is subdivided if the edge uv 

is deleted, a new vertex x (called a subdivision 

vertex) is added, along the new edges: ux and xv. A 

derived graph G
′
 of G by subdividing all the edges 

of E
′
 ⊆ E(G) is denoted by G || E

′
. A subdivision 

graph S(G) of a graph G  is obtained from  G  by 

subdividing all the edges exactly once. Subdivision 

graph of star graph K1,r  is said to  be  spider. A  

graph  is  said  to  be  wounded  spider if it is 

obtained by subdividing at most     r - 1 edges of 
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K1,r . The domination subdivision number is defined 

by                  sdγ (G) = min{|E
′
| :  γ(G||E

′
) > γ(G)}.  

In  [7] and  [8],  two different graph theoretical 

concepts were studied on subdivision graphs. In this 

paper, generalized definition of domination uniform 

subdivision number. 

 

II. EXACT VALUE FOR SOME STANDARD 

GRAPHS 

         In this section, we define domination uniform 

subdivision number and obtained exact value for 

some standard graphs. 

 

Definition 2.1. A domination uniform subdivision 

number of G is the least positive integer k such that 

the sub division of any k edges from G results in a 

graph having domination number greater than that 

of G and is denoted by usdγ(G). If it is not exists, 

then usdγ (G) = 0. 

 

Definition 2.2. A subset S  ⊆ E(G) is said to be 

stable subdivision set if γ(G || S) = γ(G). A stable 

subdivision set S is said to be maximum stable 

subdivision set if there is no stable subdivision set S
′
 

such that |S
′
| > |S|. 

Remark 2.3. usdγ (G) = |S| + 1, where S is a 

maximum 

stable subdivision set of G. 

Theorem 2.4. If (G) = n − 1, then usdγ(G) = 1. 

Proof. Since (G) = n−1, (G) = 1. Let e  E(G).  

Then        (G ||{e}) = n − 2 and so  (G||{e}) ≥ 2. 

Hence                             (G) <  (G||{e}) for every e 

 E(G). Thus usdγ(G) = 1. 

 

Theorem 2.5. For n ≥ 3, usd (Pn) =       1    if n  0 

mod 3 

                                                                 3    if n  1 

mod 3 

                                                                 2    if n  2 

mod 3 

Proof. Case (i) : n  0 mod 3 

   Then n = 3k, k  N. Therefore (Pn) = k. Let e  

E(Pn). Then   Pn ||{e} = Pn+1 and hence  (Pn||{e}) = 

k + 1. Therefore                 (Pn||{e}) >  (Pn) for any 

edge e  E(Pn).Hence usd (Pn) = 1. 

Case (ii) : n  1 mod 3 

   Then n = 3k + 1, k  N. Therefore (Pn) = k + 1. 

Let e  (Pn). Then Pn ||{e} = Pn+1 and so (Pn || {e}) 

= k + 1. Let                    e, e′  E(Pn). Then Pn ||{e, 

e′} = Pn+2 and hence               (Pn||{e, e′}) = k + 1. 

Let e′′  E(Pn). Then Pn||{e, e′, e′′} = Pn+3 and so 

(Pn||{e, e′, e′′}) = k + 2. Hence (Pn||{e, e′, e′′}) > 

(Pn) for any three edges e, e′, e′′. Thus usd (Pn) = 3. 

 

Case (iii): n  2 mod 3 

   Then n = 3k + 2, k  N. Therefore (Pn) = k + 1. 

Let               e  E(Pn). Then Pn||{e} = Pn+1 and 

hence (Pn||{e}) = k + 1. Let e, e′  E(Pn). Then 

Pn||{e, e′} = Pn+2 and so (Pn||{e, e′}) = k +2. Hence 

(Pn||{e, e′}) > (Pn) for any two edges e, e′ of Pn. 

Thus usd (Pn) = 2. 

 

Theorem 2.5.  usd (Cn) =       1    if n  0 mod 3 

                                                3    if n  1 mod 3 

                                                2    if n  2 mod 3 

Proof. Proof is similar to the proof of Theorem 2.5. 

                                                  

Theorem 2.7. 
1 2, ,...,    1

rn n nusd K for some ni = 1. 

Proof. Since
1 2, ,...,      1

rn n nK n , where n = n1 + n2 + 

. . . + nr, by Theorem 2.4 
1 2, ,...,    1.

rn n nusd K  

 

Corollary 2.8. usd (K1,r) = 1, for all r ≥ 2. 

 

Theorem 2.9. 
1 2, ,...,

1

   1
rn n n

r

i

i

nusd K  with nk = 2 

and ni > 1 for all i. 

Proof. Let 
1 2, ,..., .

rn n nG K Then (G) = 2. Let V1,V2, . 

. . ,Vr be partition of vertex set V(G), |Vi | = ni and Vk  

= {u1, u2}. Let      E′ = {e ∈  E(G) / e = u1vi or e = 

u2vj and vi  ≠ vj}. Take              G′ = G || E′. Then |E′| 

= n1 + n2 + . . . + nk−1 + nk+1 + . . . + nr = 

1

2.
r

i

i

n In 

G′, u1 is adjacent to all the new vertices correspond 

to the subdivided edges which are incident with u1 

in G and all the vertices in NG(u1) which are not 

adjacent to u2 in G′. Similarly u2 is adjacent to all 

the new vertices correspond to the subdivided edges 

which are incident with u2 in G and all the vertices 

in NG(u2) which are not adjacent to u1 in G′. 

Therefore (G′) = (G) = 2. Therefore, E′ is a stable 

subdivision set of G. Now, we are going to prove 

that E′ is a maximum stable subdivided set of G. 

Suppose there exists a stable subdivision set E′′ of G 

such that |E′′| > |E′|. If E′′  E′,       then E′′ can not 

be a stable subdivision set since (G ||{E′  {e}}) > 

(G) for any e ∈ E(G) − E′. Therefore E′′  E′. 

Then E′′ contains at least two edges which are not in 

E′. 

 

Case (i): E′ ∩ E′′ = . 

   Since E′′ is stable subdivision set, E′′ does not 

contain independent set of cardinality more than 2. 

Therefore 

there exists two vertices x and y such that every 

edges 
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of E′′ adjacent to either x or y. By the definition of 

E′′, x 

and y do not belong to the same partite set. 

Therefore 

x and y belong to the two different partite sets Vi and 

Vj respectively. Without loss of generality assume 

that 

i < j < k. Then |E′′| = n1 + n2 + . . . + ni−1 + ni+1 + . . . 

+ 

nj−1 + nj+1 + . . . + nk−1 + nk+1 < 
1

2
r

i

i

n  = |E′| 

which is contradiction. 

 

Case (ii): E′ ∩ E′′ ≠  . 

    Since E′′ contains at least two edges which are not 

in E′, E′′ has three independent edges. Therefore E′′ 

is not stable subdivision set which is a contradiction. 

 Hence E′ is the maximum stable subdivision et of 

G.           Thus  

1 1

( ) 2 1. 1
r r

i i

i i

u nsd G n  

 
Corollary 2.10. usd (K2,r) = r + 1 for r ≥ 2. 

 

Theorem 2.11. 
1 2

2

, ,...,

1

   2
r

r

n n n i

i

usd K n where ni 

≥ ni+1 > 2   for all i. 

Proof. Let 
1 2, ,...,n  

rn nG K , where n1 ≥ n2 ≥ . . . nr > 

2 and V1, V2, . . . ,Vr be partition of V(G) with |Vi | = 

ni . We have        (G) = 2. Let

1 2, ,  . . . ,{ }
rr nV u u u and 

11 1 2 , ,  . . . ,{ }.
rr nV v v v Fix u  Vr and v  

Vr−1. Now consider a set E′ = {e  E(G) / e = uxj 

where xj  Vk, k  ≠ nr−1 or e = vyj where yj  Vk, k ≠ 

nr and xj ≠ yj}  {uv}. Then |E′| = n1 + n2 + . . . + 

nr−2 + 1. Let us take G′ = G||E′. Then u is adjacent to 

all the new vertices which correspond to subdivided 

edge having u as an end vertex in G and all the yj’s. 

Also v is adjacent to all the new vertices which 

correspond to subdivided edge having v as an end 

vertex in G and all the xj’s. Hence (G′) = 2 = (G). 

Let E
 
= E′  {e}, e  E(G) \ E′. Then 

e  is any one of the following form 

(i) e = uivj, where ui ≠ u and vj ≠ v 

(ii) e = uyj, where yj  Vk  N(v) and k ≠ nr 

(iii) e = vxj, where xj  Vk  N(u) and k ≠ nr−1 

(iv) e is incident with neither u nor v. 

In the above four possibilities, there is no two 

element dominating set of G||E  and hence (G||E ) 

> (G). Therefore E′ is the maximal set having the 

property that (G||E′) = (G). Thus 
2

1

2.
r

i

i

usd G n  Suppose E′′  E(G) such 

that (G||E′′) = (G) and |E′′| > |E′|. Since E′ is 

maximal,   .E E Also E′′ contains at least two 

edges e′ and e′′ which are not in E′. Let E  = E′ \ 

{e} {e′, e′′}, where e  E′. Then e′ and e′′ are 

combination any two the above mentioned form. 

Therefore G||E  has no dominating set of 

cardinality two. If E  = E′′, then E′′ is not possible. 

Proceeding like this finally we get a set E′′ such that 

E′′  E′ =  with (G||E′′) > (G) = 2. Hence E′ is a 

maximal set with maximum cardinality. Thus 
2

1

| | 2.
r

i

i

usd G E n

 
 

Corollary 2.12. usd (Km,n) = 2 where m, n > 2. 

 

 

III.  RESULTS ON TREES 

                In this section we obtain exact value for 

some special trees and determine bound for tree in 

terms of maximum degree. 

 

Theorem 3.1. If T is a spider with k leaves, then 

usd (T) = k. 

Proof. Let x be vertex of T with deg(x) = (T), {u1, 

u2, . . . , uk} be set of all support vertices and {v1, v2, 

. . . , vk} be set of all pendant vertices such that uivi 

 E(T). Take E′ = {uivi : 1 ≤ i ≤ k − 1}. Then |E′| = k 

− 1 and (T||E′) = k = (T). Therefore E′ is a stable 

subdivision set. Suppose there exist stable 

subdivision set E′′ such that |E′| > |E|. Since for 

every e  E′, E′ ∪ {e} is not a stable set,  E E . 

Then E′′ contains at least two edges e′ and e′′ which 

are not in E′. Both e′ and e′′ are of the form uix, 

where 1 ≤ i ≤ k or ukvk. Let E  = E′ \{e} {e′, e′′}, 

where         e  E′. Therefore G||E  has no 

dominating set of cardinality two. If E  = E′′, then 

E′′ is not possible. Proceeding like this finally we 

get a set E′′ such that E′′  E′ =  with             

(T||E′′) > (T) = 2. Hence E′ is a maximum stable 

subdivision set. Thus usd (T) = k. 

 

Theorem 3.2. For n ≥ 3, usd (T) ≤ 2k − 1, where k 

= n − (T) and k  N. 

Proof. Let v be vertex of T such that deg(v) = (T). 

If           V(T) − N[v] = , then T  K1,n−1 and hence 

usd (T) = 1 = 2k − 1. Next we consider tree T such 

that V(T) − N[v] ≠ . 

 

Case (i): < V(T) − N[v] >  1kK . 

     Since T is tree, no two vertices of N(v) are 

adjacent. 

 

Subcase (i): N(v) contains no strong support. 

     If  V(T) − {v}   rK1  (k − 1)K2, where r ≥ 1, 

then   usd (T) = 2(k −1) +1 = 2k −1. Otherwise T is a 

spider and so by Theorem 3.1 usd (T) = k − 1. 

 

Subcase (ii): N(v) contains at least one strong 

support. 

      If  V(T) − {v}   has r stars, i
th 

 star contains  li 
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leaves          (1 ≤ i ≤ r) and if it has isolated vertices, 

then 

1 1

( ) = 2[( -1) - ] + 2 = 2k - 2 2 1.
r r

i i

i i

l lusd T kk

 

Otherwise 

1 1

( ) = ( -1) -  + 1 = k -  2 1.
r r

i i

i i

l l kusd T k  

Case (ii):  V(T) − {v}  1.kK  

    Then   V(T) − {v}  contains at least one 

component with two vertices. Since T is tree, 

exactly one vertex of each component of V(T) − 

{v}  is adjacent to exactly one vertex of N(v). 

Therefore we can not find a stable subdivision set 

which is constructed by two edges for each vertex of 

 V(T) − {v} . Hence usd (T) < 2(k − 1) + 1 = k − 1. 

 

Theorem 3.3. Let T be a tree. Then usd (T) = 2k−1, 

where         k = n − (T) if and only if T is either 

wounded spider or star. 

Proof. Assume that T is either wounded spider or 

star. If T is a wounded spider, then usd (T) = 2k−1. 

Otherwise T  K1,n−1 and so usd (T) = 1 = 2k − 1. 

       Conversely, assume that usd (T) = 2k − 1. 

Suppose T is neither wounded spider nor star. Since 

T is not a star, there is no tree such that V(T) − N[v] 

= . Now assume that               V(T) − N[v] ≠ . 

Case (i) : V(T) − {v}    1.kK  

    If N(v) contains no strong support, then T is a 

spider and hence by Theorem 3.1 usd (T) = k. 

Otherwise N(v) contains at least one strong support 

and hence by the proof of Theorem 3.2, 

usd (T) < 2k − 1. 

Case (ii) : V(T) − {v}   1.kK  

   By case (ii) in the proof of the Theorem 3.2, 

usd (T) < 2k − 1. 

 

Theorem 3.4. If T is a caterpillar, then usd (T) ≤ 

⌈3n/4⌉ . 
Proof. Let D be a dominating set of T. Without loss 

of generality we assume that D contains all the 

supports of T. 

Case (i): Every internal vertex is a support. 

    Let us first consider graph T having no strong 

support. Let u1, u2, . . . , uk be supports and v1, v2, . . . 

, vk be corresponding pendant vertices. Let E′ = {uiuj 

 E(T)}  {uivi : no two ui’s are adjacent}. Then |E′| 

≤ k − 1 + k/2  = 3k/2  - 1. We can easily verify 

that (T||E′) = (T) and hence E′ is a stable 

subdivision set of T. 

 

Claim : E′ is a maximum stable subdivision set of T. 

   For n ≤ 20, we can verify that E′ is a maximum 

stable subdivision set of T. Now we prove this for 

general case. Suppose there exists a stable 

subdivision set E′′  E(T) such that |E′′| > |E′|. 

subcase (i): E′′  E′. 

   Let us take E′′  E′  {ujvj}, ujvj  E′. Then uj′vj′  

E′, where uj′ is adjacent to uj. Since the internal edge 

ujuj′ , uj′vj′ and ujvj are subdivided in T||E′′, (T||E′′) = 

(T||E′)+1 > (T). Therefore E′′ is not a maximum 

stable subdivision set. 

Subcase (ii): E′′  E′. 

    If E′  E′′ = , then |E′′| ≤ (n − 1) − |E′| ≤ 2k − 1 − 

3k/2  + 1 = k/2  < |E′| which contradicts the 

definition of E′′. Therefore we assume that E′  E′′ 

≠ . Suppose |E′\E′′| = 1. Let e  E′ and e  E′′. 

Therefore e = uiuj or uivi . Then E′′ cotains at least 

two  leaves ujvj and ukvk which are not in E′. 

Therefore                   uj′vj′ , uk′vk′  E′, where uj′ is 

adjacent to uj and uk′ is adjacent to uk. Let E1 = {ujvj, 

ujuj′ , uj′vj′}. Then (T||E1) > (T) . . . . . . . . (1). 

Hence (T||E′′) > (T). Suppose |E′\E′′| = r, then E′′ 

contains at least r + 1 leaves which are not in E′. 

Since by (1), subdivision of E′′ increases the 

domination number. By both the subcases we get 

contradiction. Hence E′ is a maximum stable 

subdivision set of T. Now usd (T) = |E′| + 1 ≤ 3k/2  

= 3n/4 . 

     If T has strong support, then the number of 

independent leaves is less than  n/2 . Hence usd (T) 

< 3n/4  . 

case (ii): There exists an internal vertex which is not 

support. 

    Since there exists at least two supports which are 

not adjacent, we can not take all the internal edges 

in maximum stable subdivision set M and the 

number of leaves is less than  n/2 , |M| < 3n/4 . 

 

Corollary 3.5.  If T is a columb graph, then usd (T) 

= 3n/4 . 

 

IV. LOWER AND UPPER BOUNDS 

          In this section we obtain the lower and upper 

bounds for domination uniform subdivision number 

and we characterize the extremal graphs. 

 

Theorem 4.1. Let G be a graph with components 

G1, G2, ...,Gk. Then 

1

 1.
k

i

i

usd G usd G k  

Proof. Let di = usd (Gi) and Ei   E(Gi) such that 

(Gi ||Ei) = (Gi) and |Ei | = di − 1. Therefore Ei is a 

maximal set with the above condition. Take 

1

.
k

i

i

E E                                       Then 

1 1

  (d 1) .| |
k k

i i

i i

E d k   

Now 

1 1

 ( ) ( ) ( )( || .) ||
k k

i i i

i i

G E G E G G   

To prove E′ is a maximal set having maximum 
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cardinality with respect to the above condition. 

Consider E* = 

1

,
k

i

i

E e
 

where e  E(G)\E′. Then 

e  E(Gi) for some i. 

1

( || ) ||*  ( ) + ( )) > ( ) ( ).|| (
k

j j i i j

j i j

G E G E G E e G G

Therefore E′ is a maximal set. Suppose E′′  E, 

(G||E′′) = (G) and |E′′| > |E|. If E′′  E′, then E′′ 

contains Ei  {ei},                 ei  E(Gi)\Ei . Then 

(Gi ||(Ei {ei})) > (Gi) and hence (G||E′′) > (G) 

which is a contradiction. If E′′  E′, then there 

exists at least one component Gj such that E′′ 

contains more number of elements of Gj than that E′ 

contains. Let us take      E′′  E′j. Then |E′j | > |Ej| = 

di and (Gj||E′j ) > (Gj). Therefore (G||E′′) > (G) 

which is a contradiction. Hence 

1

| * 1.|
k

i

i

usd G E d k

 
 

Theorem 4.2. For any graph G, 0 ≤ usdg(G) ≤ m. 

Also 

the bounds are sharp. 

Proof. If (G||E(G)) = (G), then usd (G) = 0. For 

example usd (P2) = 0. If (G||E(G)) > (G), then 

usd (G) ≤ m. Consider 
3 1   ( ) 6 usd P K size of 

3 1.P K Hence the bounds are sharp. 

 

Theorem 4.3. For any graph G, usd (G) = 0 if and 

only if 

G  k1P1 ∪  k2P2 where k1 ≥ 0 and k2 ≥ 0. 

Proof. Assume that G  k1P1  k2P2, k1 ≥ 0 and k2 ≥ 

0. Clearly usd (G) = 0. Conversely, assume that 

usd (G) = 0. Suppose G  k1P1  k2P2. Then G 

contains a component Gi with at least three vertices 

and sd (Gi) exists. Hence usd (G) > 0. 

 

Theorem 4.4. For any connected graph G, usd (G) 

= m if and only if  
1, 1,rG K K  for all r ≥ 1. 

Proof. Assume that 
1, 1rG K K for some r ≥ 1. 

Then            E(G) − {e}, where e is leaf which is 

incident with full vertex of K1,r, is maximum stable 

subdivision set of G and hence    usd (G) = m. 

    Conversely assume that usd (G) = m. Suppose 

1, 1rG K K® for all r ≥ 1. 

 

Case (i) : (G) = n/2 

   Then by theorem 
1.G H K Also

1,rH K® , for 

some r ≥ 1. Since usd  > 0,
1H K® . Let v V H

such that deg(v) = (H). Let NH(v) = {v1, v2, . . . , 

vk}, u1, u2, . . . , uk be corresponding pendent vertices 

of v1, v2, . . . , vk respectively and uv be leaf in G. 

Then N(v)  contains at least one edge. Let E′ = {vv1, 

. . . , vvr, v1u1, . . . , vrur}. Then E′ is stable 

subdivision set. Any edge set consists of E′ and  at 

least one edge of NH(v)  or uv whose subdivision 

increase the domination number. Also any 

maximum stable subdivision set S containing vivj 

does not contain either viui or vjuj and S does not 

contain uv. Therefore by the above argument 

usd (G) ≤ m − 1. 

 

Case (ii) : (G) < n / 2 . 

    Then any minimum dominating set D contains at 

least one vertex which has at least two private 

neighbors in V(G) − D. Let v  D. Then v has at 

least two neighbors say, v1 and v2 in V(G) − D. Let 

e1 = vv1 and e2 = vv2. Then E1 = E(G) − {e1} and E2 

= E(G) − {e2} whose subdivision increase the 

domination number and |E1| = |E2| = m − 1. 

Therefore, for any minimum dominating set D, 

subdivision of any m − 1 edges increases the 

domination number. Since D is arbitrary,  usd (G) ≤ 

m − 1. 

 

Corollary 4.5. For any graph G, usd (G) = m if and 

only if          G  k1(K1,r)   k2P1  k3P2. 
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