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ABSTRACT 

 

1. INTRODUCTION 

 

We consider an Ising spin system where the spins have a Gaussian distribution about their equilibrium state. Such a 

model can be used as reasonable approximation for bonds of polymers which are known to exist to fluctuate about 

the t, g, g
+ 

states. We note that Sherrington and Kirkpatrick [12] have studied the spin-glass state with the spin-spin 

interaction being given by an exponential distribution. As the model proposed here is similar to the SK model we 

expect to see 

spin glass states in the system. In fact spin glass states have in fact been observed in polymers [11-12]. 

We first examine the statistical mechanics of an Ising system with the spins having an exponential distribution. The 

Edwards-Anderson order parameter (q) is computed for this model. It is shown that a spin glass state is possible in 

this model. 

2. Sherrington Kirkpatrick Model 

 

The Hamiltonian for the Sherrignton-Kirkpatrick model [12-13] is given by 

H   Jij Si S j ij 

 

 

 

(1) 

 

where the interaction constant 
Jij is given by 

 

Jij   
ij 

1 
e
 J 2 / 

2 J 2 

 

 

(2) 

 

 

Here 

Further 

Si , S j   1 

 

J ij   0 

 

(3) 

 

(4) 
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In the high temperature phase one has 

 

 i     0  

(5) 

 

However at  low temperatures one has 

 

 i     0  

(6) 

 

Further in the Spin Glass phase the magnetization is given by 

 

M   
1
 

N 

N 

 i     0 
i1 

 

 

(7) 

 

The Edwards-Anderson parameter is similarly given by 

 

q      
1 



N   i 

2  
 0 

 

 

(8) 

 

 

 

3. Spin Glass model of Biopolymers 

 

The spin glass model of biopolymers is the same as (1) with the difference that the spins have  an 

Gaussian distribution about an equilibrium point. The interaction   constant 
Jij is a constant and 

does not have an exponential distribution unlike the SK model. In this picture one has 

 
  

2
  

2
 

H  
ij

Jij Si S je i           1
    



(9) 

 

For ease of calculation we put  
i    j  and   

1   2   0 . This approximation implies that we are 

treating all moieties in the biopolymer as the same and hence they have identical Gaussian fluctuations about the 

equilibrium. The Hamiltonian now becomes 

 

H   2 
ij i    j i      0 

 

ij
(10) 

 

The Hamiltonian (12) is exactly similar to the Hamiltonian of SK [12-13] and hence admits spin glass states. 

Experimental evidence of Spin Glass states in fact have been found in Biopolymers via x-ray diffraction [10] and 

Mossbauer studies [11] thus justifying our conjecture of moieties of biopolymers having Gaussian distributions 

about their equilibrium positions. We note that  spin glass states are very different from other states normally dealt 

with in Statistical Mechanics. In  the  spin  glass  state  each  state  is  frozen  or  quenched  into  one  configuration  

[1-9]. Thus 

i 
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q 

q 

q 

different states do not interact with each other and interchange energy as happens in gases. The partition function is 

written as 

e
  E 


n 

Z     1 
n (11) 

 

where n is the number of replicas. The number of replicas has to be more than 1. (Hence the -1 ). 

4. Overlaps 

 

One feature of spin glass states is that there are overlaps between spin glass states. Replicas by definition do not 

interact: they are simply replicas of one another. However the fluctuations and consequent overlaps are the 

symmetry breaking aspect of replicas. In Biopolymers this effect is most pronounced. The hydrogen bonds are one 

of the most important intra- and Intermolecular interactions in biological macromolecules [1], and are responsible 

for the structural and functional differences in RNA and DNA. The use of the overlap population, as a quantum 

Selection criterion presents the advantage that offers the possibility of the evaluation of the 

 

Relative strength of different H-bonds, and also of the detection not only of the weaker H-bonds 

 

Induced Magnetization due to Overlaps The induced magnetization due to overlaps in spin glass states has been 

calculated by M. Mezard, G. Parisi, and M. A. Virasoro [16]. Here we present a physical basis. Any overlap between 

states  ,  
  

due to a fluctuation induces magnetization.  The induced magnetization is given by 

 

M = N tanh( B) 

 

The induced magnetic field B  is proportional to the spins and due to (8) we have 

(12) 

 

B     
(13) 

The total magnetization due to both states   and  
 

is 

 

M  = N tanh
2 

(  Jz ) (14) 

 

The overlap between the two states is given by error function. Hence one obtains 

 

  z2 

m = N   dze 


2     tanh
2 

(  Jz )  

(15) 

http://www.ijmttjournal.org/


International Journal of Mathematics Trends and Technology- Volume27 Number1 – November 2015 

ISSN: 2231-5373                                  http://www.ijmttjournal.org                         Page 10 

q 

q 

  J q 

5. Applications 

Differentiating (17) one obtains 

 

dm 
 e



dz 

 z2 
2     tanh

2 
(  Jz ) 

 

 

(16) 

 

The exponential pre-factor simply localizes the allowed values of z. We therefore neglect the pre factor and 

incorporate its effect by evaluating the integral at specific values of z. We thus have to solve 

 

dm   
  tanh

2 
( Jz ) 

dz 
 

Using 
y   Jz 

 

(17) 

 

(18) 

 

One obtains 

 

dm tanh
2 

(y) 


dy 

 

 

(19) 

 

The solution of (21) is 

 

m 



1 
 y  tanh( y)







(20) 

 

The first term in (22) is the baseline term. Neglecting this term we plot m as function of y as shown in fig. 1. 

6. Conclusion 

 

Our conjecture of Gaussian distribution of moieties about their equilibrium positions of biopolymers leads to spin 

glass states of biopolymers. The spin glass states of biopolymers has been verified via x-ray [10] and Mossbauer 

experiments [11] thus verifying our conjecture. Spin glass states are characterized by varying degrees of overlap. In 

biopolymers this is due to differing affinities of Hydrogen bonds [14], amino acid interactions [15]. This leads to 

differing levels of interaction between moieties in biopolymers. 

q 

J q 
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