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Abstract — In this article presents a study on 
interesting unsteady one-dimensional heat flow 
problem is discussed using Rayleigh Ritz, single-term 
Walsh series (STWS) method [5] and Leapfrog 
method. The results (approximate solutions) obtained 
very accurate using the above said methods are 
compared with the exact solution of that problem. It is 
found that the solution obtained using Leapfrog 
method is closer to the exact solution of the unsteady 
one-dimensional heat flow problem. The high 
accuracy and the wide applicability of Leapfrog 
method approach will be demonstrated with numerical 
example. Solution graphs for discrete exact solutions 
are presented in a graphical form to show the 
efficiency of the Leapfrog method. The results 
obtained show that Leapfrog method is more useful 
for solving the unsteady one-dimensional heat flow 
problem and the solution can be obtained for any 
length of time. 
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I. INTRODUCTION 
A mathematical model is a description of a system 

using mathematical concepts and language. The 
process of developing a mathematical model is 
termed mathematical modelling. Mathematical models 
are used not only in the natural sciences (such as 
physics, biology, earth science, meteorology) and 
engineering disciplines (e.g. computer science, 
artificial intelligence), but also in the social  sciences 
(such 
as economics, psychology, sociology and political 
science), physicists, engineers, statisticians, operations 
research analysts and economists use mathematical 
models most extensively. 

Mathematical models can take many forms, 
including but not limited to dynamical 
systems, statistical models, differential equations, 
or game theoretic models. These and other types of 
models can overlap, with a given model involving a 
variety of abstract structures. In general, mathematical 
models may include logical models, as far as logic is 
taken as a part of mathematics. In many cases, the 

quality of a scientific field depends on how well the 
mathematical models developed on the theoretical side 
agree with results of repeatable experiments. Lack of 
agreement between theoretical mathematical models 
and experimental measurements often leads to 
important advances as better theories are developed. 

In this paper we developed numerical methods for 
addressing unsteady one-dimensional heat- flow 
problem by an application of the Leapfrog method 
which was studied by Sekar and team of his 
researchers [1-2, 6-18], which involve two phases. In 
phase-I, the spatial dependency of the heat flow 
equation is eliminated by applying the Rayleigh-Ritz 
method and to determine the suitable initial conditions, 
the Galerkin Technique is utilized. In phase II, the 
resulting system of equations is being solved by 
applying the methods STWS [3] and Leapfrog method 
to determine the discrete solutions of the unsteady 
one-dimensional heat- flow problem.  Further, to 
analyse the efficiency of the above-mentioned 
methods, the discrete solutions obtained are compared 
with the exact solutions and with the obtained discrete 
solutions by the methods of Laplace Transform and 
Leapfrog method. Recently, Sekar et al. [5] discussed 
the unsteady one-dimensional heat- flow problem  
using STWS. In this paper, the same unsteady one-
dimensional heat- flow problem was considered 
(discussed by Sekar et al. [5]) but present a different 
approach using the Leapfrog Method with more 
accuracy for unsteady one-dimensional heat- flow 
problem. 

II. UNSTEADY ONE-DIMENSIONAL HEAT FLOW 
PROBLEM 

Let us consider an unsteady one-dimensional heat 
flow problem (it may be referred as a flow of 
electricity in cables – the telegraph problem).  The 
governing equation of the flow is given by  
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where T denotes the temperature, t denotes the time, 
2 denotes the thermal diffusivity and       x denotes 
the space coordinate. 

The initial and boundary conditions are   
1.0    T(x,0)        (2) 
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III.  PHASE I  
3.1 RAYLEIGH - RITZ METHOD 

This method is used for the elimination of spatial 
dependency in eq. (1).  Assuming that T* is the 
weighting function of T, which satisfies the initial and 
boundary conditions given by eqs. (2) and (3), the 
following weighted residual equation can be obtained 
as (Schechter [4]) 
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After integrating and introducing the boundary 

conditions (3) we obtain 
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Assuming the same function has been applied for T 

and T*, then we define 
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where  1 = x  and 2 = x2.  Substituting eqs. (6) and (7) 
into eq. (5) we obtain 

0 dx  
x

 
x

C   dx   
t

C
 

1

0

2

1j
1k

j
2

1

0

2

1j

j 







































  




jk
jk


  

(8) 
Eq. (8) can be expressed as  

     0   C(t) B  )(' CA  t                    (9) 
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Evaluating the indicated integration, we get 



















































 

0
0

    
)(C
)(C

 
8060
6060

    
)(' C

)(' C 
1215
1520

2

1

2

1

t
t

t

t      

(10) 
 
3.2 GALERKIN METHOD 

To solve the system, we need some initial 
conditions for C1 and C2, since in the present 

approximation, the initial condition T(X, 0) = 1 cannot 
be satisfied.  We then represent the residual of the 
approximation with the initial condition as (Schechter 
[4]) 
    E1  =  T(x,0) –1  =  xC1(0) + x2C2(0) – 1            
(11) 

Now, employing the Galerkin method, we get 
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Solving eqs. (12) and (13), we obtain 
C1(0) = 4,     C2(0) = -10/3               (14) 
Hence, for the problem (1), the spatial dependency 

of the heat flow has been eliminated by applying the 
Rayleigh-Ritz method thereby reducing the problem to 
a system of linear first order differential equations (10) 
whose initial conditions are given in (14). 

IV. PHASE II  
Here, numerical methods namely STWS and 

Leapfrog method, have been introduced to calculate 
C1(t) and C2(t) for the system (10).   
 
4.1 SINGLE TERM WALSH SERIES (STWS)  

Consider the system of linear differential equations        
 

u(t) B    A x(t)    (t)' xK              (15)    
with    x(0) = x0.  

where K and A are  n x n matrices, B is an n x r 
matrix, x(t) is an n-state vector, and u(t) is an r-input 
vector.  In this technique, the given function is 
expanded as a single - term Walsh series in the 
normalized interval τ [0.1), which corresponds to t  
[0.1/m) by defining t = τ/m, m being any integer. The 
following are the recursive relations, in STWS 
method, to determine the discrete solution for the 
system (15). 

    i
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m
A        iiS  i  =   1, 2, 

3, …. 
Then, x(i) will give the discrete values of the state 

and Pi gives the Block Pulse Function (BPF) values of 
the state to any length of time.  The main advantage of 
this method is that if the matrix K in (15) is singular, 

this difference 





2m
A - K  turns out to be non-singular.  

Hence, the inverse of the matrix can be computed. 
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The state – space equation (10) is 
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with  C(0)  =  [C1(0)  C2(0)]T  =  [4   –10/3]T. 
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with C(0) = [ 4  -10/3]T.  Applying the STWS 

approach, the following recursive relationship is 
obtained.   
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C(i)  =   Ri  +  C( i -1) 
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interval number.  
 The discrete and Block Pulse Function (BPF) 

values of C(t) are obtained from C(i) and Pi, to any 
length of time.   

To obtain the discrete solutions, via extended RK 
methods, we write the system of eqs. (10) explicitly 
as : 
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4.2 LEAPFROG METHOD 

In mathematics Leapfrog integration is a simple 
method for numerically integrating differential 
equations of the form  xFx  , or equivalently of the 
form   vxxFv   , , particularly in the case of a 
dynamical system of classical mechanics. Such 
problems often take the form  xVx  , with 

energy function    xVvvxE  2

2
1, , where V is the 

potential energy of the system. The method is known 
by different names in different disciplines. In 
particular, it is similar to the Velocity Verlet method, 
which is a variant of Verlet integration. Leapfrog 
integration is equivalent to updating positions  tx and 
velocities    txtv   at interleaved time points, 
staggered in such a way that they 'Leapfrog' over each 

other. For example, the position is updated at integer 
time steps and the velocity is updated at integer-plus-
a-half time steps. 

Leapfrog integration is a second order method, in 
contrast to Euler integration, which is only first order, 
yet requires the same number of function evaluations 
per step. Unlike Euler integration, it is stable for 
oscillatory motion, as long as the time-step t is 
constant, and wt 2 . In Leapfrog integration, the 
equations for updating position and velocity are 

  ,,, 2121211 tavvxFatvxx iiiiiiii  

where ix is position at step 21, ivi , is the velocity, or 

first derivative of x, at step  ii xFai  ,21 is the 
acceleration, or second derivative of x, at step i and 

t is the size of each time step. These equations can 
be expressed in a form which gives velocity at integer 
steps as well. However, even in this synchronized 
form, the time-step t must be constant to maintain 
stability.  
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One use of this equation is in gravity simulations, 
since in that case the acceleration depends only on the 
positions of the gravitating masses, although higher 
order integrators (such as Runge–Kutta methods) are 
more frequently used. There are two primary strengths 
to Leapfrog integration when applied to mechanics 
problems. The first is the time-reversibility of the 
Leapfrog method. One can integrate forward n steps, 
and then reverse the direction of integration and 
integrate backwards n steps to arrive at the same 
starting position. The second strength of Leapfrog 
integration is its symplectic nature, which implies that 
it conserves the (slightly modified) energy of 
dynamical systems. This is especially useful when 
computing orbital dynamics, as other integration 
schemes, such as the Runge-Kutta method, do not 
conserve energy and allow the system to drift 
substantially over time. 

V.  DISCUSSION  
Solving eq.(20) by the Laplace – Transform, the 

analytic expressions for C1(t) and C2(t) are   
tttC


   2.486 - -32.1807
1 e 2.3592   e 1.6408      )(                 

 tttC
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   2.486 - -32.1807
2 e 1.068   e 2.265 -     )(                   

The exact solution of eqs. (1) which satisfies the 
initial and boundary conditions given by eqs. (2) and 
(3) is obtained as (refer Ritger and Rose [115]). 
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The numerical values of T(x,t), with different 

values of 2 = 0.5, 0.75, 1.0 and 2.0 based on the 
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value of x = 0.5 and  0.1, have been obtained by the 
methods of Ritz-Laplace Transform,  Ritz-STWS and 
the Ritz-Leapfrog, and are respectively shown in 
Tables 1 – 4, together with their corresponding exact 
solutions. 

Also, the discrete solutions obtained by the methods 
STWS and Leapfrog, for the values of C1(t) and C2(t) 
of the eqs. (10), coincide well with the solutions 
obtained by the Laplace Transform.  The numerical 
values of T(x,t), with different values of 2 = 0.5, 0.75, 
1.0 and 2.0 based on the value of  x = 0.5 and  0.1, 
have been obtained by these two methods and are in 
good agreement with the exact solution (20).  

The obtained absolute error using the methods of 
Ritz-Laplace Transform, Ritz-STWS and Ritz-
Leapfrog are given in Tables 5 – 12.  For a sample, an 
error graph for x = 1 at time t = 1.4 is shown in Figure 
1.   

Table 1 Variation of T(x,t) for 2 = 0.5 

Value of   x =  0.5 
Time Exact Laplace STWS Leapfrog 
0.20 0.7354 0.7220 0.7201 0.7220 
0.40 0.5529 0.5555 0.5553 0.5555 
0.60 0.4295 0.4329 0.4328 0.4329 
0.80 0.3353 0.3376 0.3375 0.3376 
1.00 0.2619 0.2633 0.2632 0.2633 
1.20 0.2046 0.2053 0.2053 0.2053 
1.40 0.1598 0.1601 0.1601 0.1601 

Value of   x =  1.0 
0.20 0.9488 0.9820 0.9863 0.9820 
0.40 0.7717 0.7843 0.7846 0.7843 
0.60 0.6062 0.6124 0.6123 0.6124 
0.80 0.4739 0.4777 0.4775 0.4777 
1.00 0.3703 0.3725 0.3724 0.3725 
1.20 0.2892 0.2905 0.2904 0.2905 
1.40 0.2260 0.2266 0.2265 0.2266 

 

Table 2 Variation of T(x,t) for 2 = 0.75 

Value of   x =  0.5 
Time Exact Laplace STWS Leapfrog 

0.20 0.6322 0.6306 0.6293 0.6306 
0.40 0.4295 0.4330 0.4327 0.4330 
0.60 0.2963 0.2982 0.2979 0.2982 
0.80 0.2046 0.2055 0.2051 0.2055 
1.00 0.1413 0.1414 0.1412 0.1414 
1.20 0.0975 0.0974 0.0973 0.0974 
1.40 0.0673 0.0671 0.0670 0.0671 

Value of   x =  1.0 
0.20 0.8637 0.8843 0.8867 0.8843 
0.40 0.6062 0.6124 0.6122 0.6124 
0.60 0.4189 0.4218 0.4215 0.4218 
0.80 0.2892 0.2905 0.2902 0.2905 
1.00 0.1997 0.2001 0.1998 0.2001 

1.20 0.1379 0.1378 0.1376 0.1378 
1.40 0.0952 0.0950 0.0947 0.0950 

 

 

Table 3 Variation of T(x,t) for 2 = 1.0 

Value of   x =  0.5 
Time Exact Laplace STWS Leapfrog 
0.20 0.5529 0.5555 0.5548 0.5555 

0.40 0.3353 0.3376 0.3372 0.3376 

0.60 0.2046 0.2054 0.2050 0.2054 

0.80 0.1249 0.1249 0.1246 0.1249 

1.00 0.0762 0.0760 0.0757 0.0760 

1.20 0.0465 0.0463 0.0460 0.0463 

1.40 0.0284 0.0281 0.0280 0.0281 

Value of   x =  1.0 
0.20 0.7717 0.7844 0.7848 0.7844 

0.40 0.4739 0.4777 0.4771 0.4777 

0.60 0.2892 0.2906 0.2900 0.2906 

0.80 0.1765 0.1767 0.1763 0.1767 

1.00 0.1077 0.1075 0.1071 0.1075 

1.20 0.0657 0.0654 0.0651 0.0654 

1.40 0.0401 0.0398 0.0396 0.0398 

Table 4 Variation of T(x,t) for 2 = 2.0 

Value of   x =  0.5 
Time Exact Laplace STWS Leapfrog 
0.20 0.3353 0.3376 0.3366 0.3376 
0.40 0.1249 0.1249 0.1236 0.1249 
0.60 0.0465 0.0462 0.0455 0.0462 
0.80 0.0173 0.0171 0.0167 0.0171 
1.00 0.0064 0.0063 0.0062 0.0063 
1.20 0.0024 0.0023 0.0023 0.0023 
1.40 0.0009 0.0009 0.0008 0.0009 

Value of   x =  1.0 
0.20 0.4739 0.4777 0.4734 0.4777 
0.40 0.1765 0.1767 0.1749 0.1767 
0.60 0.0657 0.0654 0.0644 0.0654 
0.80 0.0245 0.0242 0.0237 0.0242 
1.00 0.0091 0.0090 0.0087 0.0090 
1.20 0.0034 0.0033 0.0032 0.0033 
1.40 0.0013 0.0012 0.0012 0.0012 

 

Table 5 Absolute Error in T(x,t) for 2 = 0.5 

W
he

n 
x 

= 
0.

5 Time Laplace STWS Leapfrog 
0.20 0.0134 0.0135 0.0135 
0.40 0.0026 0.0026 0.0026 
0.60 0.0034 0.0034 0.0034 
0.80 0.0023 0.0023 0.0023 
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1.00 0.0014 0.0014 0.0014 
1.20 0.0007 0.0008 0.0008 
1.40 0.0003 0.0003 0.0003 

W
he

n 
x 

= 
1.

0 
0.20 0.3376 0.3366 0.3376 
0.40 0.1249 0.1236 0.1249 
0.60 0.0462 0.0455 0.0462 
0.80 0.0171 0.0167 0.0171 
1.00 0.0063 0.0062 0.0063 
1.20 0.0023 0.0023 0.0023 
1.40 0.0009 0.0008 0.0009 

 
 

Table 6 Absolute  Error in T(x,t) for 2 = 0.75 

W
he

n 
x 

= 
0.

5 

Time Laplace STWS Leapfrog 
0.20 0.0016 0.0017 0.0016 
0.40 0.0035 0.0034 0.0035 
0.60 0.0019 0.0018 0.0019 
0.80 0.0009 0.0008 0.0009 
1.00 0.0001 0.0002 0.0001 
1.20 0.0001 0.0001 0.0001 
1.40 0.0002 0.0003 0.0002 

W
he

n 
x 

= 
1.

0 

0.20 0.0206 0.0207 0.0206 
0.40 0.0062 0.0063 0.0062 
0.60 0.0029 0.0029 0.0029 
0.80 0.0013 0.0013 0.0013 
1.00 0.0004 0.0004 0.0004 
1.20 0.0001 0.0001 0.0001 
1.40 0.0002 0.0003 0.0002 

 

Table 7 Absolute  Error in T(x,t) for 2 = 1.0 

W
he

n 
x 

= 
0.

5 

Time Laplace STWS Leapfrog 
0.20 0.0026 0.0026 0.0026 
0.40 0.0023 0.0023 0.0023 
0.60 0.0008 0.0007 0.0008 
0.80 0.0000 0.0000 0.0000 
1.00 0.0002 0.0002 0.0002 
1.20 0.0002 0.0003 0.0002 
1.40 0.0003 0.0003 0.0003 

W
he

n 
x 

= 
1.

0 

0.20 0.0127 0.0127 0.0127 
0.40 0.0038 0.0038 0.0038 
0.60 0.0014 0.0013 0.0014 
0.80 0.0002 0.0002 0.0002 
1.00 0.0002 0.0002 0.0002 
1.20 0.0003 0.0004 0.0003 
1.40 0.0003 0.0004 0.0003 

 

 

 

 
 

Table 8 Absolute  Error in T(x,t) for 2 = 2.0 

W
he

n 
x 

= 
0.

5 

Time Laplace STWS Leapfrog 

0.20 0.0023 0.0023 0.0023 
0.40 0.0000 0.0000 0.0000 
0.60 0.0003 0.0003 0.0003 
0.80 0.0002 0.0002 0.0002 
1.00 0.0001 0.0001 0.0001 
1.20 0.0001 0.0001 0.0001 
1.40 0.0000 0.0000 0.0000 

W
he

n 
x 

= 
1.

0 

0.20 0.0038 0.0037 0.0038 
0.40 0.0002 0.0002 0.0002 
0.60 0.0003 0.0004 0.0003 
0.80 0.0003 0.0003 0.0003 
1.00 0.0001 0.0002 0.0001 
1.20 0.0001 0.0001 0.0001 
1.40 0.0000 0.0000 0.0000 

 
 

 

 
Fig. 1 Error graph for x = 1.0 at t = 1.4 

 

VI. CONCLUSIONS 
As an outcome of this study, new methods have 

been proposed for the investigation of unsteady one-
dimensional heat-flow problem.  The novel features of 
the present numerical schemes are the adoption of the 
Rayleigh – Ritz technique for the elimination of 
spatial dependency in the heat flow equation, the 
STWS and Leapfrog methods for solving the resulting 
system of first order linear equations in time, and the 
Galerkin method for determining the initial conditions.   

It is observed that Ritz-Laplace Transform, Ritz-
STWS and Ritz-Leapfrog yield similar results. 
Reviewing these methods, applied for the unsteady 
one-dimensional heat-flow problem, it is clearly 
noticeable that Ritz-STWS, Ritz-Leapfrog methods 
involve less number of computations and the 
complexity of these methods are very simple.  

It is also to be noted that from Figure 1, the 
analytical method of Laplace Transform stands first, 
in respect to accuracy.  However, Leapfrog method is 
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found to yield better results among the STWS 
technique. 
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